
University of Novi Sad
Faculty of Sciences

Department of mathematics and
informatics

Predrag Matavulj

Fusion of Heterogeneous Data
in Convolutional Networks for
Real-Time Pollen Particle

Identification
Master thesis

Supervisor:
dr Sanja Brdar

2018, Novi Sad



Abstract

The aim of this thesis is to present a part of a solution for automated
pollen particle identification. Pollen identification is an important
problem considering the fact that there is an increasing number of
people suffering from allergies and that pollen concentrations impact
diverse biosystems including agriculture. Currently, the identification
process is manual, takes a lot of time and requires human resources.
New devices on the market create data sets relevant for the pollen
identification and classification, but require development of predic-
tive models based on machine learning. In this thesis we focused on
four types of pollen (Brussonetia, Betula, Picea and Juglans) different
in morphology and size and utilized convolutional neural network to
learn classification model. The network learned features form scatter-
ing images (24 pixels x number of acquisitions), fluorescence spectrum
(32 x 8 acquisitions separated by 500 ns) and fluorescence lifetime (64
x 4 acquisitions). After the last convolutional layer these features were
concatenated into one feature vector representing all three sources of
information, which allowed the gradient to flow through the whole net-
work. The result of the classification is measured in accuracy, giving
the best result of 84.9% for classification when all three sources are
used. Furthermore, introducing probability threshold improves the
accuracy score while discarding a number of samples.
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1 Introduction

1 Introduction
An aerosol is a collection of liquid or solid particles suspended in a gas.
There are many kinds of aerosols: atmospheric clouds of ice particles or
water droplets, resuspended soil particles, photochemically formed particles,
salt particles formed from ocean spray, etc. They include a wide range of
phenomena such as mist, clouds, smog, dust and fume. They vary greatly
in their ability to affect not only visibility and climate, but also our health
and quality of life. An understanding of the properties of aerosols is of great
practical importance. Particle size ranges from about 0.002 to more than 100
um. Aerosols of biological origin are called bioaerosols. They include viruses,
viable organisms, such as bacteria and fungi, and products of organisms, such
as fungal spores and pollen. The health effects caused by bioaerosols include
infectious disease, sensitization reactions, such as asthma, and reactions to
toxins or irritants [1].

Pollen grains are relatively large, near-spherical particles produced by plants
to transfer genetic material to the flower of other plants of the same species.
The grains range in size from 10 to 100 um, with most between 25 and 50
um. Wind-pollinated plants produce and release a large amount of bioaerosol
pollen seasonally, controlled by wind and weather [1]. Pollen is one of the
most common triggers of seasonal allergies. Many people know pollen allergy
as “hay fever”. Most of the pollens that cause allergic reactions come from
trees, weeds and grasses. These plants make small, light and dry pollen grains
that travel by the wind. Grasses, mainly ragweed, are the most common
cause of allergy. Other common sources of weed pollen include sagebrush,
pigweed and tumbleweed. Certain species of trees, including birch, cedar
and oak, also produce highly allergenic pollen. Plants fertilized by insects,
like roses and some flowering trees, like cherry and pear trees, usually do not
cause allergies. [2].

Since the counting of these particles is still done mostly manually under
microscope, there is exigency for fast, reliable and cost-effective aerosol de-
tectors. New laser-based technology - Rapid-E - promises to deliver real
time information by recording scattered light and laser-induced fluorescence
patterns, representing morphological and chemical fingerprints of airborne
particles.

The main goal of this thesis is to classify four types of pollen, particularly
1500 samples of Broussonetia, 548 samples of Picea, 2033 of Juglans and
3257 samples of Betula, whose morphology can be seen in Figure 1.
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1 Introduction

(a) Broussonetia (b) Picea

(c) Juglans (d) Betula

Figure 1: Grains of different types of pollen under microscope

Rapid-E includes three different datasets: scattered light image, fluorescence
spectrum and fluorescence lifetime. In order to get the best classification
results, some kind of data fusion was needed, so that the classifier can see all
data before making a decision.

The classification algorithm is based on convolutional neural networks, which
have so far shown better performance on similar problems in image processing
and object classification compared to other machine learning classifiers [10].
The algorithm is implemented in an integrated development environment
Jupyter Notebook, designed for people with knowledge of Python’s language.
PyTorch library makes it possible to efficiently define, evaluate and calcu-
late, necessary for the training of neural networks. In addition to the above
mentioned advantages, this library was chosen for deployment purposes, since
through CUDA (Compute Unified Device Architecture) is possible to use the
Graphics Processing Unit (GPU), which further provides unavoidably faster
computing compared to the Central Processing Unit (CPU) [11].
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1 Introduction

Algorithms and data used in this thesis are linked to “Real-time measure-
ments and forecasting for successful prevention and management os sea-
sonal alergies in Croatia-Serbia cross-border region” - RealForAll (2017HR-
RS151) project, co-financed by the Interreg IPA Cross-border Cooperation,
Provincial secretariat for finances and institutions implementing the project
(BioSense Institute - Research Institute for Information Technologies in Biosys-
tems (Serbia), J. J. Strossmayer Universityof Osijek, Department of Math-
ematics (Croatia), Univeristy of Novi Sad, Faculty of Sciences (Serbia) and
City of Osijek (Croatia)), in order to increase the current performance of
atmospheric models [3].
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2 Data and Technology

2 Data and Technology

2.1 Rapid-E
Real-Time Airborne Particle Identifier (Rapid-E) is a fully automated instru-
ment that can accurately analyze aerosol particles in real time - it character-
izes any airborne particle in the range of 0.5-100 micrometers. The idea is
to find technology which will count and characterize different airborne par-
ticles and ultimately provide a good understanding of atmospheric aerosol
concentrations and their influence on the environment and public health [5].

Figure 2: Hirst vs. RealForAll

Source: Hirst vs. RealForAll [3]
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2.2 Data description and preprocessing

The counting of these particles is still done mostly manually under micro-
scope with Hirst, which is very demanding job that can take up to few days
[4]. In contrary, classification with Rapid-E only takes few minutes (Figure
2).

Rapid-E works on two physical principles: morphological analysis through
scattered light, and chemical analysis through high-resolution - laser-induced
fluorescence spectrum and fluorescence lifetime [5].

Continuously pulling in ambient air with its particles, Rapid-E captures the
particles, which then enter the nozzle and that creates a narrow laminar
flow in the measurement chamber. Time-resolved and multi-pixel scattered
light enables morphological analysis. The technology includes a controlled
laser, collection lens, linear polarizer and 24-pixel light detectors, placed at
different scattering angles of 45 to 135 degrees, which are uninterruptedly
gathering the intensity of light on the wavelength of the red laser. According
to the Mie theory, every particle crossing the laser diffuses laser light and the
pixels record the light’s intensity [6], [7].

The system offers an additional degree of discrimination of aerial particles
with a new method for chemical analysis. The UV laser interacts twice with
the example particle, first contact is carried out with a UV laser polariza-
tion and the second follows with a time delay of a few nanoseconds, after
rotating the laser polarization by 90 degrees. The fluorescence spectrum is
measured with eight consecutive acquisitions distanced by 500 nanoseconds
(ns) over 32 channels of the spectrometer. By simultaneous acquisition over
four separated bands the fluorescence lifetime is measured [6], [7].

2.2 Data description and preprocessing
As mentioned before, the raw data consists of three measures:

• scattered light image

• fluorescence spectrum

• fluorescence lifetime

Scattered light

Scattering image is of dimensions 24xn, where n is the number of acquisitions,
so the width of the image is not fixed. Figure 3 shows the distribution of
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2.2 Data description and preprocessing

the second scattered image dimension of four types of pollen: Broussonetia,
Picea, Juglans and Betula.

Figure 3: Scattering image width distribution of four types of pollen

Since our classification architecture considers the same input dimensions of
every image, it was necessary to define how to equalize each image’s width.
The first option in resolving this problem was to pad every image up to the
size of the biggest image in the dataset. There are few possible ways to
execute padding: most popular are zero padding and mirror padding. The
first one will add zeros from left and right, column by column, until we get
the wanted width. The second one will mirror the existing end regions of
the image to get the size that we want [13]. The first problem with this
approach is that we do not delete the noise which we believe that is in the
both ends of the image. The second problem is that for some other classes
of airborne particles, scattering image width can be in the range from 50 up
to 200 or more pixels. So if we would have to pad image of width e.g. 50
pixels to be 200 pixels, that would impose some critical problems, both from
classification and computer memory point of view, since there would be large
amount of zeros in almost every image.

The second method involves finding the center of mass of the image. The
idea is inspired from [8], [9] and further expanded with the combination of
more connected components. It is performed as follows:

1. Create binary image from the input image.

2. Go trough the binary image with 3x3 median filter.
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2.2 Data description and preprocessing

3. Find the biggest connected component and take its center. Likewise, if
there are other connected components that are at least 1

3 of the size of
the biggest connected component, take their center as well.

4. Average all the centers to get the center of mass.

Figure 4: Center of mass distribution for four types of pollen

Most scattering images of Broussonetia, Picea, Juglans and Betula have the
center of mass at around 35th pixel (Figure 4). Now that we have found
center of mass for each image, we want to either cut or zero-pad each image
according to its size. The agreed size for the convolutional neural network
was 24x70 pixels. Finally, Figure 5 represents an example of scattering image
which went through the explained procedure. Blue color represents low pixel
intensities, while yellow color represents high pixel values.

Figure 5: Example of the scatter image

At the end we compress the dynamic range of an image by replacing each
pixel value with its logarithm. This has the effect that low intensity pixel
values are enhanced [12], [13].
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2.2 Data description and preprocessing

Fluorescence spectrum

Fluorescence spectrum has eight consecutive acquisitions distanced by 500
nanoseconds (ns) over 32 channels of the spectrometer unit. Channels cor-
respond to following values in nm: 350.0, 364.5, 379.0, 393.5, 408.0, 422.5,
437.0, 451.6, 466.1, 480.6, 495.1, 509.6, 524.1, 538.7, 553.2, 567.7, 582.2,
596.7, 611.2, 625.8, 640.3, 654.8, 669.3, 683.8, 698.3, 712.9, 727.4, 741.9,
756.4, 770.9, 785.4, 800.0.

1. Spectrum at T1 – indicates values acquired by the spectrometer during
the UV laser shot.

2. Spectrum at T2 – indicates values acquired by the spectrometer 500 ns
after the UV laser shot.

Figure 6: Example of fluorescence spectrum
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2.2 Data description and preprocessing

3. Spectrum at T3 – indicates values acquired by the spectrometer 1000
ns after the UV laser shot.

4. Spectrum at T4 – indicates values acquired by the spectrometer 1500
ns after the UV laser shot.

5. Spectrum at T5 – indicates values acquired by the spectrometer 2000
ns after the UV laser shot.

6. Spectrum at T6 – indicates values acquired by the spectrometer 2500
ns after the UV laser shot.

7. Spectrum at T7 – indicates values acquired by the spectrometer 3000
ns after the UV laser shot.

8. Spectrum at T8 – indicates values acquired by the spectrometer 3500
ns after the UV laser shot.

Figure 6 represents an example of fluorescence spectrum. Each subplot repre-
sents one of eight acquisitions (bands) T1...T8. On x-axis are the 32 channels
of the spectrometer unit.

In order to utilize fluorescence spectrum in our convolutional neural net-
work, instead of using it in a given form, we created an image, stacking
bands T1...T8 on top of each other, which gave us an image of dimensions
8x32 pixels.

The big challenge is filtering the data. Currently, filtering is done in a way
that maximal spectral peak must exceed a threshold of value 1500. The value
was selected by placing a certain amount of pollen in Rapid-E, which then
determines the number of florescent particles. That number was closest to
the amount of pollen with threshold value of 1500. Decreased threshold value
of 1000 and increased value of 2000 were also considered, but were not op-
timal considering the trade-off between the number of particles for training
and their quality. Also, maximal spectral peak must not exceed a threshold
of value 10000.

Fluorescence lifetime

By simultaneous acquisition over four separated bands the fluorescence life-
time is measured. Figure 7 shows an example of fluorescence lifetime. Re-
garding the convolutional neural network, the concept of stacking bands on
top of each other is used here also, creating an image of dimensions 4x64
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2.3 Statistics

pixels. Each band of the fluorescence lifetime corresponds with the following
ranges (in nm), respectively: "350-400", "420-460", "511-572", "672-800".

Figure 7: Example of fluorescence lifetime

2.3 Statistics
Beside the variability of the scattering image sizes that was previously de-
scribed in subsection 2.3, there is high variability in maximum values in

(a) Broussonetia (b) Picea (c) Juglans (d) Betula

Figure 8: Histograms of maximum values in scattering images for four types
of pollen
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2.3 Statistics

images which is related to the size of particles. To observe the maximum
values across four pollen types that we consider in this master thesis, we
created histograms, presented in Figure 8.

To observe the in-class variability of lifetime and spectral signals of the pollen
samples, we have visualized class median values along with the error bars that
denote 25th and 75th percentiles. Figure 9 shows the in-class variability of
spectrum data for classes Broussonetia, Picea, Juglans and Betula.

(a) Broussonetia (b) Picea (c) Juglans (d) Betula

Figure 9: Median plots with error bars of spectral data for four types of
pollen
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2.3 Statistics

Figures 10, 11, 12 and 13 show the in-class variability of lifetime data for
classes Broussonetia, Picea, Juglans and Betula, respectively.

(a) Band 1 (b) Band 2

(c) Band 3 (d) Band 4

Figure 10: Median plots with error bars of spectral data for Broussonetia
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(a) Band 1 (b) Band 2

(c) Band 3 (d) Band 4

Figure 11: Median plots with error bars of spectral data for Picea

19



2.3 Statistics

(a) Band 1 (b) Band 2

(c) Band 3 (d) Band 4

Figure 12: Median plots with error bars of spectral data for Juglans
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2.3 Statistics

(a) Band 1 (b) Band 2

(c) Band 3 (d) Band 4

Figure 13: Median plots with error bars of spectral data for Betula

High in-class variability demonstrates how challenging is the problem of clas-
sifying pollen and that there is need for advanced machine learning methods.
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3 Neural Networks

3 Neural Networks

3.1 Basic concepts
In 1943 Warren S. McCulloch and Walter Pitts introduced the idea of neu-
ral networks. Since at that time developers manually determined the weight
matrices, which was very extensive and demanding job, the development of
neural networks has had several ups and downs. In 1958, Frank Rosenblatt
develops a well-known backpropagation algorithm that automatically gener-
ates weight matrices of neural networks. Since it was proved to be very slow,
in the case of a greater number of layers, the further development continued
in the 80’s and 90’s when computer speed and capacity were increased. In
need for better hardware to train deep neural networks (DNN), in 2006 Geof-
frey Hinton discovered a completely different approach. Graphics Processing
Units (GPU) allow training of deeper neural networks with three or more
layers [14].

Figure 14: Architecture of an individual neuron

Source: Neural networks in a nutshell [34]

The idea of a neural network is to extract upon the training data the neces-
sary rules on which to classify the unknown samples. It consists of individ-
ual, interrelated units called neurons (Figure 14). The input layer consists
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3.1 Basic concepts

of many neurons and receives input features, while each following layer re-
ceives as inputs, exit of the previous layer. The output layer gives the output
features. Layers between the input and output layers are called hidden lay-
ers. Each neuron in the same layer has the same activation function, while
network layers may have different activation functions. Each neuron is asso-
ciated with each neuron from the previous layer [15].

Figure 15: Fully connected neural network with two hidden layers

Source: Machine learning fundamentals: Neural networks [35]

The number of weights and inputs must be the same. Each weight is mul-
tiplied by the corresponding input. The product of these multiplications
represents the entry into the activation function and then exits the neurons.

f(xi, wi) = φ(
∑
i

(xiwi))

In the formula above, the variables x and w represent the inputs and weights
of the neurons, respectively. Hidden neurons are connected to each other.
They only receive exits from other hidden neurons and serve to understand
inputs and generate outputs. They are grouped into completely connected
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3.2 Convolutional Neural Networks

hidden layers (Figure 15) [14].

There are different neural network architectures. A network where infor-
mation never passes through the same neuron more than once is referred to
as a feedforward network. In these networks, one input influences the acti-
vation of all neurons in the remaining layers. [14]

Convolutional neural networks (CNN) are a group of feedforward neural net-
works that require minimal transformation. They are characterized by their
common weights, and they achieve very high accuracy in the application of
image classifications, compared to other machine learning algorithms [15].
The goal of a feedforward network is to approximate some function f ∗. For
example, for a classifier, y = f ∗(x) maps an input x to a category y. A
feedforward network defines a mapping y = f(x; θ) and learns the value of
the parameters θ which results in the best function approximation. These
models are feedforward because information flows trough the function being
evaluated from x, trough the intermediate computations used to define f ,
and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself [17].

Networks with loops, or with feedback connections, are called Recurrent
Neural Networks (RNN). In such networks, neural behavior is not only de-
fined by the activations in the previous layers, but also by activations in
previous timeframes. The idea of such neural network is that there are neu-
rons that are active only for a certain period of time. Different neurons are
active at different moments or different time periods and thus the cascading
response of neurons occurs. Such networks are suitable for applications in
data analysis and processes that change over time, such as speech [15].

3.2 Convolutional Neural Networks
In 1980, Fukushima introduced the original concept of a convolutional neu-
ral network. Yann LeCun, Lee Bottou, Yoshua Bengio and Patrick Haffner
significantly improved the original idea from 1998. From this research has
emerged the popular LeNet convolutional neural network with 5 hidden lay-
ers. In convolutional neural networks, the order of elements in the vector
is of crucial importance for the training of the network. By contrast, most
other neural networks treat input data as a vector of values, and the order in
which the coming features in the vector are rendered is irrelevant. For con-
volutional networks, the ordering is very important and cannot be changed
after the training of the network. Convolutional neural network has had a
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3.2 Convolutional Neural Networks

major impact on the development of a Computational Vision (CV). Convo-
lution is an important technique that is often used in deep learning. Hinton
has introduced convolution in neural networks in 2014, which is why CNNs
achieve very good results because it takes into account the context of pixels
and uses overlapping of input data to simulate the functioning of the human
eye [16].

Figure 16: Convolution

Source: Understanding Convolutions [36]

Deep convolutional neuronal networks contain convolutional layers that make
very good results in most of the computational nature of the calculus. In
complex computational calculations, the dimensionality of parameters is a
major problem. Such network is slowly being trained and can easily overfit.
The advantage of convolutional layers is that they have far fewer parameters.
For computational vision it is important to detect forms, regardless of their
location in the image. Fully connected layers have special weights for each
pixel, which means that a portion of the network will be trained to recognize
the object in the image only if the object is located in the location where it
was in the training images. This problem imposed the solution in the form of
a filter sliding on the input vector and with every move produces the output
(Figure 16). In the case of one-dimensional input, the filter is a vector, in
the case of a two-dimensional input it is a matrix. Such filters have rela-
tively small dimensions, mostly 3x3, 5x5 or 7x7 pixels, which significantly
reduces the number of parameters in deep neural networks. In this context,
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3.2 Convolutional Neural Networks

convolution is used to apply a filter to an image at all possible alterations,
taking into account the pixel context and imitating human eye sensory cells.
The filter makes a set of weights connected to the previous layer, where the
previous layer is actually a small part of the input image and the output is a
neuron. Such filter is applied by swapping through the full picture, where the
sensor fields overlap, thus creating a new matrix that is called a feature map.
One convolutional layer contains more than one of these filters, resulting in
multiple feature maps. Regular feedforward neural networks generate all the
possible weight relations between the two layers. In the terminology of deep
learning, such layers are called dense layers [16].

The input to the convolutional layer has dimensions wxhxc, where w is the
image width, h height, and c number of channels (in the case of RGB images
3). The dimensionality of the convolutional layer does not depend directly
on the input layer, but on the number of channels: wxhxcxk, where w and
h is the width and height of the convolution filter, c the number of channels
of the previous layer, and k the number of the feature maps of the current
layer (equivalent to the channel number at the input). An example of such
layer has a filter of size 7x7 and 20 feature maps, which gives 7x7x3x20=2940
weights, which is far less than the number of weights in fully connected lay-
ers. That is why people today are using mostly convolutional layers and are
avoiding fully connected layers. The feature map, or the output of the con-
volutional layer, is obtained by convolving the input image with the linear

Figure 17: Convolutional neural network

Source: An intuitive guide to Convolutional Neural Networks [37]
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3.3 Activation functions

filter, adding the bias layer and applying the activation function. If k is the
feature map of layer hk, whose filters are defined by the wk weights and the
bias bk, then the output of the feature map can be defined by the following
expression, where i and j are indices of the input, i.e. the output feature
map:

hkij = h((wk ∗ x))ij + bk

In practice, each convolutional layer consists of multiple feature maps. In
designing neural network architecture, weight and bias values in the network
are initially assigned, or network pre-training is performed [16]. Figure 17
shows the concept of convolutional neural network.

3.3 Activation functions
There are several types of activation functions that can be used in neural net-
works. Properties that are desirable for activation functions are non-linearity
and differentiability. Non-linearity provides the possibility of training and
learning any nonlinear function. It is desirable that the neural network has
at least one neuron with nonlinear activation function that makes the neural
network nonlinear. Differentiability is important because of the use of the
gradient method while training neural networks. The general form of the
activation function is:

G(wxT + b)

Usually, weight and bias are initially set to values near the zero gradient.
The conclusion that follows is that the expression wx + b also has a value
of approximately zero. If the activation function approximates the identity
function close to zero, its gradient will be roughly equal to the input [16].

δG ≈ wxT + b⇐⇒ wxT + b ≈ 0

A sufficiently strong gradient allows the training algorithm to converge faster.
Selecting the right activation function is a very important when creating neu-
ral network architecture because, in addition to the above requirement, they
learn non-linear complex functional mappings between the inputs and re-
sponse variables and make sense of something really complicated [16].

Following is the explanation of two activation functions which were used in
this paper, ReLU and Softmax. There are many more activation functions.
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3.3 Activation functions

ReLU (Rectified Linear Unit)

Many researchers point to the benefits of this function in the training process
[14], [15], [16]. The use of some other activation functions was mainly for
shallow neural networks. The vanishing of the gradient is the main reason
why an interruption occurs in training deep networks. ReLU is an activation
function that is very efficient computationally. It is defined by the following
expression (Figure 18):

GReLU(x) = max(0, x)

This activation function is very simple and non-linear and has proved to be
very effective in practice. Its derivative in the <+ domain is always 1 and
does not create saturation. In other words, the codomain of this function
is from 0 to infinity, which allows very quick convergence of the gradient.
Also, there is no vanishing gradient, which makes it a suitable choice for
deep neural networks. This feature has the property to cause "dead" neu-
rons. Such neurons return zero for each sample in the training set. This
happens because the weight of such a neuron is adjusted so that the wx
product is always negative, so the output from the ReLU activation function
is always 0. The advantage of this property is that the resulting zeros can
be eliminated from the network and thus achieve computer efficiency. Calcu-
lations are significantly simplified and reduced to comparison, addition and
multiplication and propagation of a gradient is much more effective if it has
a constant value or equal to 0. The disadvantage of this property is that
a "dead" neuron can affect overall network accuracy. A good practice is to
check the network during the training process [16].

Figure 18: ReLU

Source: Understanding ReLU [38]
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3.4 Cross entropy cost function and methods for regularization

Softmax

In this thesis, softmax activation function is used at the output layer of the
neural network for classification. The neuron having the highest value de-
clares the input as a member of a particular class, and thus gives an output
in the form of probability to which class the input belongs. Without this
function, the output represents the numeric value with the highest indica-
tion for the class to which the input belongs. This can be easily explained in
the case of a flower classification Iris. The database contains 4 measurements
for 150 different flowers. Each of the flowers belongs to one of three classes
(types). The softmax function allows the neural network to determine the
probability that the measurements belong to the classes of species. For ex-
ample, based on measurements, the output of a neural network will estimate
that the probability of 80% is that the input data, i.e. the flower, belongs to
the first type, 15% to the other, and 5% to the third. To classify such input
data, it is necessary to have an output neuron for each of the classes. Also,
the sum of all probabilities should be equal to 100% [16].

Gsoftmaxi
= ezi∑

j e
zj

In the formula above, i represents the output neuron index that counts, and
j the index of all neurons in the layer. The variable z represents a set of the
output neurons. Output of the individual neuron depends on the output of
other neurons [14].

3.4 Cross entropy cost function and methods for reg-
ularization

To determine the cost function for the softmax activation function, we start
from the likelihood function, which says that by selecting a certain set of
model parameters one can predict the belonging to the class of each input
sample. The maximized value of this function is:

argmaxθL(θ|t, z)

Maximizing this function can also be determined by minimizing the negative
logarithmic likelihood function, where ξ is a function of the cross-entropy
error:

−L(θ|t, z) = ξ(t, z) = −log
C∏
i=c
ytcc = −

C∑
n=c

tclog(yc)
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3.4 Cross entropy cost function and methods for regularization

It should be noted that in the case of two classes, the output is t2 = 1− t1,
which means that the expression of the function of the cross-entropy error
for this case is equal to the expression for logistic regression error:

ξ(t, y) = −tclog(yc)− (1− tc)log(1− yc)

Following is the cross entropy error function over a larger series of samples
of size n, where tic = 1 if and only if the sample i belongs to the class ci, and
yic represents the probability that the sample i belongs to the class c:

ξ(T, Y ) =
n∑
i=1

ξ(ti, yi) = −
n∑
i=1

C∑
c=1

ticlog(yic)

The derivative of the cross-entropy error function for the softmax activation
function is calculated as follows:

∂ξ

∂zi
= −

C∑
j=1

∂tjlog(yj
∂zi

= − ti
yi

∂yi
∂zi
−

C∑
j 6=1

tj
yj

∂yj
∂zi

= −ti + tiyi +
C∑
j 6=1

tjyi

= −ti +
C∑
j=1

tjyi = −ti + yi
C∑
j=1

tj = yi − ti

The final result of the error function for the softmax activation function is
the same as for logical regression with one output node and it is given by
[18]:

∂ξ

∂zi
= yi − ti

In addition to the notion of neurons, deep and shallow neural networks,
activation functions and cost functions, the problem of overfitting and reg-
ularization are also terms that should be explained in more detail. In order
to avoid overfitting, it is necessary to divide the database into three parts: a
set for training, validation and testing. The training kit is used only in the
training phase of the network, a test set for assessing how well the network is
trained, and a validation set within the training, but with the purpose of as-
sessing the error for the appropriate choice of parameters, assisting in model
selection and so on. When one is determined that the network is trained, for
a satisfactory local minimum over a training set, it is necessary to determine
the parameters in which the network has yielded good results and how much
iteration is needed to find the accuracy in a certain tolerant band. These
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3.4 Cross entropy cost function and methods for regularization

parameters are very difficult to determine because the results of the net-
work can stagnate in several iterations before the training process continues.
There is a possibility to specify the number of iterations in advance. This
practical approach saves and reduces the training time, although it is not
easy to determine in advance the number of necessary iterations for the most
accurate network training. Other parameters, such as the number of epochs,
the number of neurons in the hidden layer, the number of layers, the size of
the filters in the case of convolutional neural networks, the learning rate, the
regularization parameter, in other words those that the network cannot cor-
rect itself in the training process, are called hyperparameters. Validation set
is used to determine these parameters. When training networks with large
datasets, there is less overfitting. Collecting, classifying and pre-processing
data is the most expensive job and is very important because it affects the
final outcome. In order to prevent the overfitting, some regularization meth-
ods are used. The most commonly used methods are L1, L2 and dropout,
and now more modern techniques are used such as batch normalization [15],
[19].

In 2012, Hinton introduced a dropout as a simple and efficient algorithm
for suppressing overfitting, which works by removing certain neurons in the
dropout layer. This method does not change the cost function, but in every
epoch it eliminates a predetermined percentage of the hidden neurons, and
thus trains the network, and then returns the absent neurons. In this way,

Figure 19: Dropout layer

Source: Explaining dense and dropout layers [39]
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3.4 Cross entropy cost function and methods for regularization

the network learns not to depend on few neurons and disregard the rest [14],
[16], [21].

In Figure 19, the neural network contains the input, dropout and output
layer. Dropout layer removes several neurons. Circles represented by a bro-
ken line are neurons eliminated by this layer, and dashed arrows represent
the weights that this method removes [14], [16].

When training data is split into small batches, each batch is jargoned as
a mini-batch. Using mini-batches of samples is much more effective than
m computations for individual examples, or using the whole training set as
one “batch”, due to the parallelism that comes with the modern computing
platforms. Batch normalization reduces internal covariate shift and dramat-
ically accelerates the training of neural networks. The main idea is to fix
the means and variances of layer inputs. Normalization is performed on each
scalar feature independently, by making it have zero mean and unit vari-
ance. Normalization of each dimension for a layer of d-dimensional input
x = (x(1), . . . , x(d)) is performed:

x̂(k) = x(k) − E[x(k)]√
V ar[x(k)]

,

where the expectation and variance are computed over the mini-batch. Even
when the features are not decorrelated, such normalization speeds up con-
vergence [19], [20].

Batch normalization prevents the network from getting trapped in the sat-
urated modes and therefore allows us to use saturating nonlinearities. It
permits us to use higher learning rates, since it has a beneficial effect on the
gradient flow through the network. Finally, batch normalization reduces the
need for dropout since it, in a way, regularizes the model [19], [21].

One important concept of CNNs is pooling - a form of nonlinear down-
sampling. A pooling function replaces the output of the net at a certain
location with a summary statistic of the nearby outputs. There are several
functions to implement pooling among which max pooling is the most com-
mon (Figure 20). Pooling helps to make the representation become approxi-
mately invariant to small translations of the input. Invariance to translation
means that if we translate the input by a small amount, the values of most
of the pooled outputs do not change. The use of pooling can be viewed
as adding an infinitely strong prior that the function the layer learns must
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3.5 Stochastic Gradient Descent (SGD)

be invariant to small translations. When this assumption is correct, it can
greatly improve the statistical efficiency of the network [17].

Figure 20: MaxPool layer

Source: A Guide To Understanding Convolutional Neural Networks [42]

3.5 Stochastic Gradient Descent (SGD)
In order to find the minimum of our cost function, an optimizer must be cho-
sen. One of the most popular algorithms is the stochastic gradient descent
algorithm. In the total gradient descent algorithm, after each sweep over
the training set the weights are updated. Appropriate learning rates ensure
convergence of this algorithm to a local minimum of the cost function. The
stochastic gradient descent algorithm however has been shown to be more
reliable, faster and less prone to reach bad local minima than standard gra-
dient descent. Here, after the presentation of each example, the weights are
updated according to the gradient of the loss function, i.e. the value of the
cost for this example only [22].

Consider an example z = (x, y), where x is an arbitrary input and y scalar
output, and a loss function l(ŷ, y). Choose a family F of functions fw(x) pa-
rameterized by a weight vector w. We seek the function f ∈ F that minimizes
the loss Q(z, w) = l(fw(x), y) averaged on the sample z1, . . . , zn

En(f) = 1
n

n∑
i=1

l(f(xi), yi)

The empirical risk En(f) measures the training set performance. The statis-
tical learning theory (Vapnik and Chervonenkis (1971)) justifies minimizing
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3.5 Stochastic Gradient Descent (SGD)

the empirical risk instead of the expected risk when the chosen family F is
sufficiently restrictive. [23]

Minimization of the empirical risk En(fw) using gradient descent (GD) is
done in a way that each iteration updates the weights w on the basis of the
gradient of En(fw),

wt+1 = wt − γ
1
n

n∑
i=1
∇wQ(zi, wt)

Here γ is an adequately chosen learning rate. The learning rate should be
chosen such that it is not too small, so that the execution time of the algo-
rithm will not take too long, but also it’s not too big, because it can skip and
not found the global minimum [15]. Much better optimization algorithms
can be designed by replacing the scalar gain γ by a positive definite matrix
Γt that approaches the inverse of the Hessian of the cost at the optimum:

wt+1 = wt − Γt
1
n

n∑
i=1
∇wQ(zi, wt)

The stochastic gradient descent (SGD) algorithm is a drastic simplification.
Instead of computing the gradient of En(fw) exactly, each iteration estimates
this gradient on the basis of a single randomly picked example zt:

wt+1 = wt − γ∇wQ(zt, wt)

The stochastic process wt, t = 1, ... depends on the examples randomly picked
at each iteration. Since the stochastic algorithm does not need to remember
which examples were visited during the previous iterations, it can process
examples on the fly in a deployed system. In such a situation, the stochas-
tic gradient descent directly optimizes the expected risk, since the examples
are randomly drawn from the ground truth distribution. The convergence of
stochastic gradient descent usually requires decreasing gains satisfying the
conditions ∑

t γ
2
t <∞ and ∑

t γt =∞ [23].

The momentum method, originally developed by Polyak [25], is a technique
for accelerating gradient descent that accumulates a velocity vector in di-
rections of persistent reduction in the objective across iterations. Given an
objective function f(θ) to be minimized, classical momentum is given by [24]:

vt+1 = µvt − ε∇f(θt)

θt+1 = θt + vt+1
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3.6 Back-propagation

As we can see from the Figure 21, we refer to momentum as the heavy ball
technique to accelerate the convergence rate of gradient-type methods.

Figure 21: SGD with momentum

Source: Deep Neural Networks tuning and optimization [40]

3.6 Back-propagation
When training a neural network, there is a criterion for how good the final
result is. A measure of quality is a cost function and the goal is to mini-
mize this function by choosing the right values of weight and bias. The cost
function is a function of a large number of variables and it is not easy to
determine its global minimum mathematically. For the minimization of the
cost function, we used stochastic gradient descent algorithm [15].

The backpropagation algorithm proved to be very efficient for calculating
the gradient of the cost function. It calculates the partial derivatives of the
cost function for each weight and each bias. Error calculation is performed
from the last to the first layer, by which the algorithm was named [16].
Backpropagation algorithm steps (Figure 22)[15]:

1. Input x: Set appropriate activation a1 for input layer.

2. Feedforward: For every l = 2, 3, ..., L calculate zl = ωlal−1 + bl and
al = σ(zl).

3. Output error δl: Calculate vector δl = ∇aC
⊙
σ,(zL).

4. Backpropagation: For every l = L− 1, L− 1, ..., 2 calculate
δl = ((ωl+1)T δl+1) ⊙

ω,(zl)

5. Output: Gradient of cost function is given with ∂C
∂ωl

jk

= al−1
k blj and

∂C
∂bl

j
= δlj
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3.6 Back-propagation

Figure 22: Backpropagation

Source: Back Propagation in Convolutional Neural Networks [41]

Variable x represents one sample from the data set for training, L is the
number of layers of the neural network, alj is the activation (input) of j-
neuron from the l-layer, blj represents bias of j-neuron from the l-layer, δlj
error of j-neuron in l-layer, ωljk the weight of the relationship between the k-
neuron from the (l− 1)-layer and the j-neuron from the l-layer. The symbol⊙ represents the vector multiplication element per element. Considering
that in this paper a convolutional neural network is used, following is an
example of a gradient calculation based on the backpropagation algorithm
in the convolution layer:

The formulas above represent a backpropagation algorithm in a convolution
layer where x represents the input to the convolution layer, y output, w the
feature vector and δ the gradient of the cost function [26].
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3.7 Data fusion

Different layers of the network are characterized by different learning speeds.
Higher layers learn at moderate, normal speeds. It happens that the lower
layers are clogged during the training phase, i.e. that the learning process
slows down or completely stops. The reason for this phenomenon is the de-
clining gradient algorithm. In case of blocking the learning of higher layers,
the problem of the vanishing gradient is created. Apart from these two, there
can also be an exploding gradient. Based on this, it can be concluded that
the gradient in deep neural networks is unstable. The vanishing gradient may
be prevented or diminished by using some of the ReLU activation functions
or by changing the neural network architecture. The cost function can also
have an impact on the speed of learning the neural network [16].

3.7 Data fusion
Standard use of the convolutional neural networks allow us to use one source
of information to classify samples. Classification from each separate source,
then merging the end results is possible, but it is not a good approach.
We wanted to create an architecture that would allow the gradient to flow
through the whole network, so that the back-propagation can be done up-
dating the weights for each distinct source.

Merging networks can be done in a few ways [27], [28]. Our approach was to
concatenate the features after all convolutional layers. After the final con-
volutional layer, given features are of form nxm, where n is the number of
samples going through the network and m is the number of features that
comes out after the final convolutional layer. Note that m is different for
each source of information.

Since we had three sources of information, scattering image, fluorescence
spectrum and lifetime, suppose that after all convolutions, the features that
appear are of form nxm1, nxm2 and nxm3. This can be done for arbitrar-
ily many sources. Now, we can concatenate those features to get the form
nx(m1 +m2 +m3) which will be given to the fully connected layer to get the
end result.

This approach works well if m1, m2 and m3 are numbers close to each other,
which usually is not then case. Better method is to pass the features from
the last convolutional layer to one fully connected layer, transforming them
into more meaningful features for concatenation. For example, suppose that
m1 = 200 m2 = 2000 and m3 = 5000. After concatenation, only 200

7200 ≈ 2.7%
of the feature vector will represent the source 1, 2000

7200 ≈ 27.7% of the feature
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3.7 Data fusion

Figure 23: Convolutional Neural Network Architecture

vector will represent the source 2 and 5000
7200 ≈ 69.4% of the feature vector will

represent the source 3. Now, depending on how much information the sources
are carrying, this is not very good if your most valuable source is source 1.
Therefore, our approach is to transform through one fully connected layer
m1 7−→ m, m2 7−→ m and m3 7−→ m, so that all sources are equally repre-
sented in the feature vector. Those transformations do not have to be equal,
if you know which source carries more or less information. Figure 23 shows
the idea of data fusion in CNNs.
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4 Results
Data used in this master thesis is created in calibration events, where domain
expert is exposing device with collected pollen samples. Calibration for each
class takes up to few minutes. To make the data invariant on time of the
calibration, we took random permutation of the data for each class. The data
was split before training. The validation set consists of 200 random samples
from each class, and the rest of the data is used for training. In order for each
of the following experiments to be comparable, the batches used for training
were created manually. Therefore, all following experiments used the same
data points in each iteration. Also, batches were created to represent all
classes equally, having 100 samples of each class.

4.1 Multi-class classification
We wanted to test how our network would perform on just one, two, or on all
three different data sources (scattering images, lifetime and spectrum). The
performance of networks with one, or combination of two sources, measured
in accuracy, is given in Figure 24. The combination of all three sources gives
the best accuracy - 84.7%, while the network considering just scattering im-
ages yields the lowest accuracy - 67.2%. The highest accuracy considering
just one or two sources is 80.9%, obtained with the combination of fluo-
rescence spectrum and lifetime. Figure 25 shows the confusion matrix for
classification with all three sources. Here, accuracy is the number of correct
predictions divided by the total number of predictions, multiplied by 100 to
transform it into a percentage.

Figure 24: Classification accuracy with different inputs

The first 15 epochs are trained using stochastic gradient descent with 0.1
learning rate, next 15 epochs are trained with 0.01 learning rate and final
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4.1 Multi-class classification

Figure 25: Confusion matrix for classification with all three sources of knowl-
edge

epochs are trained with 0.001 learning rate. All epoch are trained with 0.9
momentum. While minimizing the cost function, we started with high learn-
ing rate, so that we could converge to a local minimum more quickly. But,
with a high learning rate, the system contains too much kinetic energy and
the parameter vector bounces around chaotically, unable to settle down into
deeper, but narrower parts of the loss function. Knowing when to decay the
learning rate can be tricky. If you decay it slowly, you could waste compu-
tation bouncing around chaotically with little improvement for a long time.
If you decay it too aggressively, the system could cool too quickly, unable
to reach the best position it can. There are few types of implementing the
learning rate decay [29]. Since this task did not demand much training time,
we decided to change the learning rate manually, whenever the validation
error started to saturate. The training took only about 50 epochs, while
reducing the validation error rate from 1.3 to around 0.43 (Figure 26(a)).
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4.1 Multi-class classification

The experiment with training the network with constant learning rate - 0.001
- showed that we could get the same result, only with ten times more batches
(Figure 26(b)), which suggests that the learning rate decay should be imple-
mented in order to decrease training time. Also, while training, the validation
error tends to be less than the training error, at least at the beginning (Fig-
ure 26). The reason for that is the use of dropout. When the network is in
training mode, half of the nodes cannot be seen, therefore the training error
is greater than the validation error, since in validation mode the dropout
layer is ignored.

(a) Learning rate decay

(b) Constant learning rate: 0.001

Figure 26: Cost vs. number of epochs
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4.1 Multi-class classification

Figure 27: Classic form of confusion matrix

Consider that we have a confusion matrix as in Figure 27. We introduce
three metrics, besides accuracy, for evaluating our classifier:

Precision : P = TruePositive

TruePositive+ False Positive

Recall : R = TruePositive

TruePositive+ FalseNegative

The first one answers answers the question: How many selected items are
relevant? The second one answers: How many relevant items are selected?
The two measures are sometimes used together in the F1 score to provide a
single measurement for a system, where F1 score is defined as:

F1 = P ∗R
P +R

The precision, recall and F1 score of our classifier for each class can be seen
in Table 1.

Table 1: Precision, recall and F1 score for multi-class classifier

Class Precision Recall F1 score
Broussonetia 0.91 0.95 0.94
Picea 0.86 0.68 0.76
Juglans 0.76 0.84 0.8
Betula 0.88 0.93 0.9
Average 0.85 0.85 0.85

Since the output of the network gives a vector of probabilities, where each
element i of the vector represents probability that the sample belongs to class
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4.2 Binary classification

ci, we wanted to find out what would happen if we demanded that the clas-
sification occurs only if the highest probability in that vector is greater than
some probability threshold. We found out that the classification accuracy
can be much improved, while discarding a number of samples (Table 2). The
problem here is that we need to define only one probability threshold for all
classes, which is not good since for some classes the network is more ’certain’
- has higher probabilities - then for others.

Table 2: Accuracy vs. probability threshold for multi-class classifier

Probability
threshold Accuracy Number of

samples
0.5 86% 760
0.6 89% 709
0.7 91% 641
0.8 94% 556
0.9 96% 432

4.2 Binary classification
In order to use different probability thresholds for each class separately, the
"one vs. all" approach was used. We trained four different networks, one for
each class (e.g. Brousonettia vs. the other three) (Figure 28). The networks
yielded:

• Broussonetia: 97% accuracy

• Picea: 89.9% accuracy

• Juglans: 90% accuracy

• Betula: 93.5% accuracy

Table 3: Precision, recall and F1 score for binary classifiers

Class Precision Recall F1 score
Boussonetia 0.92 0.97 0.94

Picea 0.86 0.66 0.74
Juglans 0.76 0.86 0.80
Betula 0.87 0.87 0.88
Average 0.85 0.84 0.84
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4.2 Binary classification

(a) Broussonetia vs. all (b) Picea vs. all

(c) Juglans vs. all (d) Betula vs. all

Figure 28: Confusion matrices for binary classifiers

But here, accuracy measure is not of much value because we have class imbal-
anced problem, since we have 200 samples from each class for validation (e.g.
200 broussonetia and 600 other). In this case, more meaningful measures
would be precision, recall and F1 score (Table 3). Table 4 shows accuracy
vs. probability threshold for all four networks, where # samples means num-

ber of samples. Overall accuracy is 83.6% =
∑4
i=1 TP (ci)

800 , where TP (Ci) is
the number of true positive for class ci.
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Table 4: Accuracy vs. probability threshold for binary classifiers

Probability Broussonetia Picea
threshold Accuracy # samples Accuracy # samples

0.6 97.5% 785 91.1% 741
0.7 98% 765 93.7% 682
0.8 98.3% 752 94.1% 623
0.9 98.7% 700 97% 526

Juglans Betula
Accuracy # samples Accuracy # samples

0.6 92.9% 741 96% 758
0.7 94.8% 669 96.7% 731
0.8 95.9% 557 98.4% 671
0.9 97.5% 435 99.3% 615

4.3 Fusion of binary classifiers

Figure 29: Example of combining binary classifiers for decision making

Finally, we wanted to try and classify samples with each of the four networks.
After the classification process, we classified each sample according to which
network gave highest probability (Figure 29). This is a very naive approach
with which we have obtained accuracy of 84.9%, without further training.
Further research should improve the usage of the combination of classifiers as
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4.3 Fusion of binary classifiers

well as the usage of the probability thresholds. We also imposed probability
thresholds and obtained an increase in accuracy (Table 5).

Table 5: Accuracy vs. probability threshold for combination of binary clas-
sifiers

Probability # samples of
threshold Accuracy # samples Broussonetia
without 84.9% 800 200

0.5 87.3% 748 197
0.6 89.6% 685 194
0.7 92.2% 593 190
0.8 94% 498 181
0.9 95.6% 385 157

# samples of # samples of # samples of
Picea Juglans Betula

without 200 200 200
0.5 175 188 188
0.6 157 173 161
0.7 132 137 134
0.8 115 99 103
0.9 84 50 94
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Conclusion
The "old" way of pollen counting includes at least 6 hours up to 170 hours
of hard, demanding work by a domain expert, not counting the non-pollen
particles. Thus there is a great need for automated particle classifiers, which
could also broaden our knowledge about the emergence of new particles and
their impact on people and the environment, as well as about the existing
ones.

Rapid-E is the first automated particle counter based on laser induced fluo-
rescence technology, which opens new challenges in research and data analy-
sis. Convolutional neural networks were used in these experiments, although
they require caution in order to avoid overtraining [30]. The reason for us-
ing convolutional neural networks, besides the one that they have proven to
work better than other machine learning algorithms in problems like image
classification and object segmentation [10], [31], is that the CNNs provide us
a way to fuse different data sources representing the same data points, and
to incorporate as many aspects and views of each sample as we can.

The results show us, intuitively, that the best classifier is the one which
incorporates all three sources, giving 84.7% accuracy. This outcome exceeds
the best result of a classifier trained on the combination of two sources by
3.1%, or the best result of a classifier trained on just one source by 9.9%. The
classification yields the average precision, recall and F1 score of 85% for all
three measures. Furthermore, by introducing a probability threshold, these
results can be improved to 96%, but with the price of discarding the samples
below the defined threshold. Since we used the same probability threshold
for each of the classes, we discarded the remaining samples unevenly.

In order to use different probability thresholds for each of the classes, we
trained four "one vs. all" networks. The networks gave the overall accuracy
of 83.6%, which can be improved, without further training, to 84.9% by com-
bining all four networks for classification. The classifier yielded the average
precision of 85% and 84% for recall, which is almost the same as for multi-
class classifier. The benefit of the second approach is in easier operational
organization (extensions to other pollen types, model updates, incorporating
domain knowledge).

In the experiments presented in this master thesis we tried to classify four
types of pollen, different in morphology, to see whether there is a way to
distinguish certain kinds of pollen. The results imply that the four pollen
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types can be classified with good accuracy by using convolutional neural net-
works. Remaining challenge is the initial data filtering which is of particular
importance and should be explored in future experiments. The next studies
will encompass larger number of pollen types, as well as different neural net-
work architectures and comparison of the results obtained with Hirst device
in operational mode.
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