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Abstract

The aim of this work is the crop, in particular maize and soybean,
yield prediction. Accurate prediction is important in order to be able
to choose the best hybrid for given location. We can look at that task
as recommendation system, where we want to "recommend" the best
hybrid for field. The definition of the best here means hybrid that will
give the highest yield in given circumstances. Algorithm that is used
to help us do that is known as Data fusion by matrix factorization
algorithm (DFMF algorithm). This thesis provides the description
of the DFMF algorithm and its application on data that comes from
Syngenta Crop Challenge. Complete preprocessing, processing and
visualisation of the data is performed in Python.
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1 Introduction

1 Introduction
Predicting crop yield is a very hard task. There are so many factors that influ-
ence final outcome: soil properties (content of organic matter, soil pH value,
percentage of clay, silt, sand in soil, cation exchange capacity, etc), weather
conditions (precipitation, temperature, solar radiation, etc.), amount and
the type of fertilizers and pesticides used, genetic characteristics of planted
hybrid, planting date, and many others. Complex interaction of all these
factors determines the final crop yield.

As world’s population is growing so does the demand for food is increas-
ing. To tackle challenges of increased demand for food, seed industries and
breeders are seeking the way to develop and improve seed varieties. Yield is
one of the best indicator for making the decision which seed varieties would
be suitable for the given location, so we need to be able to predict yield.

Idea for choosing this topic came from Syngenta Crop Challenge (https://
www.ideaconnection.com/syngenta-crop-challenge/). Syngenta (https:
//www.syngenta.com/) is one of companies who is trying hard to bring new
technologies in agriculture. Every year from 2016 it opens challenges in or-
der to invite people all around the world to help them in creating smarter
production. The goal is to apply various machine learning and mathemat-
ical models on historical data in order to help industry breed better seeds.
Discovering patterns may help scientist to evaluate seeds more accurately
and choose the best candidates for further improvements, and can also help
farmers to optimize the production just by smart seed selection.

The experimental part of this thesis includes the analyzes performed on corn
data sets that originate from Syngenta Crop Challenge 2018 and on soybean
data sets that came from Syngenta Crop Challenge 2017.

Today data is generated more easily than ever before, thanks to devices
for high-throughput screening, sensors, cameras on drones, satellites. It of-
fers a plenty of information only if we know how to extract it from raw data.
Difficulties that come on way are how to jointly observe all heterogeneous
input spaces so that they could benefit from each other. Overcoming this
problem is vital in order to improve prediction accuracy. When we have
multiple relations, which are represented as multiple matrices, we want to
exploit information from one relation when predicting another.

In the thesis the main tool used for analyzing is Data fusion by matrix fac-
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1 Introduction

torization algorithm (DFMF) which is a penalized matrix tri-factorization
model that collectively tri-factorizes many data matrices such that each data
matrix is decomposed into a product of tree latent matrices. The algorithm
was introduced in 2015 in the doctoral dissertation of Marinka Žitnik. The
algorithm is flexible, requires minimal input data transformations and it can
handle both multiple relations and multiple object type data.

The problem considered in the thesis is maize and soybean yield prediction.
There is a limited number of locations on which breeders can plant hybrids
and that causes uncertainty when trying to choose the best hybrids for the
growers to plant. The task is to accurately predict the performance of each
individual hybrid so that maize and soybean breeders could make better de-
cisions on which hybrids to move forward and provide to growers, that would
finally increase productivity to meet the world’s growing demands. What
would be a yield of particular hybrid on particular field? Answer on that
question is expected from DFMF algorithm.
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2 Basic concepts

2 Basic concepts

2.1 Matrix factorization
Data is the most often represented in the form of matrix. Very powerful
mathematical tool for analyzing data that can be expressed as a matrix is
matrix factorization. It is used for many problems that arise in data science.
For instance, building recommendation systems, dimensionality reduction,
clustering, image compression, discovering underlying structures...

Let our data be organized in a form of matrix X ∈ Rn×m. Matrix factoriza-
tion or matrix decomposition is a factorization of a matrix into a product of
matrices. Let us consider matrix two-factorization of X, which is a way of
approximating X by a product of two matrices UV T , where U ∈ Rn×k and
V T ∈ Rk×m. If we denote the rows of X by Xi we know that rows of X can
be represented as linear combinations of the rows of V T , UiV

T . We think of
the rows of V T as latent factors and the entries of U as coefficients of the
linear combinations. Another way of seeing this is as like rows of X are ap-
proximated by a k-dimensional linear subspace which is spanned by the rows
of V T . On the other hand, each column of X is a linear combination of the
columns of U . U and V are called latent matrices or latent factor matrices.

Matrix X can be exactly factored as X̂ = UV T if its rank is at most k and
if we do not impose additional constraints. When approximating a matrix
X by a matrix X̂ we need to have some measure that tells us how good our
approximation is and then our task is to make that approximation error as
smaller as possible. Depending of the application different measures are used.

Frobenius norm is most widely used measure of discrepancy, both in un-
constrained and in constrained factorization, between the original matrix X
and it’s approximation X̂. Frobenius norm of the difference between X and
X̂ is defined in the following way:

||X − X̂||2F ro =
∑

i

∑
j

(Xij − X̂ij)2 (1)

It is well known that k-rank matrix X̂ which is given by the k leading com-
ponents of the singular value decomposition gives the best possible approxi-
mation in term of Frobenius norm.

In constraint factorization we put additional constraints on the factor matri-
ces. On that way we are removing the degrees of freedom on the factorization
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2.2 Matrix completion

UV T of a reconstructed X̂. We do that in order to ease the interpretation of
the factor matrices or in order to reduce the complexity of the model.

Definition 2.1. A matrix factorization algorithm can be defined in the fol-
lowing way:

1. Data weights W ∈ Rm×n
+ (optional),

2. Prediction link f : Rm×n → Rm×n,

3. Hard constraints on factors (U, V ) ∈ C,

4. Weight loss between X and X̂ = f(UV T ), D(X||X̂,W ) ≥ 0

5. Regularization penalty, R(U, V ) > 0

For the model X ∼ f(UV T ) the optimization problem is:

argmin
U,V ∈C

[D(X||f(UV T ),W ) +R(U, V )]. (2)

where f can be nonlinear.

Example of weighted loss function could be the following:

DW (X, X̂) = ||W � (X − UV T )||2F ro

where � denotes the element-wise product of matrices.

2.2 Matrix completion
A concept which is very similar to matrix factorization is matrix completion.
The aim of matrix completion is to recover unknown entries from the known
ones.

Matrix completion often seeks to find the lowest rank matrix that agrees
with the partially observed matrix. Assumptions that are made is that the
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2.2 Matrix completion

sampling of the observed matrix are uniformly at random and on the number
of sampled entries. Also there must be known at least one observed entry
per row and column.

The most famous example of matrix completion is Netflix problem or the
movie-rating problem. Predicting movie rating accurately was so important
that Netflix offered million dollars price for the first algorithm that would
be better than its own recommendation system by 10%. Given the matrix,
entry (i, j) represents the rating of movie j by user i if user i has watched
(and rated) movie j and is otherwise missing. The task is to predict missing
values in order to make good recommendation in what movie should partic-
ular user watch next. The assumption here is that rating matrix is expected
to be low-rank since user’s preferences can be described with few factors,
such as movie genre and actors playing in the movie.
Criterion for evaluating the results was Root Mean Square Error (RMSE):

RMSE = 1
|R|

√ ∑
(i,j)∈R

(r̂ij − rij)2,

where r̂ij is predicted rating and rij is true rating of user i on film j.
Task it to make good recommendation system. One way of solving this prob-
lem is via optimization. As RMSE is the measure that tells us how good our
recommendation system is, the main idea is to minimize RMSE in order to
get the best recommendation. We want to make good recommendations on
movies that people haven’t yet seen. Given user by movie matrix R the goal
is to represent R as a product of two matrices Q and P , R ≈ QP T , where
R ∈ Rn×m, Q ∈ Rn×k and P T ∈ Rk×m (k << n,m). We can think of every
row of Q as k dimensional representation of a given user and every column
of P as k dimensional representation of a given movie. The missing rating of
user i for movie j is estimated by the dot product of i-th row of Q and j-th
column of P T . This method discovers latent factors (or latent dimensions)
in which the user can be mapped according to matrix Q and movies can be
mapped accourding to matrix P .
The optimization problem that needs to be solved to get good recommenda-
tion is the following:

min
P,Q

∑
(i,j)∈R

(rij − qip
T
j )2

The sum goes over the known entries of matrix R, so there is no need for
filling the missing values. Optimization problem can be solved using gradient
method.
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2.3 Data Fusion

2.3 Data Fusion
Data fusion is a process in which we want to use multiple data sources and
combine them in order to produce information that is more consistent and
accurate than that provided by any individual data source. Depending on
the processing stage at which fusion takes place, data fusion approaches can
be categorized into three categories (Figure 1):
• early (or full) integration,

• late (or decision) integration,

• intermediate (or partial) integration.
In early integration all data sets are concatenated into single, feature-based
table before applying algorithm. Here transformation of data sets is required
which in some cases may cause information loss.
In late integration each data set is treated separately. Each data source
gives rise to a separate algorithm. By combining the results from all models
we get prediction. When treating all data sets separately we are not able
to find mutual interactions and that often leads to lower performance of the
model.
In intermediate integration there is a single model that takes data from
different sources by keeping the initial structure. In such a setting there is
no need for transformation of input data or only minimal transformation is
needed.

Source: M. Žitnik, Learning by fusing heterogenous data, 2015; page: 36

Figure 1: Types of data fusion.
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2.3 Data Fusion

Nowadays there are many well-established feature-based machine learn-
ing and data mining algorithms for early and late integration, but on the
other hand there are only few inference algorithms for partial integration.
In the thesis it will be represented a method for intermediate data fusion
based on constrained matrix tri-factorization, called Data fusion by matrix
factorization (DFMF) algorithm.

DFMF algorithm was introduced for the first time in doctoral thesis of
Marinka Žitnik in 2015. She tested the algorithm on few data sets where
she showed how powerful algorithm is. One of the tasks were to predict
gene function. The results were compared to state-of-the-art multiple kernel
learning algorithm and achieved higher accuracy than can be obtain from
any single data source considered alone.

Method that was proposed by Wang ([2]) is conceptually similar to method
that was proposed by Žitnik. He considerates aslo both inter-type and intra-
type relations but requires relations to be symmetric and all relations must
be present.

13



3 Fusing heterogeneous data

3 Fusing heterogeneous data

3.1 Data fusion by collective matrix factorization
Data fusion by matrix factorization algorithm (DFMF) considers r object
types ε1, ..., εr and a collection of data sources, each relating a pair of object
types (εi, εj). Matrix Rij ∈ Rni×nj relates object types εi and εj, where there
are ni objects of type εi and nj objects of type εj. In the movie example
object types are movie, user, genre, actor and relations are user’s ratings of
movie, movies genres, actor’s roles in movies (Figure 2). Matrices Rij and
Rji don’t need to be symmetric. Matrix Qi ∈ Rni×ni is constraint matrix
it represents a relation between objects of the same type εi. In the movie
example there is no such intra-type information as constraints.

Figure 2: Nodes represent object types and edges correspond to relation and
constraint matrices.

For better understanding imagine that we have the scenario from Figure
3. There it is represented with both the graph of relations between object
types and the block-based matrix structure. We can see that some relations
are completely missing, for instance R34. Constraints are denoted with loops
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3.1 Data fusion by collective matrix factorization

and in example from Figure 3 are provided for object types ε2 (one constraint
matrix) and ε4 (three constraint matrices).

Source: M.Žitnik, Learning by fusing heterogeneous data, 2015, page: 135

Figure 3: Graphical representation of fusion configuration with object types
ε1, ε2, ε3 and ε4.

Data fusion algorithm represented here works even in the case when not
all relations between all pairs of object types are present and that is often
happening because in real-world scenarios it is hard to have access to all of
relations. The only premise is that underlying graph of relations between
object types is connected.

All available relational matrices Rij are simultaneously factorized such that
Rij is represented as product of three matrices Gi ∈ Rni×ki , GT

j ∈ Rkj×nj

and Sij ∈ Rki×kj , Rij ≈ GiSijG
T
j , approximation of the matrix Rij is reg-

ularized though constraint matrices Qi ∈ Rni×ni and Qj ∈ Rnj×nj . Entry
Rij(p, q) is approximated by an inner product of the p-th row of matrix Gi

and linear combination of the columns of matrix Sij, weighted by the q-th
column of Gj. The matrix Sij has relatively few vectors in comparison to Rij

(ki << ni, kj << nj) and it is used to represent many data vectors. Good
approximation lies behind the premise that there exist some correspondence
among difference input spaces, that the latent structure is present in the
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3.2 Factorization

original data.

Data fusion by matrix factorization algorithm has the following characteris-
tics:

• DFMF can model the multiple relations and multiple object types,

• not all relations between object types have to be present, some can be
completely missing,

• for every object type we can have multiple constraint matrices,

• there are no assumptions about structural properties of relations.

The goal is to improve predictive accuracy in inferring relations between two
target object types, εi and εj, in movie example the goal is to infer relation
between movie and user and all other object types and relations are there
to help us in that task. The relation between two object types εi and εj is
represented by matrix Rij and assumption is that it is [0, 1]-matrix. Entries
in the target matrix indicate how strong is relation, where 0 denotes no re-
lation and 1 denotes the strongest relation. Entries that we want to predict
are reconstructed through matrix factorization.

In the following few subsections you can find factorization model and objec-
tive function that are used and also see how updating rules for optimization
are derivated.

3.2 Factorization
Input to data fusion by matrix factorization algorithm is a block matrix R,
where the matrix in i-th row and j-th column represents the relationship
between object types εi and εj:

R =


0 R12 . . . R1r

R21 0 . . . R2r
... ... . . . ...
Rr1 Rr2 . . . 0

 (3)

As it mentioned earlier not all relations are required to be present and
Rij 6= Rji.

Also constrains that relate objects of the same type can be considerate or

16



3.2 Factorization

in other words intra-type information as constraints. Each object type may
have several constraints. Assume that there are ti data sources for object
type εi, those data sources are represented by a set of constraint matrices
Q

(t)
i where t ∈ {1, 2, ..., ti}. Constraints are collectively encoded in a set of

constraint block diagonal matrices Q(t) for t ∈ {1, 2, ...,max
i
ti}:

Q(t) =


Q

(t)
1 0 . . . 0
0 Q

(t)
2 . . . 0

... ... . . . ...
0 0 . . . Q(t)

r


The i-th block on the main diagonal of Q(t) is zero if t > ti. There are two
type of constraints:

• must-link constraints - can be seen as rewards that reduce the opti-
mization function,

• cannot-link constraints - impose penalties on the current approxima-
tion.

Must-link constraints relate to objects that are similar and entries in con-
straint matrices are negative for that objects. Entries in constraint matrices
are positive for dissimilar objects. These constraints will adapt the objective
function to include penalties for violating constraints.

The block matrix Rij is decomposed into matrix factors G and S:

G =


Gn1×k1

1 0 . . . 0
0 Gn2×k2

2 . . . 0
... ... . . . ...
0 0 . . . Gnr×kr

r

 , (4)

S =


0 Sk1×k2

12 . . . Sk1×kr
1r

Sk2×k1
21 0 . . . Sk2×kr

2r
... ... . . . ...

Skr×k1
r1 Skr×k2

r2 . . . 0

 .
Matrix S has the same block structure as matrix R, if a relation is missing
in R it is also missing in its corresponding matrix factor S. And in general
it is asymmetric (Sij 6= Sji).
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3.3 Objective function

To every object type εi it is assigned a factorization rank ki. The latent
relation between object types εi and εj is represented in factor Sij and factor
Gi is specific to object type εi and we use it in reconstructing every relation
where this object types is present. In that way, every relation Rij obtains its
own factorization GiSijG

T
j where factor Gi(Gj) is shared across all relations

which involve object types εi(εj). So our reconstructed block matrix GSGT

can be represented in the following way:
0 G1S12G

T
2 . . . G1S1rG

T
r

G2S21G
T
1 0 . . . G2S2rG

T
r

... ... . . . ...
GrSr1G

T
1 GrSr2G

T
2 . . . 0

 .

3.3 Objective function
The goal is to make as good approximation as possible of the input data by
adherenting to must-link and cannot-link constraints. The objective function
is defined on the following way:

minimize J(G,S) =
∑

Rij∈R
||Rij −GiSijG

T
j ||2F

+
max

i
ti∑

t=1
tr(GTQ(t)G)

subject to G ≥ 0.

(5)

where || · ||F is Frobenius norm and tr(·) is trace of matrix (sum of main
diagonal entries). Sum goes over all present relations, the objective function
is constructed such that it allows some relations to be completely missing.
On that way we are not forced to replace the missing relations with zero
matrices or some other. This enables better optimization, reduction of the
value of objective function. In the objective function are also incorporated
intra-type information.

The optimization problem defined in equation (5) is solved using Data fu-
sion by matrix factorization (DFMF) algorithm shown in next subsection.
The algorithm first initializes matrix G and then iteratively updates matrix
factors by alternating between fixing G and updating S and then fixing S
and updating G. This is done until convergence or predefined time limit is
reached. Updating G and S using the rules given in the algorithm converge
to a local minimum of the given problem in equation (5).
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3.3 Objective function

The objective function J(G,S) in equation (5) can be expanded as:

J(G,S) =
∑

Rij∈R
tr(RT

ijRij − 2GT
j R

T
ijGiSij

+GT
i GiSijG

T
j GjS

T
ij)

+
max

i
ti∑

t=1

r∑
i=1

tr(GT
i Q

(t)
i Gi).

(6)

Multiplicative update rules for regularized decomposition of relation matri-
ces are derived by fixing one matrix and considering the roots of the partial
derivative with respect to other matrix factor of Lagrangian function.

The method of Lagrange multipliers is used to find the solution for optimiza-
tion problems constrained to one or more equalities and (or) inequalities.
The problem can be formulated as:

x∗ = argmin
x

f(x)

subject to hi = 0,∀i = 1, 2, ...,m
subject to gi ≤ 0,∀i = 1, 2, ..., n

(7)

The Lagrangian function is than the following:

L(x, λ, µ) = f(x) +
m∑

i=1
λihi(x) +

n∑
i=1

µigi(x) (8)

where λi and µi are Lagrangian multipliers.
If x∗ is a local optimum and functions f, hi and gi in (7) are continuously
differentiable then there are Lagrange multiplier vectors λ and µ such that
the optimization problem satisfies KKT conditions:

1.Stationarity

5xf(x∗) +
m∑

i=1
λi5x hi(x∗) +

n∑
i=1

µi5x gi(x∗) = 0

2.Primal feasibility

hi(x∗) = 0, for ∀i = 1, 2, ...,m
gi(x∗) ≤ 0, for ∀i = 1, 2, ..., n

3.Dual feasibility
µi ≥ 0, for ∀i = 1, 2, ...,m
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3.3 Objective function

4.Complementary slackness

µigi(x∗) = 0, for ∀i = 1, 2, ...,m

Correctness of the algorithm is guaranteed by the following theorem.
Theorem 3.1. If the update rule of G and S from DFMF algorithm converge,
then the final solution satisfies the KKT (Karuch-Kuhn-Tucker) optimality
conditions.
Proof. Following the theory the Lagrangian multipliers µ1, µ2, ..., µr are in-
troduced and the Lagrangian function is constructed:

L = J(G,S)−
r∑

i=1
tr(µi1ni×ki

GT
i ). (9)

Then for i, j such that Rij ∈ R:
∂L

∂Sij

= −2GT
i RijGj + 2GT

i GiSijS
T
j Gj (10)

and for i = 1, ..., r
∂L

∂Gi

=
∑

j:Rij∈R
(−2RijGjS

T
ij + 2GiSijG

T
j GjS

T
ij)

+
∑

j:Rji∈R
(−2RT

jiGjSji + 2GiS
T
jiG

T
j GjSji)

+
max

i
ti∑

t=1
2Q(t)

i Gi − µi1ni×ki

(11)

Fixing G1, G2, ..., Gr and letting ∂L
∂Sij

= 0 for all i, j = 1, 2, ..., r, we get the
following:

S = (GTG)−1GTRG(GTG)−1 (12)
Fixing S and let ∂L

∂Gi
= 0 for i = 1, 2, ..., r. Next we get an expression for the

KKT multiplier µi from equations (10) and (11). The KKT complementary
slackness condition for the nonnegativity of Gi is:

0 =µi1ni×ki
◦Gi =

=
[ ∑

j:Rij∈R
(−2RijGjS

T
ij + 2GiSijG

T
j GjS

T
ij)

+
∑

j:Rji∈R
(−2RT

jiGjSji + 2GiS
T
jiG

T
j GjSji)

+
max

i
ti∑

t=1
2Q(t)

i Gi

]
◦Gi

(13)
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3.3 Objective function

Notion ◦ is Hadamard product. The Hadamard product is binary operation
that takes two matrices of the same dimensions, and produces another matrix
where each element (i,j) is the product of elements (i,j) of the original two
matrices. Let with Γi denote Γi = µi ◦ Gi. Equation (13) is a fixed point
equation that the solution must satisty at convergence. Therefore, let:

Q
(t)
i = [Q(t)

i ]+ − [Q(t)
i ]−

RijGjS
T
ij = (RijGjS

T
ij)+ − (RijGjS

T
ij)−

SijG
T
j GjS

T
ij = (SijG

T
j GjS

T
ij)+ − (SijG

T
j GjS

T
ij)−

RT
jiGjSji = (RT

jiGjSji)+ − (RT
jiGjSji)−

ST
jiG

T
j GjSji = (ST

jiG
T
j GjSji)+ − (ST

jiG
T
j GjSji)−

all matrices on the right-hand side are nonnegative. By initial guess of Gi and
the successive updates of Gi using equations (14)-(16) in DFMF algorithm
we converge to a local minimum of the objective function given in equaition
(4). Using such a rule, at convergence, Gi satisfies Γi ◦ Gi = 0. As Gi is
nonnegative we have that Γi = 0

Theorem 3.2. (Convergence of Data fusion by matrix factorization algo-
rithm): The objective function J(G,S) given by equation (5) is nonincreas-
ing under the updating rules for matrix factors G and S in Algorithm given
in the next subsection.

The proof can be found in [1].

Function from equation (5) is noncovex and thus it has multiple local min-
ima. The global minimum of multi-relational system remains unreachable.
However DFMF algorithm converges to a local minimum of equation (5).

Our goal is to infer relation betweeen two target objects εi and εj. Therefore
the stopping criterion only includes the target matrix Rij. The convergence
criteria is the following:

||Rij −GiSijG
T
j ||2 < ε,

where ε is user defined parameter. In experiment presented in this thesis it is
set to 10−5. To reduce time needed for computation, the convergence criteria
is considerate in every fifth iteration.
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3.4 DFMF Algorithm

3.4 DFMF Algorithm
Input:

• a set R of relation matrices Rij,

• constraint matrices Q(t) for t ∈ {1, 2, ...,maxiti},

• factorization ranks k1, k2, ..., kr.

Output:

• matrix factors S and G

I Initialize Gi for i = 1, 2, ..., r.

II Repeat until convergence or a time limit is reached:

1. Construct R and G using definitions in equation (3) and (4) .

2. Update S using:

S ← (GTG)(−1)GTRG(GTG)(−1)

3. Set G(e)
i ← 0 for i = 1, 2, ..., r..

4. Set G(d)
j ← 0 for i = 1, 2, ..., r..

5. For Rij ∈ R:

G
(e)
i + = (RijGjS

T
ij)+ +Gi(SijG

T
j GjS

T
ij)−

G
(d)
i + = (RijGjS

T
ij)− +Gi(SijG

T
j GjS

T
ij)+

G
(e)
j + = (RT

ijGiSij)+ +Gj(ST
ijG

T
i GiSij)−

G
(d)
j + = (RT

ijGiSij)− +Gj(ST
ijG

T
i GiSij)−

(14)

6. For t = 1, 2, ...,max
i
ti :

G
(e)
i + = [Q(t)

i ]−Gi for i = 1, 2, ..., r
G

(d)
i + = [Q(t)

i ]+Gi for i = 1, 2, ..., r
(15)

7. Construct G as:

G← G ◦Diag(

√√√√G
(e)
1

G
(d)
1

),

√√√√G
(e)
2

G
(d)
2

), ...,

√√√√G
(e)
r

G
(d)
r

), (16)
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3.4 DFMF Algorithm

where ◦ is Hadamard product. The
√
· and ÷ are entry-wise operations.

X+(p, q) is defined as X(p, q) if X(p, q) ≥ 0 else it is 0 and X−(p, q) is
−X−(p, q) if X(p, q) ≤ 0 else it is set to 0. Therefore, both X+ and X− are
nonnegative matrices.

Factorization model represented here is quite sensitive to the initialization
of matrix G. The proper initialization is thus very important and reduces
the number of iterations needed to obtain matrix factors of equal quality.
G is initialized by separately initializing every matrix Gi. Matrix S doesn’t
have to be initialized as it is computed from G. Some authors used random
initialization, but random Acol initialization was shown to be better option.
In random Acol columns of Gi are computed as an element-wise average of
a random subset of columns in Rij.

Input to Data fusion by matrix factorization algorithm are facotorization
ranks k1, k2, ..., kr. The algorithm is sensitive to ranks so it is imporatant
to choose the ones that will minimize the error. In our corn and soybean
example we tried different ranks and picked the onces that gave us the best
result in terms of RMSE error and coefficient of determination.

In the next two sections it is represented experimental part of the thesis.
You can see the application of DFMF algorithm on maize and soybean yield
prediction.
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4 Corn yield prediction

4 Corn yield prediction

4.1 Data description
The data in this thesis comes from Syngenta Crop Challenge. The aim of
Syngenta Crop Challenge is to solve problems in agriculture throughout data
analytics. The 2018 challenge was the third one and it focused on developing
a quantitative framework for predicting maize hybrid performance in new,
untested locations. On the challenge hybrid performance is measured as the
yield difference over a competitive benchmark, known as the check yield, but
in this thesis hybrid performance is measured as yield.

The data contains three separate datasets: the performance dataset, the
environment dataset and the genetic dataset (Table 1). The performance
dataset consists of hybrid name, year, location information (latitude, longi-
tude and location ID ), yield, check yield, yield difference (difference between
yield and check yield) and maturity group which is value assigned to hybrids
based on how many days that particular hybrid takes to become mature.
Performance data of various hybrids is provided from 2008 to 2016. The
environment dataset contains the recorded weather and soil conditions for
selected growing region. Soil and weather attribute names were masked and
their value was scaled which made job even harder. In the environment
dataset there are 8 soil attributes (s1-s8) and 72 weather attributes, 6 char-
acteristics for every month. Weather data is provided from 2001 to 2016
and the soil attributes doesn’t change much over the years so they are the
same for that period. The genetic dataset provides genetic information for
2.267 experimental hybrids. It contains information for 19.465 unique genetic
markers.
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4.2 Preprocessing stage

Table 1: List of features
Hybrid name
Year

Performance Dataset Location (Latitude, Longitude, ID)
Yield
Check Yield
Yield difference
Maturity group
Location (Latitude, Longitude, ID)

Enviromental Dataset s1-s8 (soil attributes)
Year
wij (characteristic i in month j)

Genetic Dataset Hybrid name
Genetic markers

4.2 Preprocessing stage
In the preprocessing phase there were detected multiple entries with the
same latitude and longitude value but with a different ID, as each latitude
and longitude combination is represented by a unique location ID, duplicates
were removed and on the end there were 2.238 locations (fields). Most of the
farms are located in the American Midwest. Figure 1 shows where those
farms are.

Figure 4: Red dots are the region mostly in the United States where farms
are located.
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4.2 Preprocessing stage

By analyzing correlation between yield and individual features we get the
most straightforward approach about the problem complexity. Correlation
measures the strength of association between two variables and the direction
of the relationship. In terms of the strength of relationship, the value of the
correlation coefficient varies between −1 and +1. A value of ±1 indicates a
perfect degree of association between the two variables. As the correlation
coefficient value goes towards 0, the relationship between the two variables
will be weaker. The direction of the relationship is indicated by the sign
of the coefficient; a + sign indicates a positive relationship and a − sign
indicates a negative relationship. The Figure 5 shows Pearson’s correlation
between attributes.
Pearson correlation coefficient is calculated on the following way:

ρ(X, Y ) = cov(X, Y )
σXσY

= E[(X − µX)(Y − µY )]
σXσY

,

where cov(·, ·) is the covariance, σX(σY ) is the standard deviation of X(Y ),
µX(µY ) is mean of X(Y ) and E is expectation.

Pearson’s correlation is the most often used correlation coefficient, but there
is aslo Spearman’s correlation.
Spearman’s correlation is calculated:

rs(X, Y ) = 1− 6 ∑N
i=1 di

N(N2 − 1) ,

where N denotes the total number of samples and di denotes the difference
between ranks of predicted and real values at position i.
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4.2 Preprocessing stage

Figure 5: Pearson’s correlation between attributes.

There were no significant neither positive nor negative correlation be-
tween yield and soil features and between yield and latitude and longitude.
Also by analyzing Pearson’s correlation between yield and weather attributes
there were no any strong relationship. Also Spearman correlation didn’t give
us any significant information. It is their complex interaction that should be
uncovered in order to get good yield prediction.

One can see from the Figure 6 that distribution is far from uniform regarding
amount of data that is presented per year, some years are richer with the
data.
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4.2 Preprocessing stage

Figure 6: Number of crops per year.

On the other hand it doesn’t mean that percentage of unknown values is
smaller for those years that have more data as not all years have all hybrids
on all locations present, so Figure 7 gives us better picture. Figure 7 shows
percentage of unknown values per year.

Figure 7: Percentage of unknown values per year
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4.2 Preprocessing stage

In 2008 we have 163 hybrids planted on 137 locations and on 2014 we
have 486 hybrids planted on 358 fields. Number of planted corn varieties
(red) and number of fields (blue) occurring per year is shown in Figure 8.

Figure 8: Number of maize varieties (red) and number on fields (blue) per
year.

In Figure 9 and 10 it is shown the performance (yield) of each hybrid
planted in year 2012 and in 2010. The minimum yield in 2012 was 20.09
bushels per acre and the maximum yield was 238.67 bushels per acre. In
2010 minimum was 20.93 and maximum 228.36 bushels per acre. Such drastic
difference in yield is present for all other years also. Various reasons may be
responsable for that. Amount of rain and temperature in growing season,
quantity and type of fertilizers and persticide used, soil pH value, water
holding capacity, electric conductivity, organic carbon content in soil, hybrid
planted and many other. This great deviation even within one year stresses
the difficulty in predicting performance.
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4.3 Results

Figure 9: Yield in year 2012.

Figure 10: Yield in year 2010.

4.3 Results
In data set there were nine years present, from 2008 to 2016. Every year
needs to be analized separately and we decided to choose two for analizing
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4.3 Results

in this thesis: 2010 and 2012. The reason for choosing these two years was
because of their diversity where we wanted to check performance of DFMF
algorithm in different settings. In 2010 there were 69, 62% of unknown values
and 87 hybrids planted on 170 locations and in 2012 there were 88, 90% of
missing values and 471 hybrids planted on 322 fields. Mean yield in 2010 was
111.35 and in 2012 was 107.58 bushels per acre.
On Figure 11 it visualized how many times each of the hybrids appeared in
year 2010 (left) and 2012 (right), one can see that some of the hybrids are
way more planted than the others.

Figure 11: Distribution of hybrids.

On Figure 12 it visualized how many times each of the fields appeared in
year 2010 and 2012.

Figure 12: Distribution of fields.

DFMF will be applied on given data. For measuring the results of the
model it will be used root mean square error (RMSE) and R squared (R2).
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4.3 Results

RMSE is a frequently used measure of the differences between values pre-
dicted by a model and orginal values.
Root mean square error:

RMSE =
√∑N

i=1(ŷi − yi)2

N

where yi is orginal value and ŷi is value predicted by model and N is the
number of samples in test set.

R squared (coefficient of determination) is the proportion of the variance
in the dependent variable that is predictable from the independent variables.
If a data set has N values y1, y2, ..., yN and values predicted by model are
denoted with ŷ1, ŷ2, ..., ŷN respectively, then residuals are ei = yi − ŷi.
The coefficient of determination is defined:

R2 = 1− SSres

SStot

where
SSres =

∑
i

(yi − ŷi)2 =
∑

i

e2
i

is the residual sum of squares,

SStot =
∑

i

(yi − ȳi)2

is the total sum of squares and

ȳi = 1
N

N∑
i=1

yi

is the mean of observed data. Values of coefficient of determination can be
negative and the best possible value is 1.

On the Figure 13 are shown object types and their relations. Four object
types are present: Hybrid (ε1), Field (ε2), Soil (ε3) and Weather (ε4). Ge-
netic data set could not be used as it contains missing values and DFMF
algorithm is not supporting relations with missing entries on matrices other
than target matrix. Task is to complete relation R12, between Hybrid (object
type ε1) and Field (object type ε2).
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4.3 Results

Figure 13: The fusion configuartion.

R12 is the target matrix, the one which we need to complete using the
known entries from R12 relation and all other present relations. Rows of R12
are hybrids planted in the particular year and columns are locations present
in that particular year that we analyze. Rows of R23 and R24 are same like
columns of R12, columns of R23 are the soil features and columns of R24 are
weather attributes present in data set.

Whole data set R12 is divided into two subsets, training and test set. Train-
ing set contains around 90% of known values and the rest is take to be for
testing the model.

Firstly only two object types will be observed, Hybrid and Field. We will
try to reconstuct missing values in the matrix just by values that are known.
Table 2 shows results that we got from DFMF algorithm for year 2010 and
2012.
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4.3 Results

Table 2: Results per year with objects Hybrid and Field
Year RMSE R2

2010 19.78 0.4523
2012 21.28 0.5275

When we include Soil object type, which contains information about soil
(8 attributes) and latitude and longitude values and Weather object type
which contain weather information present in the data set we get results
that are shown in Table 3.

Table 3: Results per year with objects Hybrid, Field, Soil and Weather
Year RMSE R2

2010 15.24 0.6131
2012 19.97 0.5907

We can see that after adding information which are meaningful in pre-
dicting yield our results improved. RMSE got smaller and R squared higher
as we expected to happen.

Ranks that we used for year 2010: Hybrid: 10, Field: 17, Soil: 6, Weather:
6 and for 2012: Hybrid: 47, Field: 32, Soil: 6, Weather: 5.
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5 Soybean yield prediction

5 Soybean yield prediction

5.1 Soybean data description
Data about soybean came in form of one matrix, but we split it in three data
sets (matrices) such that we could create objects same like in corn example
(Figure 13). In Table 4 you can see list of features and their explanations.

Table 4: List of features
Year Year in which hybrid was planted
Location ID Every field has unique ID

Performance Dataset Hybrid
Yield Amount of grain per unit of land
Location ID
Soil class Soil class category
CEC Cation exchange capacity
Organic matter Percentage of soil made up of or-

ganic matter
Soil Dataset Clay Percentage of clay in soil

Silt Percentage of silt in soil
Sand Percentage of sand in soil
Area Propability of growing soybeans

in the subregion
PI Soil productivity index
Ph log of H+ concentration in soil
Year
Location(ID,
Latitude, Longi-
tude)

Weather Dataset Temperature Sum of daily temperatures in C◦
in growing season

Precipitation Sum of daily precipitations in
mm in growing season

Solar radiation Sum of daily solar radiation in
W/m2 in growing season

In this data set there were 174 soybean varieties and their performance is
measured between 2009 and 2015 at 205 fields.
Figure 14 shows number of crops and Figure 15 shows percentage of unknown
values per year.
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5.1 Soybean data description

Figure 14: Number of crops per year.

Figure 15: Percentage of unknown values per year.

On Figure 16 green dots represent farm locations.
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5.2 Results

Figure 16: Green dots represent where farms are located.

5.2 Results
The analysis is conducted on year 2014 and 2015. Here we have chosen these
two years because of their similarity where we wanted to see how DFMF
algorithm is functioning in similar settings. In 2014 there were 123 hybrids
planted on 143 locations and in 2015 there were 114 hybrids planted on 148
farms. Soybean yield is not so drastically changing within one year as we
saw happening at corn. Minimum yield was 21.89 and maximum was 110.47
in 2015. Figure 17 is representing histogram of yield for 2014 and Figure 18
for year 2015.
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5.2 Results

Figure 17: Soybean yield for 2014.

Figure 18: Soybean yield for 2015.

Again same like in corn example we have that distribution of hybrids and
fields is not close to uniform. Figure 19 shows the distribution for year 2014
and Figure 20 shows the distribution for year 2015.
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5.2 Results

Figure 19: Distribution of hybrids (left) and fields (right) for year 2014.

Figure 20: Distribution of hybrids (left) and fields (right) for year 2015.

By analyzing Pearson’s correlation only on data from year 2015 on Figure
21 we can see that there is no significant correlation between yield and other
soil and weather attributes. Figure 22 shows us Spearman’s correlation where
we also cannot find any strong relation between yield and other features.
For year 2014 also we don’t get any strong correlation regarding yield in
comparison to other features.
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5.2 Results

Figure 21: Pearson’s correlation between attributes.
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5.2 Results

Figure 22: Spearman’s correlation between attributes.

Performance of Data fusion by matrix factorization (DFMF) algorithm is
measured by using root mean squared error (RMSE) and coefficient of deter-
mination (R squared) as in corn example. Table 5 shows the results that we
got by using DFMF algorithm just on two objects: Hybrid and Field. Table
6 shows the results when we incorporated weather and soil information to
help us predict yield.

We have matrix R12 (which connects objects ε1 and ε2) whose rows are hy-
brids and columns are fields present in particular year, matrix R23 (which
connects objects ε2 and ε3) whose rows are fields and coulmns are soil at-
tibutes and matrix R24 (connects objects ε2 and ε4) whose rows are fileds
and columns are weather attributes.

Rank values which gave us the best result both for year 2014 and 2015 were:
20 for Hybrid, 18 for Field, 6 for Soil and 5 for Weather.
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5.2 Results

Table 5: Results for 2014 and 2015 with objects Hybrid and Field
Year RMSE R2

2014 5.15 0.7178
2015 5.51 0.7428

Table 6: Results for 2014 and 2015 with objects Hybrid, Field, Weather and
Soil
Year RMSE R2

2014 4.89 0.7450
2015 4.63 0.7886

Figure 20 shows the histogram of real soybean yield values for year 2015 and
Figure 21 shows the histogram of predicted soybean yield values for year
2015.

Figure 23: Histogram of real soybean yield for year 2015.
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5.2 Results

Figure 24: Histogram of predicted soybean yield for year 2015.

Mean value is 61.47 and standard deviation is 9.69 for real soybean data from
test set for year 2015 and for predicted values mean is 62.51 and standard
deviation is 8.48.
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Conclusion

Conclusion
Today various machine learning algorithms are used to predict crop yield
for the next season. Often problem is lack of historical data to feed the
model. Because of the limited number of locations on which breeders can
plant hybrids, as well as experimental and time costs, it is impossible to have
information on the performance of all hybrids on all fields. In this thesis we
tried to enrich historical data sets about performance of different corn and
soybean hybrids.

Data fusion by matrix factorization was extensively used in the field of
medicine and bioinformatics and proved to be very successful. Problems
coming from agriculture can also be tackled with such approach. That was
the reason to test the algorithm in maize and soybean yield prediction.

The main ambition underlying experimental part was to evaluate perfor-
mance in predicting yields of varieties on the locations where breeding com-
pany did not run tests. Successful accomplishment of that task would enable
us to enrich data set and to develop better yield predictions models for the
next season. For the purpose of evaluation we mask part of the available
data to compare it with values predicted by the algorithm.

The algorithm accomplish good results on soybean and moderate results
for maize yield prediction. The reason for this can be in the sparseness of
data sets. Better results were obtained for soybean yield prediction where
percentage of missing values was smaller. In maize data there were a lot of
missing values and furthermore we had a high number of different hybrids
which rarely appeared and locations where only small number of hybrids are
planted. From the previous two histograms we can see that algorithm has
difficulties in predicting very low and high yields. The reason for this ex-
treme values can be extensive use of fertilizers or some weather disasters and
as that information is not present in our data set, it is not surprising that
used algorithm missed to predict them.

Fusing more data sources (yields, soil, weather) through joint factorization
increased accuracy of algorithm in predicting both, soybean and maize yields.
Appropriate usage of genetic data that is available for maize could further
improve the results. More detailed information about weather in soybean
data would result in more accurate prediction. Also it would be very useful
to have data about irrigation, fertilizers and pesticides used, as that infor-
mation is important in yield prediction.
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Conclusion

Obtained results are promising and a new challenges are identified. Our
future work will include extensive experiments with factorization parameters
(ranks and initializations), adding more data from external sources regarding
weather and vegetation indexes, comparison of obtained results with some
other machine learning models. Final goal is to use obtained results from
DFMF algorithm and try to estimate crop yield for next season.
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