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Semidefinite Programming Approach to Visual Storyline Creation

by Kristina Licenberger

This thesis formulates the problem of finding minimal weight path in a graph, such
that the individual weights along the path are as balanced as possible. The motiva-
tion for this problem comes from the recent work by G. Marcelino et al. that uses
shortest path to find the most coherent sequence of images that illustrate a given
event. Therein, the authors define a weight of an edge connecting two images as
(1 - the quality of the transition) between the two images (the lower the better). In
this thesis, we modify the preceding problem such that we seek for the path with
best (lowest) transitions, but also where the transitions are mutually balanced. This
is achieved by adding an extra cost term in the minimal path problem that penal-
izes differences between different transitions. To capture the differences in the tran-
sitions, we use a quadratic function. The preceding problem is a (0, 1)-quadratic
program. As a solution, we propose a semidefinite programming (SDP) relaxation.
We tested the algorithm on data containing flower images and on data from the Ed-
inburgh Festival 2016. Although the SDP solution has higher complexity than the
shortest path, in most cases it has proved to be worth finding a solution with our
algorithm.
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Chapter 1

Introduction

1.1 Social media

An online source of information that is created, circulated and used by consumers
is known as social media [35]. Social media content has become a part of everyday
life. Its purpose is to help people both find new information and have fun. But also,
it can help them to find new information in a fun-way. One way to obtain new infor-
mation in a fun-way is to deduce it from the content of an image. It has been known
since ancient times that an image is worth a thousand words, in truth some events
are difficult to describe with a small amount of words and this is why images are a
good tool to describe an event. The largest source of images is the Internet. People
post daily on social networks images of all kinds of events, so every day the amount
of images on the Internet is growing with tremendous speed.

In such a big collection, it is not so easy to choose a set of images which will best
describe an event as a visually pleasant story. Relevance and many other factors
influence the choice. It is also very important to be aware of similarities or dissimi-
larities between images, in a sequence describing one event. A bunch of images may
describe the event as it is, but it does not necessarily mean that it will be pleasing
to the human eye. For a set of images to represent the event nicely, the transition
from image to image must be taken into account. Transitions are very important if
we want to achieve the effect of a harmonious story. Finding a set of images that will
best describe an event is a very challenging task for journalists.

One way to approach this problem is to build a graph out of the given images
and search for the best path in the graph. This problem has already been discussed
in [21]. The authors explained how a story from an event can be divided into seg-
ments. They considered what features might affect the relevance of the image and
what were the possible ways to select the images that would best represent each seg-
ment.

The task addressed by this thesis is on given graph with segments and story
illustration candidates for each segment to try a new way of selecting those images
that will best represent the story. Images that we choose for solution should be as
pleasant as possible to the human eye.
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1.2 Stories as paths in Bipartite Graphs

FIGURE 1.1: Selecting images [21]

From [21], we know that we can divide an event into stories and stories into sev-
eral segments. For each segment we have a number of images that can represent it.
One natural way is to use bipartite graphs as a tool to represent stories. A character-
istic of a complete bipartite graph is that it consists of two partitions where all the
nodes in different partitions are connected to each other and nodes from the same
partition are not connected to each other. The point is that these complete bipartite
graphs can be nicely applied to describe an event with images. Let’s say the smallest
example is that one story consists of two segments. For each of the segments we
can have several images that describe them. We can represent an event as a bipartite
graph and the segments in that case represent partitions where images are actually
graph nodes. Edges in this kind of bipartite graph should represent some kind of
relationship between images. The way we select images from partitions can be rep-
resented as the way we find a path in a graph. It is important to note that we can
choose only one image per segment. If a story has more than two segments, then the
graph representation generalizes to a sequence of bipartite graphs.1

1.3 Problem setup

Suppose we are given a set of images describing a certain event. The event is seg-
mented into several parts, where the segmentation is defined either in terms of time,
location etc., and our goal is to find a representative image for each segment, such
that the sequence of chosen images faithfully represents the event as a whole. Sup-
pose there are K segments, indexed by k = 1, 2, ..., K. As a first step, to each segment
k is first assigned a representative set of images Ik, extracted using machine learn-
ing tools from the textual information about the event and images of the event, for

1In [21] the authors consider sequence of complete bipartite graphs. To solve problem of describing
event with images they used a variation of Dijkstra’s minimum cost path algorithm.
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FIGURE 1.2: Bipartite graph

k = 1, ..., K. Second, for each pair of images Ik and Il corresponding to different seg-
ments, Ik ∈ Ik and Il ∈ Il , k 6= l, the “smoothness” of (visual) transition between Ik
and Il (the smoother the better) is defined through function q : I× I 7→ [0, 1], where
I denotes the set of all the images in a graph. The goal then is to find the sequence of
images I?k , k = 1, ..., K, such that the sum of consecutive transitions, ∑K−1

k=1 q(I?k , I?k+1),
is the smallest possible. Explained notations can be viewed in Fig.1.2.

The above problem can be casted as the (minimal) shortest path (SP) problem.
To arrive at the SP formulation, we first explain how weighted graph G is built from
the given set of images and function q. For each k, define the set of nodes Vk = Ik,
that is, each node in Vk corresponds to one image in Ik. To model the transitions,
we make all-to-all connections for any two consecutive segments, that is, u ∈ Vk and
v ∈ Vl are connected by an edge if l = k + 1, k = 1, ..., K− 12. Also, each of the edges
(u, v) is assigned a weight wuv equal to the value of function q(Iu, Iv) between the
images corresponding to nodes u and v.

For the purpose of casting the defined problem in an optimization problem (see
Chapter 3), we also introduce two distinct nodes, s (source) and d (destination),
and we let V0 = {s} and VK+1 = {d}. We connect node s to each of the nodes
in V1, and connect d to each of the nodes in VK; these connections are assigned
zero weight. Summarising, the graph G = (V, E) is formed with the set of nodes
V = ∪K+1

k=0 Vk, the set of edges E = ∪K
k=0Vk × Vk+1, and each edge e = (u, v) has

the associated weight wuv. Finally, we denote the number of nodes in each segment
with nk = |Vk|, for k = 1, ..., K, N = |V| and number of edges with M = |E|. Then,
N = 2 + n1 + ... + nK, and, by the structure of the graph G, it is easy to see that
M = n1 + n1n2 + ... + nK−1nK + nK.

2In [21] the authors also consider fully-multipartite graphs, where connections are formed even
between the non-consecutive groups. In this model, the SP problem is replaced by the objective of
finding the minimal all-to-all transitions sum (and not only consecutive transitions sum), across all
possible sequences of images. For now we focus on consecutive connections only.
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1.4 Contribution

• Shortest path with balanced costs:
A novel approach for finding the path in a weighted graph such that the weights
of the edges are as balanced as possible.

• Public implementation:
https://github.com/451kica/StoryGraphs/blob/master/Solver.py

• Real-life data application:
This thesis demonstrates how complex mathematical algorithms can be suc-
cessfully applied to real-life data.

1.5 Document organization

Within the described optimization framework, Chapter 1 introduces and motivates
the novel metric of balanced costs.

The next Chapter "Research Hypothesis" consists of sections Shortest path (SP)
Problem and SP with balanced costs. We will explain how the shortest path problem
can be reformulated as a linear program. Also we will explain our intuition and hy-
pothesis - SP with SPBC reformulation.

The third Chapter named "Semidefinite Programming Relaxation" covers the
theory used in the thesis. The transformation of the problem is explained and an
illustrative example is given. The steps of implementing the algorithm are also ex-
plained. In this chapter we have sections: Semidefinite Proogramming, SPBC via
SDP relaxation, Illustration Graph Example and Implementation.

The Chapter "Experiments" contains the three experiments and the results of the
experiments. Experiments are divided in sections, so we have Syntetic Data section,
Flowers dataset section and Social media storytelling section.

The final Chapter "Conclusion and Future Work" discusses the conclusion and
flexibility of framework.
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Chapter 2

Research Hypothesis

2.1 Shortest path (SP) problem

FIGURE 2.1: Graph with source and destination node

The goal is to find the sequence of nodes vk ∈ Vk, k = 1, ..., K (one from each
k), such that the total cost along the path connecting the nodes along the sequence,
∑K−1

k=1 wvk ,vk+1 is minimal. Using nodes s and d and the fact that their connections
have zero cost, the preceding objective can be equivalently written as ∑K

k=0 wvk ,vk+1 .

For each edge e ∈ E, we introduce a new variable xe ∈ {0, 1} such that xe = 1
if edge e is chosen and xe = 0 otherwise. By x we denote the vector that stacks all
the edge variables xe, e ∈ E by a given ordering (please see Chapter 3, section "SDP
relaxation" for details on the ordering of edges used in this thesis). Then, the shortest
path problem can be represented as the following boolean linear program [13]:

minimize
x

∑e∈E wexe

subject to ∑u∈V1
xsu = 1

∑v∈VK
xvd = 1

∑u:uv∈E xuv = ∑u:vu∈E xvu, v ∈ V \ {s ∪ d}
xe ∈ {0, 1}, e ∈ E

. (2.1)
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To explain the equivalence, suppose that a unit flow starts from the start node s, as
given in the first constraint of (2.2). The flow can then choose the next edge by setting
the corresponding variable xsu to 1, for u ∈ V1 (note that, by the first constraint and
the last constraint, if one of the edge variables connected to s is set to one, all the
remaining edge variables connected to s must be equal to 0); for example, if node
u ∈ V1 is chosen, then xsu = 1 and xsv = 0, for each v ∈ V1 \ {u}. The third
constraint is the flow conservation condition: at any node inside the graph, the total
inflow must be equal to the total outflow. Since the edge variables xu can be either
zero or one, the flow cannot split into fractional flows. Also, since the inflow must be
equal to the outflow, it also cannot branch out. Thus, at any given node v different
than s and d only two situations can occur: 1) either both the inflow and outflow are
zero (which happens in the case when xuv = 0 for all u such that (u, v) ∈ E and also
xvu = 0 for all (v, u) ∈ E), and v is not on the flow path; or 2) the inflow and outflow
are equal to 1, which happens when exactly one of the xuv’s equals 1, and exactly
one of the xvu’s equals 1, i.e., v is on the flow path.

The preceding problem is an integer linear program (ILP) [31]. ILPs are in general
hard to solve optimally. For the shortest path (SP) problem with non-negative edge
costs, it is well-known that if the relaxation from xe ∈ {0, 1} to xe ≥ 0 results in fact
in an equivalent problem, and hence the optimal solution of (2.1) is found by:

minimize
x

∑e∈E wexe

subject to ∑u∈V1
xsu = 1

∑v∈VK
xvd = 1

∑u:uv∈E xuv = ∑u:vu∈E xvu, v ∈ V \ {s ∪ d}
xe ≥ 0, e ∈ E

. (2.2)

2.2 SP with balanced costs (SPBC)

2.2.1 Intuition

We now explain the modification of the SP problem that we propose, that could
maybe lead to an improved performance of the chosen sequence of images. To mo-
tivate the approach, we refer to Figure 2.1. taken from [21] (see Fig 6.11, p. 78 in
[21]).

Specifically, the figure presents results of two (best performing) approaches of
storyline creation [21], namely FullT and SeqT, represented by the first and the third
image sequence in Figure 6.11 from [21]. First, we look at the FullT approach shown
in the first image sequence in Figure 2.1. Looking at the sequence, we can observe
that the first and the last pair of images are visually similar, whereas the transition
between the second and the third image in the sequence is sharper. A similar effect,
and maybe also more prominently occurring, can be observed with the SeqT ap-
proach, shown in the third sequence in Figure 6.11. With SeqT, the first two images in
the sequence both show two performers on a stage (two musicians and two actors),
and also in a very similar setup (e.g., size and orientation of the human figures, and
also their mutual orientation are both very similar); the last two images both show
one performer (circus actor, street performance actor) on the background with sharp
edges (the layouts of the two images exhibit similarity when counterclockwise rota-
tion is applied to the last image). The transition between the second and the third
image is evidently sharp. An alternative sequence could possibly have a smoother
middle transition, but this would certainly happen at the expense of increasing the
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FIGURE 2.2: Fig. 6.11 [21]

two remaining transitions, since the sequence that SeqT approach outputs is guar-
anteed to have minimal total transition costs.

There are two things that are interesting to note here. First, it would of course
be better to smooth out any sharp transitions. And second, it could potentially be
beneficial to actually increase the transition between images that are too similar (the
higher the transition, the higher the amount of new information1). Motivated by
this observation, we propose to relax the minimal total transition cost criterion by
allowing transitions that are of higher cost, but more balanced, to win.

1We also had some ideas in this direction, that is, to explore alternative definitions of the trans
function. Specifically, we were thinking of designing trans that is non-monotonous in certain features
such that it forces some features (e.g., color histogram) to be close, but let others (e.g., semantic content)
increase by an optimal amount, to allow for information gain. Defining the optimal point (for, e.g.,
semantic deviation) seemed very interesting to explore further.
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2.2.2 Hypothesis - SP with SPBC reformulation

The preceding objective can be modelled by adding an extra term in the objective
of (2.1) that penalizes the differences between the weights of adjacent edges. Be-
fore forming the objective, we introduce term of segment-adjacent edges. Segment-
adjacent edges actually represent two edges which are adjacent and connecting dif-
ferent segment pairs. The formal definition of segment-adjacent pair of edges is as
follows: edges e and f are segment-adjacent if e = (u, v) and f = (v, w), where
u ∈ Vk−1, v ∈ Vk and w ∈ Vk+1. To reformulate the objective function, we choose
quadratic penalty and modify (2.1) as follows:

minimize
x

∑e∈E wexe + λ ∑ e, f∈E
e, f segment−adjacent

(we−w f )
2

2 xex f

subject to ∑u∈V1
xsu = 1

∑v∈VK
xvd = 1

∑u:uv∈E xuv = ∑u:vu∈E xvu, v ∈ V \ {s ∪ d}
xe ∈ {0, 1}, e ∈ E

, (2.3)

where λ is the penalty factor. We call problem (3.1) shortest path with balanced costs
(SPBC) problem2.

The first sum in the objective refers to the cost of the chosen path, computed
as the sum of the weights along the path. It will be the sum of the weights of the
selected edges in the graph. The second sum is a regularizer that compares transi-
tions between all consecutive pairs of segments. Therefore, we added a difference
of segment-adjacent edges to the objective function. The meaning of the regularizer
in (3.1) is intuitive. Consider two fixed, adjacent edges e, f ∈ E. If both xe and x f are
equal to 1, then these two edges lie on the chosen path and, since the product xex f

equals 1, the appropriate penalty term
(
we − w f

)2 is added to the objective. On the
other hand, if either xe or x f equals zero, then the corresponding edge is not on the

chosen path, and hence the penalty term
(
we − w f

)2 should not participate in the
objective. The latter is ensured by the product xex f which is zero in this case.

Namely, the condition xe ∈ {0, 1} can not be replaced with xe ≥ 0 because x is
defined such that it can only take values 0 or 1 (edge is selected x = 1 or edge is
not selected x = 0). However, the condition xe ∈ {0, 1} can still be reformulated in
another way, if the problem itself is reformulated.

The SPBC problem (3.1) is a (0, 1)-quadratic problem and is hard to solve in gen-
eral. In the next chapter we will define an approach based on semidefinite program-
ming relaxation.

2An alternative way to define the penalty term in (3.1) would be to account for the differences
between, not only the consecutive edges along the path, but between each pair of edges on the path.
This can be achieved by enlarging the summation of the penalty term to go over all possible pairs of
edges. As the two formulations seem to be very similar (i.e., with the same goal), for the present work,
we considered only formulation in (3.1), but we remark that the generalization will be trivial.
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Chapter 3

Semidefinite Programming
Relaxation

3.1 Semidefinite programming

FIGURE 3.1: Positive semidefinite cone [30] - on left side is an example
of matrix (of dimensions 2x2) where elements from a matrix are found

in a positive semidefinite cone

This chapter introduces SDP relaxation and explains how it can be used to solve
probem (3.1). In relaxation procedures, the aim is to approximate a difficult problem
to a similar problem that is easier to solve. The solution of the relaxed problem will
provide useful information about the solution of the original problem [12].

minimize
x

∑e∈E wexe + λ ∑ e, f∈E
e, f segment−adjacent

(we−w f )
2

2 xex f

subject to ∑u∈V1
xsu = 1

∑v∈VK
xvd = 1

∑u:uv∈E xuv = ∑u:vu∈E xvu, v ∈ V \ {s ∪ d}
xe ∈ {0, 1}, e ∈ E

, (3.1)

Semidefinite programming is a type of convex programming defined over the
(convex) set of positive semidefinite matrices1 of a given dimension, and where the
objective function and the constraints are linear [24]. Semidefinite programs are
easier but slower to solve than linear programs and they are more general than linear
programs. Minimizing a linear function of a matrix subject to linear equality and
inequality constraints, where the inequalities include membership of the cone of
positive semidefinite matrices is actually semidefinite programming [8].

1A matrix Z is positive semidefinite if ∀v ∈ Rn holds that vT Zv ≥ 0.
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Standard SDP has the form

minimize
Z

tr(WZ)

subject to tr(AiZ) = ci, i = 1, ..., p
Z � 0

. (3.2)

where W, Z, A1, ...Ap ∈ Sn, and where Sn is the cone of positive semidefinite n× n
matrices. [33]

3.2 SPBC via SDP relaxation

SDP has wide applicability in many areas - convex optimization, combinatorial op-
timization, control theory... Many optimization problems have convex relaxations
that are semidefinite programs and the optimal solution to the SDP relaxation can
be converted to a feasible solution for the original problem [11]. The relaxation is
a way of enlarging the original, usually nonconvex constraint set to achieve a con-
vex one. An example of the use of SDP in combinatorial optimization is an SDP
relaxation of the MAX CUT problem, for more information about this, the reader is
refered to [25]. The constraints such as convex quadratic inequalities, lower bounds
on determinants of symmetric positive semidefinite matrices, linear inequalities can
be modeled in the SDP framework [11].

For the purpose of explanation, it is important to formally define quadratic form
as zTQz + 2zTc, where Q is a semidefinite matrix of a given dimension, and c is a
vector of the same dimension. We propose a solution based on semidefinite relax-
ation, as explained in [27], see also [33]. In [27], they have shown that semidefi-
nite relaxation are equivalent to quadratic relaxations. Also, they have shown that
(0, 1) quadratic programming form (of form zTQz + 2zTc) is equivalent to (−1, 1)
quadratic programming problem via transformation z = 2x − 1. Inspired by that
observation, we choose to reformulate our (0, 1) quadratic programming problem to
(−1, 1) quadratic programming problem in order to apply semidefinite relaxation.
The QP via SDP approach can be explained in three steps. So, first step is transfor-
mation, second step is SDP relaxation and third step is rounding. We detail each of
the three steps in the following three sections. Thus, in the remainder of the chapter,
we show how we solve the hard, integer QP problem 2.3 via a convex, SDP one 3.1.

We did not properly introduce optimization framework, neither we described
how the quadratic cost arises. Our objective consist of four steps:

• First step is to formulate the problem as an integer quadratic program.

• Second step is to relax the problem to a semidefinite program.

• Third step is to solve the relaxation, obtaining a vector solution z1, ..., zn.

• And fourth step is to round the vector solution z1, ..., zn to an integer solution
x1, ..., xn [24].
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3.2.1 Transformation from (0, 1)-QP to (−1, 1)-QP

Recall that (0, 1)-QP optimization problem is :

minimize
x

∑e∈E wexe + λ ∑ e, f∈E
e, f segment−adjacent

(we−w f )
2

2 xex f

subject to ∑u∈V1
xsu = 1

∑v∈VK
xvd = 1

∑u:uv∈E xuv = ∑u:vu∈E xvu, v ∈ V \ {s ∪ d}
xe ∈ {0, 1}, e ∈ E

.

Transformation of the objectives

Transformation of the first term

We start by substituting the (0, 1) variables xe by (−1, 1) variables obtained through
the transformation ze = 2xe − 1, for each e ∈ E. Then, xe = ze+1

2 . The first term of
the objective (3.1) transforms into

∑
e∈E

wexe = ∑
e∈E

we
ze + 1

2
=

1
2 ∑

e∈E
weze +

1
2 ∑

e∈E
we

Now, we can see that ∑e∈E we is equal to number of edges M. Because of that, we
got that first term of our new objective is

1
2 ∑

e∈E
weze +

M
2

, (3.3)

where we note that M
2 is a constant and will not affect the optimization problem

because z does not depend on M.

Transformation of the second term

The second term transforms into

λ ∑
e, f∈E

e, f segment−adjacent

(we − w f )
2

2
ze + 1

2
z f + 1

2

=λ · 1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2(ze + 1)(z f + 1)

=λ · 1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2(zez f + ze + z f + 1).

We can notice the terms ∑e∈E ze and ∑ f∈E z f in the preceding equation are actually
equal. Hence, we have that ∑e∈E ze +∑ f∈E z f is equal to 2 ∑e∈E ze, which then yields:
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λ · 1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2(zez f + 2ze + 1)

= λ · 1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2zez f

+ λ · 1
8 ∑

e∈E
2ze ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2

+ λ · 1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2.

We can conclude in this case like in previous case for M, that

λ
1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2

will be constant and it will not affect the optimization problem, so we can ignore this
part. At the end, for the second term we obtain

λ · 1
8 ∑

e, f∈E
e, f segment−adjacent

(we − w f )
2zez f + λ · 1

4 ∑
e∈E

ze ∑
e, f∈E

e, f segment−adjacent

(we − w f )
2. (3.4)

Ignoring the constants, by summing up (3.3) and (3.4), we obtain that the new objec-
tive has the following form:

1
2

∑
e∈E

we + λ ∑
f∈E

e, f segment−adjacent

(we − w f )
2

2

 ze + λ ∑
e, f∈E

e, f segment−adjacent

(
we − w f

)2

4
zez f

 .

Transformation of the constraints

We now express the constraints in (3.1) in terms of the variables ze, e ∈ E. To this end,
recall that nk = |Vk|, k = 1, ..., K. For the first constraint, we have ∑u∈V1

zsu+1
2 = 1,

which is equivalent to
∑

u∈V1

zsu = 2−∑
V1

1 = 2− n1.

Similarly, for the second and the third constraint, we, respectively, obtain

∑
u∈Vk

zud = 2−∑
Vk

1 = 2− nk,
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and

∑
u∈Vk+1

zvu + 1
2

− ∑
u∈Vk−1

zuv + 1
2

= 0,

implying
∑

u∈Vk+1

zvu − ∑
u∈Vk−1

zuv = ∑
u∈Vk−1

1− ∑
u∈Vk+1

1 = nk−1 − nk+1

for each v ∈ Vk, k = 1, ..., K− 1.

3.2.2 SDP relaxation

Summarizing, the (0, 1)- QP (3.1) is transformed into the following (−1, 1)- QP.

minimize
z

∑e∈E

(
we + λ ∑ e, f∈E

e, f segment−adjacent

(we−w f )
2

2

)
ze + λ ∑ e, f∈E

e, f segment−adjacent

(we−w f )
2

4 zez f .

subject to ∑u∈V1
zsu = cs

∑v∈VK
zvd = cd

∑u∈Vk−1
zvu −∑u∈Vk+1

zuv = cv, v ∈ Vk, k = 1, ..., K
ze ∈ {−1, 1}, e ∈ E

,

(3.5)
where cs = 2− n1, cd = 2− nK, and cv = nk−1 − nk+1, for any v ∈ Vk, for k = 1, ..., K.
We can notice that the new objective consists of two parts. The first part is linear,
with weights equal to:

we + λ ∑
e, f∈E

e, f segment−adjacent

(we − w f )
2

2

and second part is quadratic2 with weights equal to:

λ ∑
e, f∈E

e, f segment−adjacent

(
we − w f

)2

4
.

This is exactly what we wanted, because now we can define matrices which we
need in order to make SDP formulation and then apply SDP relaxation. We know
that quadratic form is defined as zTQz + 2zTc. For matrix Q, we use integer indices
(for edges), while in the objective we are still at the "edge-induced" notation e, f ∈ E.
We should therefore bridge out these two notations. We introduce ordering of edges,
e.g., from left to right, by segments, and from top to bottom, inside segments. To be
precise, first we order collection of edges by segments - it proceeds west-east by seg-
ments, and north-south across segment pairs (edges that connect first and second
segment, then edges that connect second and third segment and so on). After that
we sort edges in every collection of edges - by nodes. First we put edges which
are starting from first node in segment, then edges which are starting from second
node in segment and so on (as we mention from top to bottom inside segments).

2We define summation over an empty set as zero. Just to be clear that some products xex f have zero
weight (if not adjacent, then we don’t need to compare them - at least in this formulation, if we wanted
Full as opposed to Seq approach, we would compare all to all edges along a path)



Chapter 3. Semidefinite Programming Relaxation 14

A specific example of how Q is created is provided in Section "Illustration Graph
Example". That leads us to formulate matrix Q as:

Qij =


0, if i = j

λ
(wi−wj)

2

8 if i and j are segment− adjacent
0, otherwise

, (3.6)

Also we define c as

c =


w1
2 + λ ∑ 1, f∈E

1, f segment−adjacent

(w1−w f )
2

4

...
wM

2 + λ ∑ M, f∈E
M, f segment−adjacent

(wM−w f )
2

4

 .

If vector c were 0, then we could conveniently represent the quadratic form as z>Qz =
trace(QZ), where Z = zz> is a positive semidefinite matrix, exactly as in the objec-
tive of 3.1. When c is not 0, a similar transformation can be achieved, just with an
enlarged vector z. Specifically, our goal is to define matrix W such that equality
z>Qz + 2z>c = z̃>Wz̃ holds. For that purpose we introduce (M + 1) × (M + 1)
matrix W from the edge weights, as follows:

W =

[
QM×M c

c> 0

]
, (3.7)

Wky =



0, if k = y
wk
2 + λ ∑ j

k,j segment−adjacent

(wk−wj)
2

4 , if y = M + 1, k = 1, ..M, j = 1, ..M

wy
2 + λ ∑ j

y,j segment−adjacent

(wy−wj)
2

4 , if k = M + 1, y = 1, ..M, j = 1, ..M

λ
(wi−wj)

2

8 , if i and j are segment− adjacent, i = 1, ..x− 1, j = 1, ..y− 1

0, otherwise

, (3.8)

where we assume that the edge weights wi inherit the indexing of the edge variables.

Then, it can be shown that the objective in (3.5) equals ∑M
i,j=1 WijZij = tr(W>Z),

where tr denotes the trace operator [29], and we now introduce the (M + 1)× (M +

1) matrix Z = z̃z̃>, where z̃ =
(
z>, 1

)>, and the vector z = [z1, z2, ...zM] is formed by
arranging the edges e ∈ E in a certain (arbitrarily defined) order.

The rank of a matrix is the dimension of the vector space generated by its columns
[2], and actually that is identical to the dimension of the space spanned by its rows
[20]. In different words, rank of matrix is equal to the maximal number of linearly
independent columns (rows) of that matrix. It is easy to see that each column of
matrix Z is obtained by multiplying the same vector z̃ by a different number (more
specifically, by the corresponding entry of z̃). It follows that the number of linearly
independent columns in Z is 1, hence Z is rank 1.
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Our matrix Z is of the following form:

Z =

[
zz> z
z> 1

]
(3.9)

Note that Zij = zizj, for any 1 ≤ i, j ≤ M. Since zi ∈ {−1, 1}, we have that Zii = 1
for each i.

We now turn to the constraints in (3.5). For each node v ∈ Vk, introduce the set I−v
that collects indices i of edges connected to node v to the left; similarly, I+v collects in-
dices of edges connected to v to the right. For each v ∈ V (including s and d), denote
by av the vector that defines the corresponding constraint in (3.5) by a>v z = cv. Each
av has the same length as vector z and each av has has -1 on positions corresponding
to the incoming edges,e ∈ I−v , and +1 on positions corresponding to the outgoing
edges, e ∈ I+v . All other elements (edges which have no connection with v) in av
have values equal to 0.

For general case as will have first n1 elements of vector filled with ones and rest
M− n1 will be filled with zeros. That is, the generic structure of as is:

as =



1
...
1
0
...
0


.

And then we have that the inner product of as and z is :

a>s z =
[
1 · · · 1 0 · · · 0

]


z1
z2

...
zM−1

zM

 = 1+(−1)(n1− 1) = 1−n1 + 1 = 2−n1.

We note that the right hand side has a very intuitive meaning because 1+(−1)(n1−
1) shows that we will choose exactly one edge (corresponding to the single +1 term)
from collection of edges which connect two adjacent segments (in this case segment
with source node and first segment). Because of that we will have n1 − 1 number
(corresponding to the -1 values in z) of not selected edges. A similar conclusion
holds for other adjacent segments.

By a similar reasoning as with the objective function, it can be easily shown that
the constraints can be encoded as

tr(AvZ) = cv,

for each v ∈ V, where Av is a symmetric matrix of the form

Av =

[
0M×M av/2
av/2> 0

]
.
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Summarizing, problem (3.5) can be represented as the following semidefinite pro-
gram with rank 1 constraint:

minimize
Z

tr(WZ)

subject to tr(AvZ) = cv, v ∈ V
Zii = 1, i = 1, ..., M + 1

Z � 0
rank(Z) = 1

. (3.10)

By dropping the rank 1 constraint, we obtain a semidefinite program (SDP), which
can be efficiently solved using numerical algorithms for SDP. The solution vector z
can then be recovered by appropriate rounding procedures.

3.2.3 Rounding Procedures

After applying semidefinite relaxation we need to obtain the Z matrix. If the solution
to the SDP relaxation (3.10) happens to be a rank one matrix Z = yy>, then, thanks
to the constrains Zii = 1, we will have that yi is either 1 or -1. Hence, vector y
obtained through the optimal Z matrix belongs to the feasibility set of the SPBC
problem. Since y is the solution to the relaxed problem it must therefore be the
optimal solution of the original SPBC problem that we are trying to solve. This
will however not always be the case. In general, the solution of the SDP relaxation
will not be a rank one matrix, and we therefore need some rounding procedure to
get back to the original, integer domain. We need to perform at least one of the
rounding procedures to read the solution vector z. With rounding procedures, there
is no right or wrong way to recover z vector. There are many methods by which the
vector z can be recovered. Some of these are described in the paper [24]. Below is
an explanation of the rounding procedure that we used. After the SDP algorithm,
we get a matrix Z. In case that Z is matrix with rank equal to 1, Z will look like the
following:

Z =


z1z1 z1z2 · · · z1zM z1
z2z1 z2z2 · · · z2zM z2

...
...

...
...

zMz1 zMz2 · · · zMzM zM
z1 z2 · · · zM 1


In order to recover the vector z, we look at the last row (without the last element

being equal to 1). Note that it is also equivalent to look at the last column without
the last element.

FIGURE 3.2: z vector for rounding procedures
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Two rounding procedures were used in our work. In both rounding procedures
the vector z is divided into as many parts as we have segments in an event + 1.
This is because we have two artificial segments so we will have K + 1 collections
of edges (one collection of edges represents edges between two adjacent segments).
The length of each collection of edges is the number which is equal to multiplica-
tion of number of elements in adjacent segments which are connected with exactly
these edges. We introduce length of size of collection of edges like: M1 length of
first collection of edges, M2 length of second collection of edges, M3 length of third
collection of edges and so on.

The following figure illustrates a collection of edges.

FIGURE 3.3: Collections of edges

z = [

lengtho f collectiono f edges1︷ ︸︸ ︷
z1, . . . zM1 ,

lengtho f collectiono f edges2︷ ︸︸ ︷
zM1+1, . . . zM2 , . . . ,

lengtho f collectiono f edgesK+1︷ ︸︸ ︷
zMK+1, . . . zMK+1 ]

Rounding Procedure 1

In the first rounding procedure, we first consider the part of the vector correspond-
ing to the first collection of edges and select the maximum element. With this we
have chosen the first edge, actually the first element in our path. Therefore, two
images were selected (the start and end node of that edge). Next we look at the el-
ements belonging to the second edge collection and select the maximum element.
Then we repeat the process for all edge collections. That way we choose the path in
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our graph. The final output of the procedure is a sequence of edges, each connecting
two consecutive segments, starting from the first until the last one. We note that this
sequence might or might not be a path in the segments graph.

Rounding Procedure 2

FIGURE 3.4: Example of chosen edges with Rounding Procedure 2

In the second rounding procedure, we again look at the first edge collection but
this time we select two maximum elements. We then select the two maximum el-
ements in the second edge collection and repeat this until we also select the two
maximum elements from the last edge collection. We now have two edges between
each adjacent pair of segments, which means we can have more than one path in
the graph. We form all possible paths from the edges we have chosen. The next
step is to insert the weights of the edges into the cost function (for each path in the
graph we formed - separately) and finally select the path that gives the minimum
cost function. The cost function is shown below.

∑
e∈E

wexe + λ ∑
e, f∈E

e, f segment−adjacent

(
we − w f

)2

2
xex f .
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The rounding procedure 2 is more complex than the rounding procedure 1 and
therefore takes longer to complete. However, in most cases where procedure 1 can-
not find a feasible solution, there is a high possibility that rounding procedure 2 will
find a feasible solution.

3.3 Illustration Graph Example

FIGURE 3.5: Graph example

In this section, we illustrate all the quantities used by our method with a simple
example of two segments, shown in Figure 3.5. Applying the ordering defined in
Section SDP relaxation. Before defining corresponding matrices and vectors, we set
order of edges. For the given graph, our sorted weights of edges will look like:

a
b
c
d
e
f
g
h


In our case, Q is :

Q =



0 0 λ (c−a)2

8 λ (d−a)2

8 0 0 0 0
0 0 0 0 λ (e−b)2

8 λ
( f−b)2

8 0 0
λ (c−a)2

8 0 0 0 0 0 λ
(g−c)2

8 0
λ (d−a)2

8 0 0 0 0 0 0 λ (h−d)2

8

0 λ (e−b)2

8 0 0 0 0 λ
(g−e)2

8 0
0 λ

( f−b)2

8 0 0 0 0 0 λ
(h− f )2

8

0 0 λ
(g−c)2

8 0 λ
(g−e)2

8 0 0 0
0 0 0 λ (h−d)2

8 0 λ
(h− f )2

8 0 0


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Vector c is equal to :

c =



a
2 + λ (c−a)2

4 + λ (d−a)2

4
b
2 + λ

( f−b)2

4 + λ
(g−b)2

4
c
2 + λ (c−a)2

4 + λ
(g−c)2

4
d
2 + λ (d−a)2

4 + λ (d−a)2

4
e
2 + λ

(g−e)2

4 + λ (e−b)2

4
f
2 + λ

( f−b)2

4 + λ
(h− f )2

4
g
2 + λ

(g−e)2

4 + λ
(g−c)2

4
h
2 + λ (h−d)2

4 + λ
(h− f )2

4


The complete matrix W is shown on equation 3.11.
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W
=

                                                

0
0

λ
(c
−

a)
2

8
λ
(d
−

a)
2

8
0

0
0

0
a 2
+

λ
(c
−

a)
2

4

+
λ
(d
−

a)
2

4

0
0

0
0

λ
(e
−

b)
2

8
λ
(

f−
b)

2

8
0

0
b 2
+

λ
(

f−
b)

2

4

+
λ
(g
−

b)
2

4

λ
(c
−

a)
2

8
0

0
0

0
0

λ
(g
−

c)
2

8
0

c 2
+

λ
(c
−

a)
2

4

+
λ
(g
−

c)
2

4

λ
(d
−

a)
2

8
0

0
0

0
0

0
λ
(h
−

d)
2

8
d 2
+

λ
(d
−

a)
2

4

+
λ
(d
−

a)
2

4

0
λ
(e
−

b)
2

8
0

0
0

0
λ
(g
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If we choose, for example, the path a − c − g, the corresponding vector z then
equals:

z =



1
−1

1
−1
−1
−1

1
−1


.

We define matrix Z as (M + 1)× (M + 1) matrix Z = z̃z̃>, where z̃ =
(
z>, 1

)>.
So we have that

Z =

[
zz> z
z> 1

]
.

In our case, Z is :

Z =



1 −1 1 −1 −1 −1 1 −1 1
−1 1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 −1 1
−1 1 −1 1 1 1 −1 1 −1
−1 1 −1 1 1 1 −1 1 −1
−1 1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 −1 1
−1 1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 −1 1


.

From this example we can see that matrix that matrix Z satisfies Zii = 1, for each
i = 1, ..., M + 1.

Now we will introduce corresponding vectors av, v ∈ V. In our example, we will
have for the start node:

as =



1
1
0
0
0
0
0
0


.

And then we calculate the product of as and z

a>s z =
[
1 1 0 0 0 0 0 0 0

]


1
−1

1
−1
−1
−1

1
−1


= 1+(−1)(2− 1) = 1− 2+ 1 = 2− 2 = 0.
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In our case, As is :

As =



0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0 0 0


.

For nodes between as and ad, we assign value −1 to edges which are in I−v and
we assign value +1 to edges which are in I+v . For example, for vertex v which is
connected with edges a, c, d corresponding vector av and matrix Av will look like :

av =



−1
0
1
1
0
0
0
0


.

And then we calculate the product of ad and z to check if constraint condition is
satisfied.

a>v z =
[
−1 0 1 1 0 0 0 0 0

]


1
−1

1
−1
−1
−1

1
−1


= (−1)1+ 1× 1+(−1)1 = −1+ 1− 1 = −1

This is exactly equal to constraint condition which says that this product should be
equal to difference between number of nodes in previous segment and number of
nodes in next segment. In our case it is 1− 2 = −1.

So for this vertex v, Av is :
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Av =



0 0 0 0 0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
− 1

2 0 1
2

1
2 0 0 0 0 0


.

When we want to run our algorithm, we need to give as input matrices A, a
constraints vector, and a matrix W. As a solution, we get a matrix Z, which, as we
explained in this case, is:

Z =



1 −1 1 −1 −1 −1 1 −1 1
−1 1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 −1 1
−1 1 −1 1 1 1 −1 1 −1
−1 1 −1 1 1 1 −1 1 −1
−1 1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 −1 1
−1 1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 −1 1


.

After matrix Z is obtained, rounding procedures are applied. Our vector z we
can read from matrix Z (last column or row without last element which is equal to
1). So, z = [1,−1, 1,−1,−1,−1, 1,−1].

In the Rounding Procedure 1 we look at the length of collection of edges and then
choose maximum element from each collection. First collection of edges is formed
of edges a, b. We look at length of that collection (in this case it is equal to 2) in
vector z = [1,−1, ∗, ∗, ∗, ∗, ∗, ∗] and we choose max element which is 1. We choose
first element from z. Then we consider second collection of edges which is equal to
c, d, e, f . Now we choose max element from z = [∗, ∗, 1,−1,−1,−1, ∗, ∗], which is
third element from z. At the end we choose edge from collection of edges g, h which
is equal to max element in z = [∗, ∗, ∗, ∗, ∗, ∗, 1,−1].

To sum up, we choose edges z = [1, ∗, 1, ∗, ∗, ∗, 1, ∗]. If we recall, edges are sorted
in this order [a, b, c, d, e, f , g, h]. So, we conclude that chosen path is a− c− g.

Rounding procedure 2 is similar to rounding procedure 1 but selects two max
elements from each collection of edges, after which all paths from the selected edges
are formed. The value of cost function for one path is calculated by inserting the
values of weights of edges into the definition of the cost function. After all the paths
that the selected edges can form are formed, the path which have the lowest value
of the cost function is chosen.

3.4 Implementation

All implementations are done in Python programming language [9]. In our case,
for the input data we have the adjacency matrix, number of segments and lengths
of segments. With this information and using the NetworkX [4] library, we form a
graph. In order to arrive at the SDP formulation, we first need to define the necessary
matrices and constraints. NumPy library [5] was used to construct the matrices and
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vectors. The diagram in Fig 3.6 presents the skeleton of our implementation. In
the first step, we construct the graph, including the edge weights. The weights are
defined through the adjacency matrix for each image pair, which is predefined and
not part of our consideration. It is important to mention that in adjacency matrix we
have an order by segments and then by nodes in segments. After making the graph,
we define lambda (the value for lambda may change at run of the algorithm). The
next step is to define the matrix Q and the vector c. We define vector c from two
parts because the first part refers only to the weights of the edges while the second
part is shown in the previous section. When we define matrix Q and vector c, we
can easily define matrix W. Then we define edge collections, av, Av for all nodes
including source and destination and after that we define constraints vector.

FIGURE 3.6: Steps for SDP form implementation 1

The SDP problem formulation is defined with the CVXPY [1] library while the
SDP problem is solved with the CVXOPT [22] library. Rounding procedures are
implemented with NumPy [5] library. Images for stories are plotted with PIL [10],
skimage [32] and matplotlib [17] libraries. When we define the matrices W, A and
the constraints vector d, we can apply the form SDP and then solve the SDP. As a
result, we obtain the matrix Z from which we observe the vector z (the last column or
row of Z without the last element equal to 1). Then we apply rounding procedures
and get the selected path.
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FIGURE 3.7: Steps for SDP form implementation 2

FIGURE 3.8: The SDP algorithm implementation
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Chapter 4

Experiments

Three types of experiments were performed. The first experiment is about synthetic
data. The goal was to establish how our cost function behaves when one of the
edge weights of the selected path in the graph changes. The second experiment was
performed on a specific type of data, namely on images containing different families
of flowers. The flowers dataset is downloaded from [7]. In this example, we had
4 types of different graph structures and 10 graphs were created for each of these
types. The third type of experiment relates to data of stories from The Edinburgh
Festival 2016.

4.1 Synthetic Data

In this experiment, we tested how the function would behave under different con-
ditions. We have observed a vector of length 5 which is an illustration of the path in
the graph. This graph is hypothetically composed of 4 segments and the source and
destination nodes are added. We tested how the function would behave if one edge
changes and the other two edges connecting adjacent segments were fixed. So in this
path, we fix weights of two edges, and vary third one in order to see how the cost
function will behave. Also we tested how the function would behave if the smooth-
ing parameter changes. The red line in Fig4.2 (and similarly for any other similar
appearances) represents values of the cost function, the green represents the value
of term 1 from cost function and the blue line represents term 2 from cost function
as shown in Fig4.1. The following equation represents term 1 and term 2 in our cost
function.

Term1︷ ︸︸ ︷
∑
e∈E

wexe +λ

Term2︷ ︸︸ ︷
∑

e, f∈E
e, f segment−adjacent

(
we − w f

)2

2
xex f

(4.1)

4.1.1 Unbalanced edge weights

In the following figures we show the results obtained by varying the weight of each
edge. In the first example we vary the weight of first edge, in the second example
we vary the weight of the second edge and in the third example we vary the weight
of the third edge. In each of these three examples, we fix the smoothing parameter
λ to be equal to 1, and also in each of the examples we fix weights of the other two
edges in path. We have 5 cases of fixing two edges in path. They are respectively
equal to 0.01, 0.25, 0.5, 0.75 and 0.99.

We can conclude from the figures that varying the last or first edge weight gives
the similar results, but varying middle one is different. In order to see what happens
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FIGURE 4.1: First edge changes

FIGURE 4.2: Second edge changes

FIGURE 4.3: Third edge changes

when we change the values of λ, we consider a few cases (λ = 1, λ = 3, λ = 5, λ = 8)
which will be discussed in the next section.

4.1.2 Regularization

FIGURE 4.4: λ value changes

In the Fig.4.4 we can see how the function behaves if we change the smoothing
parameter - the parameter that is responsible for regularization. In the Fig.4.4 we
can see an example where the first and the third edge are fixed to value 0.5 and the
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second edge is the edge whose weight value varies. As in the previous figures, the
red line represents the cost function, the green line represents the value of term 1
and the blue line represents the value of term 2. The higher the λ, the greater the
possibility that we can find a path that will be different than the shortest path.

4.1.3 Synthetic Graph

FIGURE 4.5: Synthetic graph structure

After testing how the function would behave with different values of λ and with
different values for edge weights, we implemented how to create matrices, set up an
optimization problem and solve it and then apply rounding procedures. We made a
graph consisting of two segments with two nodes in each segment where the values
for edge weights were chosen by a random function from the interval (0,1). Except
the nodes in the segments, the source and destination nodes are also included. The
edges with one of the source or destination nodes have a weight equal to 0. The
algorithm was run multiple times on the graph of this structure but nothing of what
interests us could be deduced from the results that were numerically only. We know
that for λ value equal to 0 the same path would be obtained as and the shortest
path in the graph (which is logical because the second sum in our equation is equal
to 0 and only the sum of the weight of the edges in the path remains), and for λ
values greater than 1, in most cases the solution is different from the shortest path
in the graph. The higher the value for λ, the greater the probability that the solution
obtained by the algorithm and the shortest path in the graph will differ. Since we
couldn’t deduce anything from the numerical results about the visual "smoothness"
effect, we decided to do an experiment on dataset which contains images.

4.2 Flowers Dataset

In order to examine how the framework works, we have selected a dataset contain-
ing 1360 images of 17 species of different flowers [7]. The 17 flower types are divided
into 8 flower families. To define edge weights for flower graphs in experiments we
use adjacency matrix which is made with ResNet-50 [14] convolutional neural net-
work, pre-trained on the ImageNet [3] dataset for object detection. The softmax layer
(classification layer) is removed and feature maps are average pooled. Each image
is then given as input to the network and the activations of the last convolutional
layers were extracted, average pooled, resulting in vectors of dimension 2048. While
a challenging problem in itself, obtaining the adjacency matrix was not part of our
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work, i.e. we used a predefined adjacency matrix.
We chose this dataset because we know that we can have complete control over the
results, specifically we can define the metric nicely. We decided to evaluate the re-
sults by considering the "correct" result to be where all the images in the path are
images of the same flower or all the images in the path are images from the same
flower family.

FIGURE 4.6: Flowers families

4.2.1 Experimental setup

To test how the algorithm works, we examined 4 types of graphs where each has 4
segments with 3 images each, but with the images in segments chosen in different
ways:

• Fine grain correct solutions: In the first type of graphs in each of the segments
are mixed families of flowers, but there is one same flower in each of the seg-
ments - so we consider that the correct solution is the path that connects those
4 images of the same flower.

• Coarse grain correct solutions: In the second type of graphs, in the first and
the last segments there is the same flower, while in the middle two segments
there is a flower that is from the same flower family as mentioned flower from
the first and the last segment. In this case, the path we are looking for will be
just that path where all the flowers are from the same family.

• Multiple correct solutions: In the third type of graphs, in the first and the last
segments there is the same flower, while in the middle two segments there is
the same flower but also a flower that is from the same flower family. There
are two correct solutions here - one that will find a path of four same flowers,
and another one that will find a path of 4 flowers from the same flower family.
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• No correct solution: In the fourth type of graphs, families of flowers as well
as flowers are mixed in segments. In the middle segments (the second and
the third) there are no flowers from the same flower specie or from the same
family. In this type of graphs, we have two flowers from the same family in the
first two segments and in the last two segments are two flowers from the same
family but that family is different from the family that appears in the first two
segments. In this case we consider that solution is correct if on the chosen path
we have first two flowers from one family and third and fourth flowers from
another family.

4.2.2 Baselines

• SDPS1: This indicates that after we have obtained a solution to the relaxed
problem, we apply the rounding procedure 1. (Explained in previous chapter
in section "Rounding procedures".)

• SDPS2: This indicates that after we have obtained a solution to the relaxed
problem, we apply the rounding procedure 2. (Explained in previous chapter
in section "Rounding procedures".)

• SPS: This means that we apply the shortest path algorithm - find all paths in
the graph such that only one edge is selected between two adjacent segments
and then chose the path that has the smallest value of sum of edge weights.

4.2.3 Working example

The Fig.4.7 represents an example of how the flowers graph looks like. This graph
was created by randomly choosing the images in each segment. It is intended for
illustration purpose only, i.e., it does not belong to the previously described classes
of flowers graphs. As described in the previous chapters, the goal is to select one
image per each column, so that the resulting image sequence is as coherent and as
informative as possible. The SDP algorithm selects the edges and thus determines
the path from which we can deduce which images are selected. The figure also
shows the edge weights. On the right is a column vector representing the edge
weights, sorted as described in the previous chapter (from left to right, see Section
Illustration Graph Example) - from source node to segment 1, then the first image
from segment 1 and all the edges that merge that image with the images in segment
2, then the second image from the segment 1 and so forth.

From the example of flowers graph in Figure 4.7, we obtain through SDP and SP
the paths shown on Figure 4.8; the SP solution path is shown on the top subfigure,
and the SDP solution path is shown on the bottom subfigure.

We can conclude that for the SP solution, the cost function function is equal to :
0.63+ 0.738+ 0.515+ 0( (0.63)2

2 + (0.738−0.63)2

2 + (0.515−0.738)2

2 + (0.515)2

2 ) = 0.63+ 0.738+
0.515 = 1.883.

The solution for the SDP algorithm shown in the figure is obtained with λ equal
to 5. Keeping that in mind, for the SDP solution, we can conclude that the cost
function is equal to : 0.707 + 0.663 + 0.515 + 5( (0.707)2

2 + (0.663−0.707)2

2 + (0.515−0.663)2

2 +
(0.515)2

2 ) = 1.885 + 5(0.249 + 0.001 + 0.01 + 0.035) = 1.885 + 1.475 = 3.36. With the
SDP algorithm in this case we got a path where more flowers belong to the same
flower family. In the SDP solution 3 flowers are from the same family of flowers and
in the SP solution 2 flowers are from the same family of flowers.
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FIGURE 4.7: Example of flowers graph

FIGURE 4.8: Solution paths for flowers graph

4.2.4 Results and Discussion

The SDP algorithm was executed on 40 different graphs. For each of 4 graph types
we made 10 graphs and for each graph we varied λ values. We tested the algorithm
for lambda equal to 0, 0.5, 1, 5, 10.

There are two tables with results for each example. From each experiment we
obtain a path of 4 flower images, and with respect to families result is expressed as
number of images in most popular1 family over number of images in path. In the
first table with results these values are calculated for each of the experiments. The

1The most common family of flower appears on images along the chosen path.
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values are then summed up and divided by the number of experiments. The higher
the value, the better.

In some cases, the SDP algorithm did not find a solution. Specifically, the SDP
algorithm finds the vector z, but with our rounding procedures we do not always
get a path in the graph. Problems occur if the numbers in the z vector are too sim-
ilar. Therefore, for each example there is another table with the results where the
obtained values are summed up as in the first table but not divided by the total
number of experiments. They are divided by the number of experiments that gave a
solution.

Next to each result in the table is written a number in parentheses that represents
how many experiments have yielded solutions.

In each of following experiments, we run algorithm with parameter λ equal to
0, 0.5, 1, 5, 10.

4.2.5 Fine grain correct solutions

FIGURE 4.9: Fine grain correct solutions - Example of shortest path
solution

FIGURE 4.10: Fine grain correct solutions - Example of SDP solution
with λ = 5

In this and also in each of the following examples, one of 10 experiments is se-
lected and the shortest path and the path selected by the SDP algorithm for some
lambda value are presented. In the solution of the shortest path, we see that the
same flowers were selected along the path. The solution of the SDP algorithm shows
flowers that make a path that we consider to be incorrect. However, it can be said
that the chosen path is visually enjoyable because of the colors that appear gradually
with the images. One thing to note is that the algorithm with lambda equals 5 found
a path that is different in 3 segments compared to the shortest path solution. In the
table with results, we see that the larger the lambda, the smaller the values for SDPS1
and SDPS2, which tells us that the solutions are different from SP (in the sense that
in some segments are selected images that the SP algorithm did not select).
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TABLE 4.1: Fine grain correct solutions results averaged with number
of experiments

λ SDPS1 SDPS2 SPS

0 - - 0.650
0.5 0.625 0.650 -
1 0.475 0.600 -
5 0.025 0.275 -
10 0.050 0.200 -

TABLE 4.2: Fine grain correct solutions results averaged with number
of feasible experiments

λ SDPS1 SDPS2 SPS

0 - - 0.650
0.5 0.694 (9) 0.650 (10) -
1 0.678 (8) 0.667 (9) -
5 0.250 (1) 0.392 (7) -

10 0.500 (1) 0.400 (5) -

4.2.6 Coarse grain correct solutions

FIGURE 4.11: Coarse grain correct solutions - Example of shortest
path solution

FIGURE 4.12: Coarse grain correct solutions - Example of SDP solu-
tion with λ = 1

As in the previous example, two solutions obtained from one experiment are
shown. The solution obtained by the shortest path is also considered to be "correct"
here. We can see that in the solution obtained by the SDP algorithm we do not have
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TABLE 4.3: Coarse grain correct solutions results averaged with num-
ber of experiments

λ SDPS1 SDPS2 SPS

0 - - 0.550
0.5 0.275 0.500 -
1 0.275 0.350 -
5 0.150 0.350 -
10 0.175 0.300 -

TABLE 4.4: Coarse grain correct solutions results averaged with num-
ber of feasible experiments

λ SDPS1 SDPS2 SPS

0 - - 0.550
0.5 0.392 (7) 0.500 (10) -
1 0.392 (7) 0.388 (9) -
5 0.300 (5) 0.350 (10) -

10 0.430 (4) 0.300 (10) -

a path that is made by the same flower family. However, we can say that the path
obtained by the SDP algorithm is harmonious. In this example, we see that the SDP
algorithm with the lambda value equal to 1 has found a solution that is completely
different from the solution obtained by shortest path.

4.2.7 Multiple correct solutions

FIGURE 4.13: Multiple correct solutions (fl - fl - fl -fl) - Example 1 of
shortest path solution

Unlike the first two examples, this example shows two solutions from two ex-
periments. Since we have two cases of "correct" solutions in this experiment, we
introduce the labels fl-fl-fl-fl (flower - flower - flower - flower) and fl-fa-fa-fl (flower
- family - family - flower) to clearly indicate which path and which tables they refer
to which case. In the first example, the SDP solution is considered to be "correct"
with a lambda value equal to 1. In this example fl - fl - fl -fl (flower - flower - flower
- flower) means path of 4 same flowers.
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FIGURE 4.14: Multiple correct solutions (fl - fl - fl -fl) - Example 1 of
SDP solution with λ = 1

TABLE 4.5: Multiple correct solutions results (fl - fl - fl -fl) averaged
with number of experiments

λ SDPS1 SDPS2 SPS

0 - - 0.650
0.5 0.425 0.650 -
1 0.125 0.775 -
5 0.075 0.500 -
10 0.100 0.500 -

FIGURE 4.15: Multiple correct solutions (fl - fa - fa -fl) - Example 2 of
shortest path solution

In the second example we have example with fl - fa - fa - fl (flower - family
- family - flower). In this case we have solutions where the first, the second and
the third flower are from the same family, but only second and third flower are the

TABLE 4.6: Multiple correct solutions results (fl - fl - fl -fl) averaged
with number of feasible experiments

λ SDPS1 SDPS2 SPS

0 - - 0.625
0.5 0.850 (5) 0.650 (10) -
1 0.625 (2) 0.860 (9) -
5 0.375 (2) 0.500 (10) -
10 0.500 (2) 0.500 (10 ) -
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FIGURE 4.16: Multiple correct solutions (fl - fa - fa -fl) - Example 2 of
SDP solution with λ = 5

TABLE 4.7: Multiple correct solutions results (fl - fa - fa -fl) results
averaged with number of experiments

λ SDPS1 SDPS2 SPS

0 - - 0.625
0.5 0.45 0.625 -
1 0.139 0.750 -
5 0.125 0.500 -
10 0.100 0.500 -

same. Both the SDP solution and the shortest path solution are the same accuracy
because they differ in the fourth segment where no path contains flowers from the
same flower family. Also the solutions of the SDP algorithm and the shortest path
solution differ in the second segment. Both solutions contain flowers belonging to
the same flower family. The shortest path solution contains a flower that is the same
as the flower in the first segment, while the SDP algorithm solution contains a flower
that is the same as the flower in the third segment.

TABLE 4.8: Multiple correct solutions results (fl - fa - fa -fl) results
averaged with number of feasible experiments

λ SDPS1 SDPS2 SPS

0 - - 0.625
0.5 0.900 (5) 0.625 (10) -
1 0.625 (2) 0.833 (9) -
5 0.625 (2) 0.500 (10) -
10 0.500 (2) 0.500 (10 ) -
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TABLE 4.9: No correct solutions results averaged with number of ex-
periments

λ SDPS1 SDPS2 SPS

0 - - 0.400
0.5 0.325 0.475 -
1 0.150 0.425 -
5 0.150 0.312 -
10 0.08 0.125 -

4.2.8 No correct solutions

FIGURE 4.17: No correct solutions - Example of shortest path solution

FIGURE 4.18: No correct solutions - Example of SDP solution with
λ = 0.5

This example differs from the previous examples by calculating the results in the
tables. As two families of flowers can be found here on the path, the results are di-
vided separately for the first part of the path (so values are divided by 2 and not by 4
as in the previous examples because we look at the path of length two) and after that
the second part of the path is considered (since we have four segments in total, the
length of second part of path is also length two). Subsequently, the results were sum-
marized and averaged and thus the tables presented in this subsection were created.
In the number of experiments that gave the solution, if an odd number is divided by
two, it is rounded up.

To summarize, it can be concluded from all the experiments that a higher value
for the smoothing parameter will cause the path selected by the SDP algorithm to
be different from the path obtained through the SP algorithm. Rounding Procedure
2 proved to be better than Rounding Procedure 1 because in several experiments
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TABLE 4.10: No correct solutions results averaged with number of
feasible experiments

λ SDPS1 SDPS2 SPS

0 - - 0.400
0.5 0.406 (8) 0.475 (10) -
1 0.500 (3) 0.425 (10) -
5 0.750 (2) 0.406 (8) -

10 0.375 (2) 0.218 (8) -

it gave solutions (where Rounding Procedure 1 did not give a solution, Rounding
Procedure 2 was mainly able to find a solution). The more different the value in
the tables from the value obtained for the SP are more likely it is that the solutions
obtained with the SDP algorithm and SP algorithm will differ.

4.3 Social media storytelling

This section presents experiments involving data and images from the Edinburgh
Festival 2016. The data we received and used for our experiments consist of the
story name, segment title, the images arranged by segments and adjacency matrix
which we use to make a graph. In this section we show 4 examples of stories. Each
story has 4 segments and each segment has 4 images. For each example, the solution
obtained by the SDP algorithm (indicated in the figures with ’SDP’) is shown and the
solution obtained by the shortest path algorithm (indicated by ’SP’ in the figures) is
also shown. The name of the story is shown for each story, as well as the titles by
segment.

In [21] it was explained how to select images that are illustrating candidates in
segments for a particular story. This was not part of our work. In the following para-
graph, we explain how the data on which we applied our algorithm was made. For
an image to represent a segment, it must be a relevant image. Retrieval information
techniques such as text retrieval methods have been used. Based on text processing
of the documents, images that are relevant to represent a particular segment were
found. The relevance in these stories is calculated via the BM25 baseline. BM25 is a
ranking function that evaluates the relevance of a document [34]. BM25 baseline is a
new method from [21], consisting of few steps. The first step is text processing (stop
words and stemming filter) for social media posts and text describing segments. The
second step is using the BM25 method to rank the publications containing the im-
ages that are relevant to describe a given segment. The output of this method are
images that are relevant to describe the segment (images from top ranked publica-
tions) [21].

The relevance of the images is important, but the transitions from image to im-
age in adjacent segments are also important. In [21] the authors define the transition
distance between two sequential images based on certain image features. Features
that were used in [21] are luminance, color correlogram, number of edges, color mo-
ment, pHash, entropy, concepts, CNN dense, environment, scene category, scene
attributes. The adjacency matrix (edge weights in our graph) is made of transition
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Story Segment 1 Segment 2 Segment 3 Segment 4
Joyful Moments
at EdFest2016

Standing Ovations
and Applauses

Selfies
People Drinking
and Eating

Evenings at
EdFest2016

Scottish Elements Bagpipes Food and drink Outfits Military parade
Edinburgh
Festival
attractions

Music shows
Theater and
Comedy

Circus Street Performances

Street
Performances

The Edinburgh
Festival is home
to one of the
most unique
celebrations of arts

Street circus is
a popular attraction
at Edinburgh
Festival with
several artists
such as unicycle
jugglers

Street circus
is full of
colorful artists

Bagpipes

distances. In order to make transition distances, distance features are used. For tran-
sition features in our case, the penultimate layer of a ResNet50 is used, the first color
moment, color histogram and concepts extracted from the ResNet50. A detailed ex-
planation can be found in [21].

In the examples from the flowers dataset, it turned out that the SDP algorithm
would almost certainly find at least one different image on the path than the SP algo-
rithm if the smoothing parameter was equal to 5 or 10. Therefore, we decided to put
the smoothing parameter to be 8 in these experiments. So, the smoothing parameter
in all examples is equal to 8.

FIGURE 4.19: Story 1

In the example of the Story 1, we see that the solution of the SDP algorithm and
the solution of the SP algorithm differ in the fourth segment, where the SDP selected
an image that more closely matches the name of the segment. We can see that the
image representing segment 4 in solution of the SDP algorithm is more consistent
with the description of the segment than the image representing segment 4 from the
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solution of the SP algorithm. From the solution of the SP algorithm in the image rep-
resenting the third segment cannot be concluded that it has something to do with
the evenings.

Similar results as for Story 1 were obtained with Story 2. The SDP algorithm so-
lution and the SP algorithm solution again differ in only one segment, like in Story
1, in this case the last segment is concerned. Unlike Story 1, in the example of Story
2, we see that the images representing the fourth segment obtained by the SDP algo-
rithm and the SP algorithm both correspond to the segment description. However,
we can conclude that the image obtained by the SDP algorithm is more visually con-
sistent with colors - if we look at the transition from third segment to fourth segment.

FIGURE 4.20: Story 2

In the example of Story 3, the solution of the SDP algorithm and the solution of
the SP algorithm differ in two segments. When solving the SDP algorithm, it can
be noticed that both the image illustrating the segment 3 and the image illustrating
the segment 4 correspond more to the description of the segment than the images
obtained by the SP algorithm.

In the example of Story 4, we have the biggest difference between the SDP al-
gorithm solution and the SP algorithm solution. The paths obtained with the two
mentioned algorithms differ in 3 segments. On the solution of the SDP algorithm,
we see that in the second segment, theater is presented, while on the solution of the
SP algorithm, a group of people is shown. Also, in segment 3, on solution of SDP
algorithm can be seen in the distance as if a circus tent was installed, while solution
of algorithm again has a selected image of a group of people. In the pictures illus-
trating the fourth segment, both the SDP algorithm solution and the SP algorithm
solution, can be seen street performance.

In the examples of the stories presented in this chapter, we can say that the so-
lution of the SDP algorithm turned out better than the solution of the SP algorithm.
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FIGURE 4.21: Story 3

FIGURE 4.22: Story 4

Although the complexity of the SDP algorithm is always greater than the complexity
of the SP algorithm (for the SP algorithm, λ is equal to zero, and therefore term 2 will
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always be zero), in some cases it is still worth trying to find a solution through the
SDP algorithm .
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Chapter 5

Conclusion and Future Work

Mathematical models are prevalent in many fields today. A common approach is to
model a real life problem as an optimization problem. The main challenge of such
an approach is to define the problem in the right way, using appropriate constraints.

Our algorithm has shown promising results in the experiments performed, both
on real and synthetic data. However there are some downsides of the proposed
algorithm.

The implementation of the SDP algorithm itself is much more demanding than
the implementation of the shortest path algorithm. In addition, the source and desti-
nation nodes we added may create a problem in the sense that due to the definition
of the cost function, a path that is not as balanced as possible can be selected.

For example, say we have two paths in a graph (graph with source and destina-
tion artificial nodes added) where one path is of edge weights 0− 0− 0.7− 0− 0 and
another one is of edge weights 0− 0.5− 0.1− 0.5− 0. So, path 0− 0.5− 0.1− 0.5− 0
is considered to be as balanced as possible. If we set λ to be equal to 2, the SDP
algorithm, due to definition of cost function, will give us for path
0− 0− 0.7− 0− 0 :

0 + 0 + 0.7 + 0 + 0 + (0.72 + 0.72) = 1.48

For the path 0− 0.5− 0.1− 0.5− 0 we will get :

0 + 0.5 + 0.1 + 0.5 + 0 + (0.52 + 0.42 + 0.42 + 0.52) = 1.92

In this case 1.48 < 1.92, so the SDP algorithm will choose the path 0− 0− 0.7−
0− 0 which is not as balanced as possible.

If we consider our cost function but without adding source and destination nodes,
for the path 0− 0− 0.7− 0− 0 we will get cost function :

0 + 0.7 + 0 + (0.72 + 0.72) = 1.48

and for the path 0− 0.5− 0.1− 0.5− 0 we will get value of cost function:

0.5 + 0.1 + 0.5 + (0.42 + 0.42) = 1.42

In this case 1.42 < 1.48, the SDP algorithm will chose the path 0− 0.5− 0.1−
0.5− 0 which is the path as balanced as possible.

Keeping that in mind, it would be interesting to reformulate the algorithm on
the problem such that in the cost function, the adders related to the source and des-
tination node are thrown out. This would avoid the problem that may arise in our
case.
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In future work, it would also be interesting to try another rounding procedure.
There are many rounding procedures and it would certainly be possible to obtain a
different solution and thus a different path would be found in the graph.

Apart from the application in creating visual stories, this approach could be used
for example in travel agencies. In travel agency offers, segments would represent
parts of the trips - segments in that case could represent locations or segments could
represent daily travel plans.

The approach could also be applied to real estate agencies, where segments could
represent different premises in apartments.

In the following figure we can see an example of a path in a graph where seg-
ments are kitchen[15], bathroom[26], living room[23], bedroom[19]. On the other
example we can see that segments are cities - places which are included in tour of
travel agency offer. Segments are Lisbon [16], Cascais [6], Sintra [28] and Cabo da
Roca [18].

FIGURE 5.1: Future work example 1

FIGURE 5.2: Future work example 2

These are of course not the only options where this approach could be applied.
Any collection of images that can be divided into segments and where we can define
some kind of relationship between the images can be good material for this kind of
algorithm.
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5.1 Flexibility of framework

• There are many ways to modify the objective function. For example error func-
tions can be arbitrarily selected. One possibility is to replace the error function(
we − w f

)2 with
∣∣we − w f

∣∣2. So, our cost function in (3.1) :

∑e∈E wexe + λ ∑ e, f∈E
e, f segment−adjacent

(we−w f )
2

2 xex f ,

will look as follows:

∑e∈E wexe + λ ∑ e, f∈E
e, f segment−adjacent

|we−w f |
2 xex f .

• Another interesting thing that could improve the algorithm is to introduce dif-
ferent λ for adjacent segments. In the case of 4 segments, there would be 3
lambdas: λ12 - λ between first and second segment, λ23 - λ between second
and third segment and λ34 - λ between third and fourth segment. With this we
would make the path smoother in some parts than in others - depending on
what we want to achieve.

To sum up, although the complexity of the SDP algorithm is greater than that of
the SP algorithm, it is also more flexible than that of the SP algorithm. Apart from its
application in creating visual storylines, the SDP algorithm could find application in
various fields. In addition to the examples mentioned above, we leave the reader to
consider further applications.
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she finished high school "Žarko Zrenjanin" in Vrbas. She
recieved her Bachelors degree in Applied Mathematics in
2017 at Faculty of Sciences, University of Novi Sad, and she
continued her Master studies in the field of Data Science at
the same faculty. After passing all the exams, she spent two
months in Lisbon doing her master’s degree research in col-
laboration with the NOVA School of Science and Technol-
ogy, NOVA University of Lisbon.



UNIVERZITET U NOVOM SADU
PRIRODNO-MATEMATIČKI FAKULTET
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u grafu kako bi pronašao najskladniji niz slika koji će ilustrovati odred̄en dogad̄aj. U
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Član: dr Miloš Stojaković, redovni profesor
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