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’If you don’t know how, observe the phenomena of nature, they will give
you clear answers and inspiration."

Nikola Tesla
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Abstract

The aim of this thesis is the application of recurrent neural networks with
different optimization algorithms on problem of drought prediction. There
are more types of droughts, meteorological, hydrological, agricultural and
socioeconomic. In this thesis we focused on agricultural drought which is
dependent on soil moisture content and for that reason we developed model
which is able to predict soil moisture content in the first layer based on
meteorological parameters from past days and also meteorological parameters
for future days using Long Short Term Memory (LSTM) network. In the
first part of the thesis we elaborated on mathematics foundations of neural
networks and explained in detail how LSTM network works. In the second
part of the thesis we presented obtained results on predicting agriculture
drought in Serbia with data from Copernicus Climate Change Service.
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Chapter 1

Introduction

Artificial neural networks (ANNs) are machine learning models inspired by
biological neural networks which are widely used today and have very big
domain of applications such as image classification, speech recognition, nat-
ural language processing, computer vision, etc. The background of neural
networks is strong mathematics and the following mathematics disciplines
are the fundamentals for understanding this machine learning model: math-
ematical optimization, linear algebra, probability, statistics as well as high
dimensional calculus.

Among challenges that today’s world face, the important one is certainly
climate change, which causes droughts and floods all over the world more fre-
quently and more intense than in all history on record [1]. Motivation for this
thesis is to combine these two things, which is very popular in 21st century.
We will focus on drought prediction problem in Serbia using recurrent neural
networks (RNN). Meteorological drought causes hydrological drought which
causes agricultural drought which further causes socio-economic drought [2]
and since the soil moisture content is correlated with agricultural drought
that is a variable which we would like to forecast based on other meteorolog-
ical parameters.

In summer of 2012 in Serbia there was a drought which caused decrease
of maize yield for 50% [3] and further consequence was the occurrence of
aflatoxin in milk [4]. Estimated agricultural production loss was up to USD
2 billion [5]. The summer of 2015 and 2017 was also warm and dry and in
spring of 2014 there was a flood [6] [7] [8]. All this things indicate that we
have experienced effects of climate change.

This thesis is organized in six chapters, where the first and the last chap-
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ters provide introduction and conclusion. In the second chapter we intro-
duced artificial neural networks with historical view and represented percep-
tron and multilayer perceptron as a basic neural networks. The chapter three
explains RNNs which are class of ANN well suited for time series data and for
regression problems. We also introduced LSTM network and explained back-
propagation through time in such network. In the chapter four we focused
on the most popular first order optimization algorithms in neural networks
with introduction based on convex mathematical optimization. Finally, in
the chapter five we applied RNN on meteorological time series in order to
predict soil moisture content with focus on different optimizer algorithms.
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Chapter 2

Artificial Neural Network

In this section we introduce Artificial Neural Network by providing its brief
history and then proceed with explaining perceptron, the most simplified
neural network, convergence of perceptron algorithm and multilayer percep-
tron.

Figure 2.1: Biological and artificial neuron [9]

2.1 History of ANN
The first ANN is a result of collaboration between neurophysiologist Warren
Sturgis McCulloch and logician Walter Harry Pitts from 1943 That is a math-

12



2.2. PERCEPTRON 13

ematical model which imitates neurons from human brain. In 1949 Donald
Olding Hebb published a book "The organization of behavior" where he ex-
posed theory of Hebbian learning which claims that synaptic’s value between
two neurons is increasing when one neuron activates the other one. Frank
Rosenblatt developed perceptrons in 1958 which was compound of variable
synaptics weights and activation function. He also introduced the method
of improving the networks weights in order to decrease classification error.
Durin 50’s and 60’ there were two main approaches in this area artificial
intelligence and connectionism. Connectionism was trying to build multi-
layer perceptron which can be able to classify in nonlinear separable space.
This problem was solved during 80’s when the method of back propagation
was published [10]. In the 21st century neural networks expand with more
powerful computers and there is a new field called Deep Learning.

2.2 Perceptron
ANN consists of neurons and edges between them. The most simplified
neural network is perceptron [11]. We can define perceptron as a function
composition:

f(g(x)), x ∈ Rn (2.1)

where g is linear function g : Rn → R, g(x) = θTx + θ0; θ ∈ Rn, θ0 ∈ R
and f is a step function:

f(y) =

{
+1, y ≤ a
−1, y > a.

y, a ∈ R (2.2)

Perceptron takes input vector x then multiplies it with coefficient vector
θ and then result goes through activation function f . Perceptron itself can
be used for binary classification problem [10]. Let we have

{
x1, x2, ..., xN

}
data from two classes C1 and C2. Suppose that classes are linearly separable,
we will show that perceptron can find line which separates classes. First, we
can rewrite:

g(x) = θTx+ θ0 =
[
θT θ0

] [x
1

]
= θ′Tx′ (2.3)

13



2.2. PERCEPTRON 14

Figure 2.2: Perceptron
Source: http://ataspinar.com/2016/12/22/the-perceptron/

In further notation we can simply use g(x) = θTx. We would like to find
vector θ such that θTx = 0 and{

θTx > 0, ∀x ∈ C1

θTx < 0, ∀x ∈ C2.
(2.4)

We further define additional variable t that takes value tn = 1 when
xn ∈ C1, and tn = −1 when xn ∈ C2. We introduce perceptron criterion
function which is piecewise error function.

Jp(θ) = −
∑

xn∈XM

θT (xntn) (2.5)

where XM is set of misclassified samples.
This function is always non-negative and minimum, zero value, is reached

when there is no misclassified samples. Obviously, perceptron criterion func-
tion is continuously and piecewise linear so we can use pattern by pattern
gradient descent rule in order to find minimum.

Gradient is defined as ∇θJp(θ) = −
∑

xn∈XM

xntn. Therefore, we have:

14



2.3. PERCEPTRON ALGORITHM 15

θk+1 = θk − ηk∇Jp(θk) = θk + ηk
∑

xn∈XM

xntn (2.6)

2.3 Perceptron Algorithm

1) Start with arbitrary solution θ0.

2) Find set of misclassifed samples XM .

3) Update θk+1 = θk + ηk
∑

xn∈XM

xntn.

4) Go to the step 2) until there is no misclassified samples.

2.3.1 Convergence of Perceptron Algorithm

Let θ∗ be solution of problem and α real, positive number.

θk+1 − αθ∗ = θk − αθ∗ + ηk
∑

xn∈XM

xntn (2.7)

‖θk+1 − αθ∗‖2 = ‖θk − αθ∗‖2 + η2
k

∥∥∥∥ ∑
xn∈XM

xntn
∥∥∥∥2

+ 2ηk
∑

xn∈XM

xntn(θk − αθ∗)T

(2.8)
From

∑
xn∈XM

θTk x
ntn < 0, we have:

‖θk+1−αθ∗‖2 ≤ ‖θk −αθ∗‖2 + η2
k

∥∥∥∥ ∑
xn∈XM

xntn
∥∥∥∥2

− 2ηkα
∑

xn∈XM

xntnθ∗T (2.9)

We define β2 = max
XM⊆C1∪C2

∥∥∥∥ ∑
xn∈XM

xntn
∥∥∥∥2

, in other words β2 is the maxi-

mum value of vector norm among all possible subsets of given data.

15



2.3. PERCEPTRON ALGORITHM 16

Similarly, define γ = max
XM⊆C1∪C2

∑
xn∈XM

xntnθ∗T . Notice, that the sum in

this equation is negative. Therefore we can rewrite equation as follows:

‖θk+1 − αθ∗‖2 ≤ ‖θk − αθ∗‖2 + η2
kβ

2 − 2ηkαγ. (2.10)

If we choose α = β2

2γ
and then apply upper inequality successively for k,

k-1, ..., 0, then we have:

‖θk+1 − αθ∗‖2 ≤ ‖θ0 − αθ∗‖2 + β2

( k∑
t=0

η2
t −

k∑
t=0

ηt

)
(2.11)

Choose the sequence {ηt}kt=0, ηt ∈ R such that satisfy the following con-
ditions:

1) lim
k→∞

k∑
t=0

ηt =∞ (2.12)

2) lim
k→∞

k∑
t=0

η2
t <∞ (2.13)

Then, there is k0 such that right side of inequality 2.11 is non-positive.
Therefore:

0 ≤ ‖θk0+1 − αθ∗‖ ≤ 0 (2.14)

In other words:

θk0+1 = αθ∗ (2.15)

So, we proved convergence of perceptron algorithm if the condition is
satisfied.

16



2.4. MULTILAYER PERCEPTRON 17

2.4 Multilayer Perceptron
In the previous section we introduced single layer perceptron and we proved
that perceptron algorithm converges to line which separates classes from
binary classification problem. Now, we are going to introduce multilayer
perceptron which is able to classify non linear problems and also able to
solve classification problems with more than two classes [10].

Multilayer Perceptron is an ANN with nodes and edges where each node
represents neuron and the edges between nodes are directions. In other words,
nodes and edges of ANN form a directed graph. Multilayer perceptron have
more than two layers, input layer, output layer and at least one hidden layer
(see Fig. 2.3).

Figure 2.3: Multilayer perceptron [12]

In the multilayer perceptron each step activation function is replaced with
differentiable non linear function in order to be able to calculate derivative.
One popular function with such property is sigmoid function:

f(t) =
1

1 + e−at
, (2.16)

where a is the parameter of slope.
Multilayer perceptron is feed forward network which means there is only

forward direction from one node to another, there are no cycles nor loops
between nodes.

17



Chapter 3

Recurrent Neural Network

Recurrent neural networks are special class of ANNs. They are widely used in
time series forecasting, handwriting recognition, natural language processing,
speech recognition etc. RNNs are well suited for data which are given as
sequences or time series, on other hand it is not good choice for standard
classification problem. Nodes and edges of RNN create a directed graph
with cycles and loops and this is the big difference with feed forward neural
networks. RNNs are also known as neural networks with memory because
they are capable to learn long-term dependencies along sequences. When the
RNN produces an output it also takes the previous output or what it learned
on the previous input, that is a reason why this neural network is called RNN
[13].

3.1 The Basics of RNN
The simple RNN which we are going to introduce is vanilla RNN [14]. This
RNN has input layer, hidden layer and output layer and there is a loop from
hidden to hidden layer, this is very important property which distinguish
RNN from other neural networks. That loop allows us to consider sequence
problems and force network to learn long term dependency of sequences.

The RNN models dynamical system [15] which we can define as follows:

ht = F (ht−1, xt), (3.1)

where xt is the input at time t, ht is the hidden state at time t and F is

18



3.1. THE BASICS OF RNN 19

Figure 3.1: Unfolded RNN [15]

nonlinear mapping. We can derive:

ht = F (F (ht−2, xt−1), xt) = F2(ht−2, xt−1, xt) (3.2)

Let further derive for t− 2, t− 3, ..., 1. We obtain:

ht = G(xt, xt−1, ..., x2, x1), (3.3)

where G is final composition of F functions. Therefore the current hidden

state depends on whole past sequences.
Let us define Vanilla RNN (presented in Fig. 3.1) with hyperbolic tanget

activation function in hidden unit and softmax activation function in the
output unit:

ht = tanh(Whhht−1 +Wxhxt + bh) (3.4)

zt = softmax(Whzht + bz) (3.5)

where bh, bz are bias vectors and Wxh,Whh,Whz are weighted matrices
from input to hidden, hidden to hidden and hidden to output layer, respec-
tively. Output prediction is zt and activation functions are tanh and softmax
(for definitions see A.1.1).

19



3.2. BACKPROPAGATION THROUGH TIME 20

There are few types of architectures of RNN depending on input and
output numbers (see Fig. 3.2). One to one is typically for image classification
problem where for example input is image with fixed size and output is class.
One to many type is used for sentiment analysis when we have as an input
image with fixed size and the output is a sentence of words which describes
picture. Many to one and many to many can be used for forecasting where
for example an input can be weather data from previous days and output
can be one day or few another days weather forecast. [16].

Figure 3.2: Sequence models [16]

The total loss of RNN is the sum over all timesteps or sequences:

J =
∑
t

Jt (3.6)

where t denotes time step and Jt the loss at time step t.
If we have sequence labeling problem, we will use for loss function cross

entropy function

Jt =
∑
k

yk log zk (3.7)

where y is vector which represents class, if we have 1 on i-th position and
zero elsewhere than that is class i. Vector z represents probability distribu-
tions of the sample belonging to some class. Therefore, for vectors y and z
is satisfied that sum of all entries is equal to one.

3.2 Backpropagation Through Time
Let’s define αt = Whzht + bz, so we have zt = softmax(αt). Take derivative
with respect to αt (see A.1.2) and obtain the following:

20



3.2. BACKPROPAGATION THROUGH TIME 21

∂J

∂αt
= −(yt − zt) (3.8)

The weight Whz is shared across all time steps, therefore we can differen-
tiate at each time step t and then sum all:

∂J

∂Whz

=
∑
t

∂J

∂zt

∂zt
∂Whz

(3.9)

We can calculate gradient with respect to bias bz:

∂J

∂bz
=
∑
t

∂J

∂zt

∂zt
∂bz

(3.10)

Consider time step t→ (t+ 1) and weight Whh (see Fig. 3.1) we want to
find gradient with respect to Whh

∂Jt+1

∂Whh

=
∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂Whh

(3.11)

Whh is shared across all time steps according to the recursive definition in
Eq. 3.4 and the hidden state ht+1 is dependent on hidden state ht. Therefore
at time (t− 1)→ t we have:

∂Jt+1

∂Whh

=
∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂ht

∂ht
∂Whh

(3.12)

To simplify further notation let denote with:

∂ht+1

∂hk
=
∂ht+1

∂ht

∂ht
∂ht−1

...
∂hk+1

∂hk
(3.13)

where 1 < k < t.
When we back propagate from t to 0 to calculate gradient with respect

to Whh at time step (t+ 1) for output zt+1 we obtain:

∂Jt+1

∂Whh

=
t∑

k=1

∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk
∂Whh

(3.14)

Aggregate the gradients w.r.t. Whh over the whole time sequence with
back propagation, we obtain:

21



3.2. BACKPROPAGATION THROUGH TIME 22

∂J

∂Whh

=
∑
t

t+1∑
k=1

∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk
∂Whh

(3.15)

Similarly we can calculate gradient w.r.t Wxh. Consider the time step
(t+ 1)

∂Jt+1

∂Wxh

=
∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂Wxh

(3.16)

Because ht+1 depends on ht and xt+1, we need to back propagate on ht
also. Therefore, consider at time step t:

∂Jt+1

∂Wxh

=
∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂Wxh

+
∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂ht

∂ht
∂Wxh

(3.17)

When we summing up through all t from t to 0 via back propagation we
obtain the following:

∂Jt+1

∂Wxh

=
t∑

k=1

∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk
∂Wxh

(3.18)

Now, we can take derivative w.r.t Wxh over the whole sequence:

∂J

∂Wxh

=
∑
t

t+1∑
k=1

∂Jt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk
∂Wxh

(3.19)

3.2.1 Vanishing and Exploding Gradient

Considering term ∂ht+1

∂hk
in Eq. 3.19 and deriving this expression for k = t−n

we get

∂ht+1

∂ht−n
=
∂ht+1

∂ht

∂ht
∂ht−1

...
∂ht−n+1

∂ht−n
(3.20)

In Eq. 3.20 we have n matrix multiplications, when we have for entries
let’s say some approximately q then we obtain:

qn =

{
0, q < 1
∞, q > 1

(3.21)
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which results in vanishing or exploding gradient.
This is main weakness of RNN, in the next section we are going to intro-

duce special kind of RNN called long short term memory (LSTM) which is
able to handle this problem.

3.3 Long Short Term Memory
Vanilla RNN use tanh activation function to make correlation between ht, xt
and ht−1. LSTM for that problem use memory cell which we are going to
explain in detail in this section.

The memory cell ct has xt and ht−1 as input, the output is ht same as
for vanilla RNN, but it has input gate, output gate and forget gate which
controls what is input and output of memory cell ct (see Fig. 3.3). This
property allow LSTM to handle vanishing problem.

Figure 3.3: LSTM [15]

Let’s define gates with sequence data {x1, x2, ..., xT} and weightsWxi,Whi

for input gate, Wxc,Whc for input modulation gate, Wxo,Who for output gate
and Wxf ,Whf for forget gate where first weight corresponds to input xt and
second weight corresponds to previously state ht−1.
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ft = σ(Wxfxt +Whfht−1 + bf ) (3.22)

it = σ(Wxixt +Whiht−1 + bi) (3.23)

ot = σ(Wxoxt +Whoht−1 + bf ) (3.24)

gt = tanh(Wxcxt +Whcht−1 + bc) (3.25)

ct = ct−1 � ft + it � gt (3.26)

ht = ot � tanh(ct) (3.27)

zt = softmax(Whzht + bz) (3.28)

3.3.1 Backpropagation Through Time in LSTM

Let the groundtruth at time t be yt and for loss function we choose least
squared function or cross entropy function. Considering the last layer with
weight Whz we can calculate derivative w.r.t to zt and Whz

dzt = yt − zt (3.29)

dWhz =
∑
t

htdzt (3.30)

dhT = WhzdzT (3.31)

where we only calculate gradient at last time step T , for all t we will
discuss later. Calculate derivative with respect to gates and memory cell

dot = tanh(ct)dht (3.32)

dct = (1− tanh(ct)
2)otdht (3.33)
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dft = ct−1dct (3.34)

dct−1+ = ft � dct (3.35)

dit = gtdct (3.36)

dgt = itdct (3.37)

for calculating gradient w.r.t tanh(ct) see A.1.3. Derivatives w.r.t weights
which correspond to input x, Wxo,Wxi,Wxf and Wxc:

dWxo =
∑
t

ot(1− ot)xtdot (3.38)

dWxi =
∑
t

it(1− it)xtdit (3.39)

dWxf =
∑
t

ft(1− ft)xtdft (3.40)

dWxc =
∑
t

(1− gt
2)xtdgt (3.41)

and because these weights are shared across the whole sequence we take
the sum over t.

Similarly, we have:

dWho =
∑
t

ot(1− ot)ht−1dot (3.42)

dWhi =
∑
t

it(1− it)ht−1dit (3.43)

dWhf =
∑
t

ft(1− ft)ht−1dft (3.44)

dWhc =
∑
t

(1− gt
2)ht−1dgt (3.45)

and corresponding hidden states at the current time step (t− 1):
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dht−1 = ot(1− ot)Whodot + it(1− it)Whidit

+ft(1− ft)Whfdft + (1− gt)
2Whcdgt

(3.46)

dht−1+ = Whzdzt−1 (3.47)

where we calculate derivative of hidden state from two sources, one from
the gates (Eq. 3.22 - 3.25) and the other one from Eq. 3.31 at time step
(t− 1).

Now, we are going to explain how to derive gradients in detail, especially
Eq. 3.35. Let we have least square objective function

J(x, θ) = min
∑
t

1

2
(yt − zt)2 (3.48)

where θ = {Whz,Wxo,Wxi,Wxf ,Wxc,Who,Whi,Whf ,Whc}. For simplicity
in the following we will use Jt = 1

2
(yt − zt)2.

Figure 3.4: Unfolded memory unit of LSTM [15]

Take derivative at time step T w.r.t cT

∂JT
∂cT

=
∂Jt
∂hT

∂hT
∂cT

(3.49)

At the time step T − 1 take the derivative of JT−1 w.r.t cT−1:

∂JT−1

∂cT−1

=
∂JT−1

∂hT−1

∂hT−1

∂cT−1

(3.50)
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As we can see on Fig. 3.4 the error is not propagated from hT−1 only, it
is propagated from cT as well. Therefore, we have:

∂JT−1

∂cT−1

=
∂JT−1

∂cT−1

+
∂JT−1

∂cT
(3.51)

∂JT−1

∂cT−1

=
∂JT−1

∂hT−1

∂hT−1

∂cT−1

+
∂JT
∂hT

∂hT
∂cT

∂cT
∂cT−1

(3.52)

Now, using Eq. 3.26 at time step T-1 and Eq. 3.52 we can write:

dcT−1+ = fT � dcT (3.53)

Similarly, we can derive Eq. 3.35 at any time step.

3.3.2 Parameters Learning

Forward: From the time step 1 to T we can use Eq. 3.22 - 3.26 to update
states of forward neural network.

Backword: We can backpropagate error from T to 1 using Eq. 3.32 -
3.47. When we calculate derivatives we can use gradient based method to
update parameter θ = {Whz,Wxo,Wxi,Wxf ,Wxc,Who,Whi,Whf ,Whc}:

θk+1 = θk − ηkdθk (3.54)

where ηk is learning rate at step k.
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Chapter 4

Optimization Algorithms

In this section we are going to introduce the most popular optimization
algorithms which neural networks typically use. Mathematics background of
this algorithm is mathematical optimization, in other words finding point for
which function has minimum value. We will focus on convex optimization
problems, problem in neural network is non convex optimization problem in
general but we can consider non convex function as convex on segments.

4.1 The Basics of Mathematical Optimization
First of all, we need to give some definitions[17].

Definition 1. A set C is convex if the line segment between any two point
from C lies in C, i.e., if for any θ1, θ2 ∈ C and any γ with 0 ≤ γ ≤ 1 we
have:

γθ1 + (1− γ)θ2 ∈ C (4.1)

Definition 2. A function J : Rn → R is convex if dom J is convex set and
if for all θ1, θ2 ∈ dom J and γ with 0 ≤ γ ≤ 1, we have:

J(γθ1 + (1− γ)θ2) ≤ γJ(θ1) + (1 − γ)J(θ2) (4.2)

Geometrically speaking, function is convex if for every tangent of that
function graph is above tangent line (see Fig. 4.2).
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Figure 4.1: Convex and non convex set

Figure 4.2: Tangents on convex function

Finding minimum of function we can write as follows:

min
θ
J(θ) (4.3)

where J : Rn → R is convex and twice continuously differentiable function
and θ belongs to some space S. We will also assume that there is optimal
point θ∗ such that θ∗ = arg min

θ
J(θ) and J is twice differentiable means that
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Figure 4.3: Convex and non convex function

derivative function of J has derivative in each point from domain.

Let’s define optimal points in more mathematical sense:

Definition 3. A point θ∗ is a local minimizer of the objective function J if
there exists ε > 0 such that J(θ∗) ≤ J(θ), for all θ such that ||θ∗ − θ|| ≤ ε.

Definition 4. A point θ∗ is a global minizer of the objective function J if
J(θ∗) ≤ J(θ) for all θ from domain of J .

Theorem 1. Let J : Rn → R, S ⊆ Rn is convex set. If J is convex on S
then J(θ1) ≥ J(θ2) +∇J(θ2)T (θ1 − θ2) for all θ1 and θ2 from S.

Proof. Let’s define ω = γθ1 + (1 − γ)θ2 and θ1, θ2 ∈ S. J is convex, by
definition we have

J(γθ1 + (1− γ)θ2) ≤ γJ(θ1) + (1− γ)J(θ2) (4.4)

J(ω)− J(θ2) ≤ γJ(θ1)− γJ(θ2) (4.5)

J(ω)− J(θ2)

γ
≤ J(θ1)− J(θ2) (4.6)

Take the limit when γ → 0
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lim
γ→0

J(ω)− J(θ2)

γ
= lim

γ→0

J(θ2 + γ(θ1 − θ2))− J(θ2)

γ
= ∇TJ(θ2)(θ1 − θ2)

(4.7)
Therefore we have:

∇TJ(θ2)(θ1 − θ2) ≤ J(θ1)− J(θ2) (4.8)

The theorems 2 and 3 with simple proofs give us first and second order
necessary conditions for function to have minimum value and also second
order sufficient conditions in theorem 4 [18].

Theorem 2. (First order necessary condition) Let function J ∈ C1 and let
θ∗ be a local minimizer of function J, then ∇J(θ∗) = 0.

Proof. Let define function Φ(λ) := J(θ∗ + λd), d ∈ Rn arbitrary and fixed
and λ ∈ R+. Note that function Φ : R→ R, that is function of one variable
and we know that first derivative at minimum is equal zero.

Φ(0) = J(θ∗) ≤ J(θ∗ + λd) = Φ(λ) (4.9)

Φ(0) ≤ Φ(λ), λ ≥ 0 ⇒ Φ′(0) = 0 (4.10)

Φ′(λ) = ∇J(θ∗ + λd)Td (4.11)

Φ′(0) = ∇J(θ∗)Td = 0 (4.12)

⇒ ∇J(θ∗) = 0. (4.13)

because d is an arbitrary and fixed vector.

Theorem 3. (Second order necessary condition) Let function J ∈ C2. If θ∗
is a local minizer then ∇J(θ∗) = 0 and ∇2J(θ∗) ≥ 0
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Proof. Now again consider function Φ(λ) = J(θ∗+λd), we know that J ∈ C2,
Φ′(0) = 0 and Φ′′(0) ≥ 0.

Φ′′(λ) = dT∇2J(θ∗ + λd)d (4.14)

Φ′′(0) = dT∇2J(θ∗)d ≥ 0 (4.15)

⇒ ∇2J(θ∗) ≥ 0 (4.16)

because d is an arbitrary and fixed vector.

Theorem 4. (Sufficient conditions) Let J ∈ C2. If ∇J(θ∗) = 0 and
∇2J(θ∗) > 0 then θ∗ is strict local minimizer.

Proof. Because the Hessian is continuous and positive definite at θ∗ we can
choose a radius r > 0 such that ∇2J(θ) remains positive for all θ in the open
ball B = {ω | ||ω− θ∗|| < r}. Taking any nonzero vector p with ||p|| < r, we
have θ∗ + p ∈ B

J(θ∗ + p) = J(θ∗) + pT∇J(θ∗) +
1

2
pT∇2J(ω)p (4.17)

= J(θ∗) +
1

2
pT∇2J(ω)p (4.18)

where ω = θ∗ + tp for t ∈ (0, 1). Since ω ∈ B we have pT∇2J(ω)p > 0
and therefore J(θ∗ + p) > J(θ∗).

4.2 Gradient Descent Method
We are going to introduce the algorithm which produces the minimizing
sequence θk, k = 1,... where θk+1 = θk + ηkdk and ηk ≥ 0. The dk is called
step or search direction and ηk is called step length or step size. [17]

Descent method means that:

J(θk+1) ≤ J(θk) (4.19)
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From convexity we know that:

J(θk+1)− J(θk) ≥ ∇J(θk)
T (θk+1 − θk) (4.20)

left side of this inequality is less or equal zero from 4.19 which implies that
∇J(θk)

T (θk+1 − θk) is also less or equal zero. Therefore the search direction
in a descent method must satisfy:

∇J(θk)
Tdk ≤ 0 (4.21)

We call such direction a descent direction.
For descent direction the natural choice is the negative gradient dk =

−∇J(θk).

−∇J(θk)
T∇J(θk) = −||∇J(θk)||2 ≤ 0 (4.22)

so the negative gradient satisfy Eq. 4.21.

Algorithm

1) Choose arbitrary point θ0 from dom J
2) Set dk = −∇J(θk)

3) Line search: Choose step size ηk
4) Update: θk+1 = θk + ηkdk

5) Repeat 2) - 4) until stopping criterion is satisfied.

The stopping criterion is in the form ||∇J(θk)|| ≤ ε where ε is small and

positive number.

Exact Line Search

One of the line search method is exact line search in which η is choosen as:

ηk = argmin
η≥0

J(θk + ηdk) (4.23)

Sometimes in practise, we can easily calculate ηk using exact line search
method by finding derivative of objective function w.r.t η.
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Strong Convexity and Implications

Assume that objective function J is strongly convex which means that there
exists m,M > 0 such that:

mI � ∇2J(θ) �MI (4.24)

For θ1 and θ2 ∈ S we know from Taylor’s theorem:

J(θ2) = J(θ1) +∇J(θ1)T (θ2 − θ1) +
1

2
(θ2 − θ1)T∇2J(z)(θ2 − θ1) (4.25)

where z ∈ [θ1, θ2].
From strong convexity we have:

J(θ2) ≥ J(θ1) +∇J(θ1)T (θ2 − θ1) +
m

2
||θ2 − θ1||2 (4.26)

for all θ1 and θ2 ∈ S.
Now, we will show that inequality 4.26 can be used to obtain bound

J(θ) − p∗ where p∗ = min
θ
J(θ). First, the righthand side of inequality 4.26

is quadratic convex function of θ2 for fixed θ1, find the optimal θ̂2 by setting
gradient w.r.t θ2 to zero:

∇J(θ1) +
2m

2
(θ2 − θ1) = ∇J(θ1) +mθ2 −mθ1 (4.27)

⇒ θ̂2 = θ1 −
1

m
∇J(θ1) (4.28)

Replace θ2 with θ̂2 in inequlity 4.26

J(θ2) ≥ J(θ1)− 1

m
||∇J(θ1)||2 +

1

2m
||∇J(θ1)||2 (4.29)

J(θ2) ≥ J(θ1)− 1

2m
||∇J(θ1)||2 (4.30)

since this holds for any θ2 we can set for lefthand side p∗. Therefore we
have:

J(θ1)− p∗ ≤ 1

2m
||∇J(θ1)||2 (4.31)
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Now, we can use that ∇2J(θ) �MI and we obtain from Eq. 4.25

J(θ2) ≤ J(θ1) +∇J(θ1)T (θ2 − θ1) +
M

2
||θ2 − θ1||2 (4.32)

Similarly, minimizing each side over θ2 we have:

J(θ1)− p∗ ≥ 1

2M
||∇J(θ1)||2 (4.33)

4.2.1 Convergence Analysis

In this section we will show convergence of gradient descent algorithm with
exact line search. Assume J is strongly convex on S in other words there
are m,M > 0 such that mI � ∇2J(θ) � MI. Define function Ĵ : R → R
Ĵ(η) = J(θ − η∇J(θ)) as a function of step size η for descent direction
negative gradient.

From inequality 4.32 for θ2 = θ − η∇J(θ) and θ1 = θ :

Ĵ(η) ≤ J(θ) +∇J(θ)T (θ − η∇J(θ)− θ) +
M

2
||θ − η∇J(θ)− θ||2 (4.34)

Ĵ(η) ≤ J(θ)− η||∇J(θ)||2 +
Mη2

2
||∇J(θ)||2 (4.35)

Assume that an exact line search is used and minimized over η both sides.
Let ηexact represents step size which minimizes Ĵ . Find the minimum value
of righthand side of inequality 4.35 by setting gradient w.r.t. η to zero

− ||∇J(θ)||2 +
2Mη

2
||∇J(θ)||2 = (Mη − 1)||∇J(θ)||2 = 0 (4.36)

⇒ η =
1

M
(4.37)

Therefore we have:

Ĵ(ηexact) ≤ J(θ)− 1

2M
||∇J(θ)||2 (4.38)

Subtracting p∗ from both sides
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Ĵ(ηexact)− p∗ ≤ J(θ)− p∗ − 1

2M
||∇J(θ)||2 (4.39)

and combine with ||∇J(θ)||2 ≥ 2m(J(θ)− p∗) (inequality 4.31) we get:

Ĵ(ηexact)− p∗ ≤ (1− m

M
)(J(θ)− p∗) (4.40)

Let’s rewrite upper inequality in algorithmic way:

J(θk+1)− p∗ ≤ c(J(θk)− p∗) (4.41)

where c = 1− m
M
. Apply recursively for k

J(θk+1)− p∗ ≤ c2(J(θk−1)− p∗) (4.42)

and continue to applying recursively for k-1, ... 0, we obtain:

J(θk+1)− p∗ ≤ ck(J(θ0)− p∗) (4.43)

We can conclude that J(θk+1)→ p∗ when k goes to infinity because c < 1
and ck → 0.

We have proven convergence of gradient descent method with exact line
search.

4.2.2 Gradient Descent Variants

In practise, there are three variants of gradient descent methods depending
on amount of data which we use for calculating gradient. There is trade off
between accuracy of gradient and time needed to calculate gradient [19].

Batch Gradient Descent

Batch gradient descent method uses entire dataset for calculating a gradient,
thus this method can be very slow for a big dataset when we are training a
neural network.

θk+1 = θk − ηk∇J(θk) (4.44)
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) calculates gradient for each sample Si
from training set, in other words if entire dataset is S = {Si}N1 .

θk+1 = θk − ηk∇J(θk;Si) (4.45)

This method is faster but the data used for calculating gradient are small
therefore we have a high variance.

Figure 4.4: Stochastic and normal gradient [20]

Mini Batch Gradient Descent

Mini batch gradient descent is something between batch gradient descent and
SGD method. It takes the best from both methods, reduce the variance and
it is faster then batch gradient

θk+1 = θk − ηk∇J(θk;S(i+n)) (4.46)

Mini batch calculates the gradient on some subset S(i+n) of entire dataset
and that subset is strictly greater than one sample Si.
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Challenges

There are some challenges with gradient descent methods, for example choos-
ing a learning rate. If we choose too small learing rate we can obtain very
slow convergence on the other hand for too big learning rate we can skip
optimal point or algorithm can diverge.

Definition 5. A pair (θ̃1, θ̃2) and θ̃1 ∈ S1, θ̃2 ∈ S2 is saddle point of function
J if:

J(θ̃1, θ2) ≤ J(θ̃1, θ̃2) ≤ J(θ1, θ̃2) (4.47)

for all θ1 ∈ S1 and θ2 ∈ S2. In other words θ̃1 minimizes J(θ1, θ̃2) and θ̃2

maximizes J(θ̃1, θ2).

Figure 4.5: Saddle point

These optimization algorithms are typically used to optimize neural net-
works, in practise the loss objective function is non convex function and
therefore when we use gradient descent direction we can finish in local opti-
mum point which is not too good for our problem (see Fig. 4.6). Also there
is saddle point [17] which is too difficult for gradient method to avoid because
the gradient in all directions is zero.
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Figure 4.6: Local and global optimum
Source: By Christoph Roser at AllAboutLean.com under the free CC-BY-SA

4.0 license.

4.3 First Order Optimizers
We are focusing on optimization algorithms which use negative gradient for
descent direction [19], there are also directions which use Hessian and that
optimization algorithms is called second order. Using second order optimiza-
tion algorithms in practise is not typical because calculating Hessian matrix
can be computationally expensive. On the other hand first order optimiza-
tion algorithms do not use information about surface which is hidden in the
Hessian matrix.

4.3.1 Momentum

SGD has problem with ravines, when the surface is more steepest in one
direction than in other. Then we have that SGD oscillates and slow converges
to optimal point.

Figure 4.7: Momentum [19]

Momentum is a method which helps SGD to goes faster in relevant direc-
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tion, we create a vector vt which accumulates information about past updates
as it follows:

vk = αvk−1 + ηk∇J(θk) (4.48)

θk+1 = θk − vk (4.49)

where α ∈ (0, 1) is parameter which determine fraction of vectors from past
time which is used. This parameter is called momentum term and typically
choice is 0.9.

We can imagine momentum more intuitively like a ball which is pushed
down the hill, the ball represents gradient and hill represents surface, when
ball is going down it becomes faster and faster until ball reaches the lowest
point.

4.3.2 Nesterov Accelerated Gradient

If we have just ball which goes downhill not considering where it is going, we
can have a problem. Therefore we would like to have smart ball which can
consider future position of itself and then decide where to go.

Nesterov accelerated gradient is a method which is able to handle this.

vk = αvk−1 + ηk∇J(θk − αvk−1) (4.50)

θk+1 = θk − vk (4.51)

We also use momentum αvk−1 and calculate gradient on the next position
θk − αvk−1 and therefore we are using information from future.

Figure 4.8: Nesterov vector update [19]

Momentum first calculates gradient at current point (first blue vector)
and then takes a big jump in direction of accumulated gradient (second blue
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vector). Nesterov update works in different way, it first makes a big jump
in direction of accumulated gradient (brown vector) and then calculates a
correction (green vector). This update prevent us from going too fast.

4.3.3 Adagrad

In previous methods we had a same learning rate for all parameters. In prac-
tice, there is a situations when we want a larger learning rate for infrequent
parameters and smaller learning rate for frequent parameters.

Let θ = {θ1, θ2, ..., θm} where each θi corresponds to different variable i,
i = 1, 2, ...m.

Define gk,i = ∇J(θk,i) as negative gradient at step k for parameter θi.
The SGD for each parameter θi at step k + 1 is as follows:

θk+1,i = θk,i − ηkgk,i (4.52)

Now we will introduce adagrad (adaptive learning gradient) which mod-
ifies learning rate η at each step k for each parameter θi based on past
gradients that have been computed for θi:

θk+1,i = θk,i −
ηk√

Gk,ii + ε
gk,i (4.53)

where Gk ∈ Rm×m is diagonal matrix. Gk =
k∑
τ=1

gτg
T
τ . Look at denomi-

nator in Eq. 4.53 we have the sum of the squares of the gradients up to step
k and ε > 0 to avoid division by zero.

Since Gk is diagonal matrix which contains gradients w.r.t. all parameters
θi we can now vectorize our implementation by performing an element-wise
matrix-vector multiplication � between Gk and gk

θk+1 = θk −
ηk√
Gk + ε

� gk (4.54)

There is one possible problem with adagrad method. If we again consider
denominator of Eq. 4.53 we can see that there is an accumulated sum which
keeps growing while we update parameters, it can cause a very small learning
rate and algorithm will not be able to use information of gradient.
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4.3.4 Adadelta

To prevent very small learning rate in adagrad method a new method called
adadelta is developed [21]. Adagrad accumulates all past squared gradients,
adadelta instead of that restricts the window of accumulated past squared
gradients to some fixed size w.

Storing w previously squared gradients is inefficient, therefore the sum
of gradients is recursively defined as a decaying average of all past squared
gradients. The running average E[g2]t depends on current gradient and the
previous gradient as follows:

E[g2]k = αE[g2]k−1 + (1− α)gk
2 (4.55)

where α is similar to momentum term, which determine fraction of past
gradients which we are going to use. Typical choice for α is 0.9 again.

Now, we are going to rewrite SGD in following notation:

∆θk = −ηkgk,i (4.56)

θk+1 = θk + ∆θk (4.57)

The parameter update for Adagrad method:

∆θk = − ηk√
Gk + ε

� gk (4.58)

We now simply replace the diagonal matrix Gk with the decaying average
over past squared gradients:

∆θk = − ηk√
E[g2]k + ε

gk (4.59)

The denominator of Eq. 4.59 is root mean squared error criterion of the
gradient, we can replace it and obtain:

∆θk = − ηk
RMS[g]k

gk (4.60)

The next idea of Adadelta method is correction of units. If the parameter
had some hypothetical units, the changes to the parameter should be changes
in those units as well. For example, SGD, Momentum and Adagrad does
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not satisfy this property. The units in SGD and Momentum relate to the
gradient:

units of ∆θ ∝ units of g ∝ ∂J

∂θ
∝ 1

units of θ
(4.61)

Let’s explain on example why ∂J
∂θ
∝ 1

units of θ . If we have J(θ) = 5θ. Let
write first derivative by definition and then choose for ∆θ = 0.1.

∂J

∂θ
= lim

∆θ→0

J(θ + ∆θ)− J(θ)

∆θ
=

5θ + 5 ∗ 0.1− 5θ

0.1
= 0.5

1

0.1
(4.62)

⇒ ∂J

∂θ
∝ 1

0.1
(4.63)

The update should have the same hypothetical units as the parameter.
First, define another exponentially decaying average of squared parameter
updates:

E[∆θ2]k = αE[∆θ2]k−1 + (1− α)∆θk
2 (4.64)

The root mean squared error of parameter updates is thus:

RMS[∆θ]k =

√
E[∆θ2]k + ε (4.65)

RMS[∆θ]k is unknown at step k we assume that curvature is locally
smooth and approximate with RMS[∆θ]k−1. Consider now Eq.4.60 the units
in this parameter update follows from gradient so we need to replace ηk with
RMS[∆θ]k−1 and obtain change of units in units of θ. Finally, the Adadelta
update rule is:

∆θk = −RMS[∆θ]k−1

RMS[g]k
gk (4.66)

θk+1 = θk + ∆θk (4.67)

4.3.5 RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by
Geoff Hinton in Lecture 6e of his Coursera Class. RMSprop is also developed
to prevent small learning rate in Adagrad.
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RMSprop update rule is:

E[g2]k = 0.9E[g2]k−1 + 0.1gk
2 (4.68)

θk+1 = θk −
ηk√

E[g2]k + ε
gk (4.69)

As we can see, RMSprop is similar to Adadelta, the difference is that
we do not replace ηk and difference with Adagrad is the choice of gradient,
RMSprop chooses gradient which satisfies Eq. 4.68

4.3.6 Adam

Adam is adaptive moment estimation method which computes adaptive learn-
ing rates for each parameter like Adadelta, Adagrad and RMSprop. The
difference between Adam and these methods is that Adam also keeps infor-
mation about past gradients not only squared gradients [22]

mk = β1mk−1 + (1− β1)gk (4.70)

vk = β2vk−1 + (1− β2)gk
2 (4.71)

wheremk and vk are estimates of first moment (mean) and second moment
(variance) of the gradients respectively. To counteract initialization bias we
can use bias corrected first and second estimates as follows:

m̂k =
mk

1− β1
k

(4.72)

v̂k =
vk

1− β2
k

(4.73)

We obtain Adam update rule by placing mk and vk on relevant place in
Eq. 4.69 (RMSprop update rule) or in Adadelta update rule.

θk+1 = θk −
ηk√
v̂k + ε

m̂k (4.74)

The default values for β1, β2 and ε are 0.9, 0.999 and 10−8 respectively.
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4.3.7 AdaMax

In Adam, the update rule for individual weights is to scale their gradients
inversely proportional to a (scaled) L2 norm of their individual current and
past gradients.

vk = β2vk−1 + (1− β2)|gk|2 (4.75)

where |gk|2 represents one element from gradient vector which is related
to individual weight.

We can generalize this to Lp norm and replace β2 with βp2 , we obtain the
following;

vk = βp2vk−1 + (1− βp2)|gk|p (4.76)

= (1− βp2)
k∑
i=1

β
p(k−i)
2 |gi|p (4.77)

Now, let p→∞ and define uk = lim
p→∞

(vk)
1/p then:

uk = lim
p→∞

(vk)
1/p = lim

p→∞

(
(1− βp2)

k∑
i=1

β
p(k−i)
2 |gi|p

)1/p

(4.78)

= lim
p→∞

(1− βp2)1/p

( k∑
i=1

β
p(k−i)
2 |gi|p

)1/p

(4.79)

since β2 < 1 the first term goes to one and we have:

= lim
p→∞

( k∑
i=1

(
β

(k−i)
2 |gi|

)p)1/p

(4.80)

= max
(
βk−1

2 |g1|, βk−2
2 |g2|, ..., β2|gk−1|, |gk|

)
(4.81)

and we can rewrite in recursively manner:

uk = max(β2uk−1, |gk|) (4.82)

Finally, in Adam update rule we can replace
√
v̂k + ε with uk and obtain

Adamax update rule:
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θk+1 = θk −
ηk
uk
m̂k (4.83)

Good default values are again η = 0.002, β1 = 0.9, β2 = 0.999.

4.3.8 Nadam

Adam is combination of RMSprop and momentum, from RMSprop Adam
uses the decaying average of past squared gradients and from momentum
Adam uses decaying average of past gradients. We have also seen that NAG
is superior to momentum, therefore we would like to incorporate NAG into
Adam. Nadam is combination of Adam and NAG which we obtain by mod-
ifying momentum term mt from Adam [19].

First, recall the momentum update rule:

gk = ∇J(θk) (4.84)

mk = αmk−1 + ηkgk (4.85)

θk+1 = θk −mk (4.86)

where J is our objective function, α is momentum term and ηk is step
size at step k. Extending Eq. 4.86 we obtain:

θk+1 = θk − (αmk−1 + ηkgk) (4.87)

From this we can conclude that momentum takes a step in the direction of
the previous momentum vector and in the direction of the current gradient.

NAG allow us to perform a more accurate step in the gradient direction
by updating the parameters with the momentum step before computing the
gradient. Let’s write this:

gk = ∇J(θk − αmk−1) (4.88)

mk = αmk−1 + ηkgk (4.89)

θk+1 = θk −mk (4.90)
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We can modify this in order to perform momentum step just once instead
two times like above (4.88 - 4.90)

gk = ∇J(θk) (4.91)

mk = αmk−1 + ηkgk (4.92)

θk+1 = θk − (αmk + ηkgk) (4.93)

In the Eq. 4.87 we use momentum term at step k − 1 now we replace it
with momentum term mk at current step k. Now, recall the Adam update
rule:

mk = β1mk−1 + (1− β1)gk (4.94)

m̂k =
mk

1− βk1
(4.95)

θk+1 = θk −
ηk√
v̂k + ε

m̂k (4.96)

Expand the Eq.4.96 with definitions of m̂k and mk:

θk+1 = θk −
ηk√
v̂k + ε

(
β1mk−1

1− βk1
+

(1− β1)gk
1− βk1

)
(4.97)

Note that β1mk−1

1−βk
1

= m̂k−1 and replace it:

θk+1 = θk −
ηk√
v̂k + ε

(
β1m̂k−1 +

(1− β1)gk
1− βk1

)
(4.98)

We can now add Nesterov momentum by replacing m̂k−1 with m̂k and
obtain Nadam update rule:

θk+1 = θk −
ηk√
v̂k + ε

(
β1m̂k +

(1− β1)gk
1− βk1

)
(4.99)
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Chapter 5

Drought Prediction

In this section we are going to apply RNN model on time series data, in
order to make predictions. Problem which we consider is the prediction of
soil moisture content in the first layer (0-7cm) based on meteorological data.

Summer of 2012 in Serbia was the warmest summer with record air tem-
peratures for 19 stations in Serbia and also one of the driest summers with
average precipitation amount bellow average for reference period 1961-1990
in almost entire Serbia [23]. In 2012, there was a decrease of maize yield in
northern part of Serbia (Vojvodina) for 50%, soya 35% and sugarbeet 30%
[3]. Estimated agricultural production loss was approximately USD 2 bil-
lion, (maize USD 1 billion,sugar USD 130 million, soya USD 117 million)
[5]. There was also an occurrence of aflatoxin in milk and that might be a
possible consequence of drought [4]. After 2012 there was extremely warm
summer in 2015 with again average precipitation bellow average for reference
period 1961-1990 [6]. The summer of 2017 was the second warmest summer
on record in Serbia, with record high temperatures in Smederevska Palanka
and Banatski Karlovac, dry and very dry conditions across most of Serbia,
the fourth driest for Novi Sad and fifth driest for Zrenjanin [7].

5.1 Data
We used meteorological data from ERA5 reanalysis datasets [24] for Serbia,
for all 28 stations from official observing network (See Table 5.1). ERA5 is a
climate reanalysis service, covering the period from 1979 to present. ERA5
is being developed through the Copernicus Climate Change Service (C3S).
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Figure 5.1: Summer 2012. [23]

Copernicus Climate Change Service provides authoritative information
about the past, present and future climate. From the Climate Data Store,
using API with the Python, we can access to ERA5 reanalysis (ECMWF)
of the global climate. Reanalysis combines model data with observations
obtained from sources across the world into globally complete and consistent
dataset using the laws of physics. Data assimilation is done with horizon-
tal resolution of 0.25◦ × 0.25◦ (approximately 25 km) to get hourly data.
Temporal coverage is from 1979 to present (with the delay of more than one
month). There are many meteorological parameters at surface level, such
as: 2m temperature, 2m dewpoint temperature, surface pressure, total pre-
cipitation, soil temperature and moisture in 4 layers, surface solar radiation
downwards, cloud cover, 10m u-component of wind, 10m v-component of
wind etc [25].

For downloading hourly data for Serbia we have used Python package
’cdsapi’ and obtain data in NetCDF format, therefore we did data processing
in order to make daily data for each of 28 stations in Serbia in period 2011-
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2018.

In Table 5.1 we have represented meteorological stations in Serbia with
their latitude (◦), longitude (◦), altitude (m) and soil type where 1 represent
coarse, 2 medium, 3 medium fine and 4 fine soil, based on soil texture.

5.2 Experiments
Let’s define our problem, we have time series data of meteorological param-
eters and we would like to make prediction of soil moisture content in the
first layer (0 - 7 cm, the surface is at 0 cm). Therefore we have regression
problem:

y = ϕ(X) (5.1)
where independent variable X represents meteorological parameters and

dependent variable y is soil moisture content. First, we need to specify which
exactly meteorological parameters we are using, as we said in section Data
there are a lot of parameters at surface level but since we want to predict
soil moisture content we are planing to use the following one:

• Surface solar radiation downwards ( MJ
m2day

)

• Daily 2m temperature (min and max) (◦C)

• Precipitation (mm)

• Vapor pressure deficit (mbar)

These parameters define our dependent variable X and soil moisture con-
tent (m3m−3)1, defines independent variable y. Since we have data for X and
y we can start with finding function ϕ, model which can help us to find that
nonlinear mapping is RNN, concretely we will use LSTM as a very powerful
neural network. The reason why we choose RNN is because we have standard
regression problem and our data are time series or in other words sequence
data. We will consider the "many to many" sequence problem where for
input we use parameters’ values from past days and also meteorological pa-
rameters for future days, our output is soil moisture content for future days
(See Figure 5.2).

1- m3m−3 represents volumetric water content in m3 per m3 soil
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Name Latitude Longitude Altitude Soil
Palić 46.10 19.77 102 1
Sombor 45.77 19.15 88 2
Novi Sad 45.33 19.85 84 1
Zrenjanin 45.37 20.42 80 2
Kikinda 45.85 20.47 81 3
Banatski Karlovac 45.05 21.03 100 3
Loznica 44.55 19.23 121 2
Sremska
Mitrovica

45.10 19.55 82 2

Valjevo 44.32 19.92 176 2
Beograd 44.80 20.47 132 2
Kragujevac 44.03 20.93 185 2
Smederevska
Palanka

44.37 20.95 121 2

Veliko Gradište 44.75 21.52 82 2
Crni Vrh 44.12 21.95 1037 4
Negotin 44.23 22.55 42 4
Zlatibor 43.73 19.72 1028 2
Sjenica 43.28 20.00 1038 2
Požega 43.85 20.03 310 2
Kraljevo 43.70 20.70 215 2
Kopaonik 43.28 20.80 1710 2
Kuršumlija 43.13 21.27 384 4
Kruševac 43.57 21.35 166 2
Ćuprija 43.93 21.38 123 2
Niš 43.33 21.90 202 2
Leskovac 42.98 21.95 230 2
Zaječar 43.88 22.30 144 4
Dimitrovgrad 43.02 22.75 450 2
Vranje 42.55 21.92 432 2

Table 5.1: Meteorological stations in Serbia
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Figure 5.2: Input and output

Dimension of X is m× 5 where each column represents one of the mete-
orological parameters and m is number of days such that m = n + p where
n is the number of future days and p is the number of past days, therefore
dimension of y is n × 1. The choice of m,n and p is for discussion but let’s
say that we want to predict soil moisture for 10 future days (n = 10) since
for that period we can have a reliable weather forecast, for the number of
past days (p) we will use p = 10, 20, 50, 80 and compare all methods.

Before training LSTM model we did data standardization and normaliza-
tion for target value such that volumetric soil content is in range [0.15, 0.45]
since we have different ranges for different meteorological stations. Splitting
data on training and test data is done in following way, data used for train-
ing is in period 2011-2016 and data for test is from 2017 and 2018 from all
stations. Data from 2017 and 2018 are good choice for test because summer
of 2017 was dry and warm compared to the summer of 2018 which was rainy
and humid. So the 25% of data is used for test and 75% is used for training.

The neural network model which we use is stacked LSTM with 4 layers
and 40 neurons in each layer followed by dense layer with 10 neurons. For
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activation function we have used hyperbolic tangent since the range of that
function is [−1, 1]. The number of layers and neurons is determined through
experiments. We also train network using different optimization algorithms
and compare results. During training period we have used dropout regular-
ization, dropout means that in each iteration we have randomly deactivated
some fraction of neurons, that helped us to avoid overfitting or in other words
to maintain similar convergence of both training and test error through time.

Figure 5.3: Stacked LSTM network with p = 50

In the Figure 5.4 we have training and validation error through time (200
epochs) with dropout and adam optimizer, for loss function we have used
mean absolute error function.

5.3 Results
In this section we represent the results what we obtain using stacked LSTM
network and compare for different parameters such as number of past days
(p) and for different optimization algorithms. We also represent visualization
of predicted and true values for all 28 stations in Serbia and compare that
time series using statistical tests.

In the table 5.2 we have represented mean absolute error on test data for
different choice of past days (p), the number of future days is always 10 (n)
and we calculate accuracy using mean absolute percentage error. As we can

53



5.3. RESULTS 54

Figure 5.4: Loss functions after 200 epochs for stacked LSTM with p = 50

p n MAE Accuracy
10 10 0.021 92.6%
20 10 0.019 93.2%
50 10 0.017 93.9%
80 10 0.017 93.8%

Table 5.2: Mean absolute error and mean absolute percentage accuracy for
different p on test data

see if we go further in the past we obtain a better accuracy, but the price is
the model with more parameters which is taking more time for training.

We also provide mean absolute error and accuracy in table 5.3 for different
optimization algorithms on test data which we discuss in section 4.3. We
can see that this results confirm theory, SGD gives the good accuracy but
with momentum we obtain a slightly better result. RMSprop and Nadam
reached the smallest mean absolute error, Also Nesterov, as a better version
of momentum, gives the better results than standard momentum.

In the figure 5.5 we represented scatter plot between predicted and true
values on test and train data. On each day we have a vector which represents
values from all 28 stations, we took a 2 norm of that vector both for predicted
(710 points) and true data (2150 points) and then obtained scatter plot.
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Optimizer MAE Accuracy
SGD 0.032 88.8%

Momentum 0.027 90.2%
Nesterov 0.026 90.5%
Adagrad 0.021 92.3%
Adadelta 0.022 91.9%
RMSprop 0.020 93.2%
Adam 0.021 92.5%

AdaMax 0.021 92.5%
Nadam 0.019 93.1%

Table 5.3: Mean absolute error and mean absolute percentage accuracy for
different optimizers on test data

(a) Test data (b) Train data

Figure 5.5: Scatter plot true vs predicted data
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Statistic Train data Test data
Pearson 0.99 0.98

Kendaltau 0.90 0.86
R2 0.96 0.94
d2 0.99 0.98

Table 5.4: Statistical tests

Figure 5.6: Palic

In the table 5.4 we present Pearson, Kendaltau, R2 and d2 statistical
tests for predicted and true time series, where for obtaining points of time
series we have used the transformation described for scatter plot.

Figures 5.6 - 5.33 include visualizations of real time series of soil moisture
content and predicted time series with predicted window of 10 days for period
of 2 years (2017 and 2018, test data). This is visualization for stacked LSTM
model with 50 past days and adam optimizer.
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Figure 5.7: Sombor

Figure 5.8: Novi Sad

Figure 5.9: Zrenjanin
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Figure 5.10: Kikinda

Figure 5.11: Banatski Karlovac

Figure 5.12: Loznica
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Figure 5.13: Sremska Mitrovica

Figure 5.14: Valjevo

Figure 5.15: Beograd
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Figure 5.16: Kragujevac

Figure 5.17: Smederevska Palanka

Figure 5.18: Veliko Gradiste
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Figure 5.19: Crni Vrh

Figure 5.20: Negotin

Figure 5.21: Zlatibor
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Figure 5.22: Sjenica

Figure 5.23: Pozega

Figure 5.24: Kraljevo
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Figure 5.25: Kopaonik

Figure 5.26: Kursumlija

Figure 5.27: Krusevac
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Figure 5.28: Cuprija

Figure 5.29: Nis

Figure 5.30: Leskovac
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Figure 5.31: Zajecar

Figure 5.32: Dimitrovgrad

Figure 5.33: Vranje
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Chapter 6

Conclusion

The more powerful computers today allow us to develop and use neural net-
works which are showed as a very powerful tool capable to catch non linear
relationship between variables far better then human beings.

In this thesis we considered problem of drought prediction and for that
purpose we tried to predict soil moisture content in the first layer which is
the most dependent on meteorological situation. Since considered problem
belongs to the regression problem and has time series data, the natural choice
was the RNN because of it architecture. We chose LSTM network as a very
advanced RNN and widely used in practice for time series forecasting, in
order to solve that regression problem. Our stacked LSTM model with 4
layers demonstrated very good performance with accuracy 93.9% on the test
data. Through experiments we determined that past 50 days period is the
best choice with respect to accuracy and time to train network. We made
prediction up to 10 days in the future, since that is a period for which we can
expect a reliable weather forecast, also it might be possible that for shorter
future period we can have a similar or even better results. Our model did not
use information about soil type and this should be included into the future
work as it could further improve obtained results.

We had also evaluated the influence of the most popular optimization
algorithms for neural networks with regard to decreasing validation error.
Obtained results align with theory as it turned out that RMSprop and Nadam
were the best optimization algorithms for this problem.

For the further work on the proposed model, it might be useful to optimize
irrigation process like in [26], and thus minimize quantity of water which is
used for irrigation, but more importantly we can also minimize energy needed
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to run the irrigation system.
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Appendix A

Neural Networks

A.1 RNN

A.1.1 Activation and Loss Functions

Hyperbolic tangent is defined as tanh(x) : R→ [−1, 1]

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1
(A.1)

and softmax function softmax(x) : Rn → [0, 1]n as follows:

softmax(x) =
exi
n∑
k=1

exk
(A.2)

Cross entropy function between two discrete probability distributions x
and y:

H(x,y) = −
∑
k

yk log zk (A.3)

A.1.2 Derivative of Softmax and Cross Entropy Func-
tion

First, we are going to calculate derivative of softmax activation function. [27]
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Figure A.1: Activation function

zi =
exi
n∑
k=1

exk
(A.4)

∂zi
∂xj

=

∂ exi
n∑

k=1
exk

∂xj
(A.5)

if i = j

=

exi
n∑
k=1

exk − exiexj(
n∑
k=1

exk
)2 =

exi
(

n∑
k=1

exk − exj
)

(
n∑
k=1

exk
)2 (A.6)

=
exi
n∑
k=1

exk

n∑
k=1

exk − exj

n∑
k=1

exk
= zi(1− zj) (A.7)

for i 6= j

∂zi
∂xj

=

∂ exi
n∑

k=1
exk

∂xj
=

0− exiexj(
n∑
k=1

exk
)2 = − exi

n∑
k=1

exk

exj
n∑
k=1

exk
= −zizj (A.8)
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∂zi
∂xj

=

{
zi(1− zj), i = j
−zizj, i 6= j

(A.9)

Using Kronecker delta function δij :=

{
1, i = j
0, i 6= j

we can derive deriva-

tive of softmax activation function as:
∂zi
∂xj

= zi(δij − zj) (A.10)

Now, we are going to calculate derivative of cross entropy loss function

H(y, z) = −
∑
k

yk log zk (A.11)

In our case H(y, z) is loss at time t, therefore denote Lt = H(y, z). Now
we can calculate derivative of Lt with respect to αt and zt = softmax(αt).

∂Lt
∂αt

= −
∑
k

yk
∂ log zk
∂zk

∂zk
∂αt

= −
∑
k

yk
1

zk

∂zk
∂αt

(A.12)

now we use what is derivative of softmax activation function

= −yt
1

zt
zt(1− zt)−

∑
k 6=t

yk
1

zk
(−zkzt) = −yt(1− zt) +

∑
k 6=t

ykzt (A.13)

= −yt + ytzt +
∑
k 6=t

ykzt = zt
∑
k

yk − yt (A.14)

sum of all entries of vector y is one, therefore:

∂Lt
∂αt

= zt − yt (A.15)

A.1.3 Derivative of Hyperbolic Tangent Function

∂tanh(x)

∂x
=
∂ sinh(x)
cosh(x)

∂x
=

∂sinh(x)
∂x

cosh(x)− sinh(x)∂cosh(x)
∂x

(cosh(x))2
(A.16)

=
(cosh(x))2 − (sinh(x))2

(cosh(x))2
= 1− (tanh(x))2 (A.17)
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