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Novi Sad, September 2019





Declaration of Authorship
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Data mining with privacy guarantees

Decision trees with differential privacy

Author: Jelena Novaković

Abstract

With the rise of Internet of Things where various devices, sensors, software,
etc. are collecting all kinds of data about our physical world, including
humans, privacy preservation is becoming increasingly challenging. The
European Union’s General Data Protection Regulation (GDPR) that came
into force on May 25th, 2018, aims to give control to the citizens regarding
the use of their personal data by businesses and enterprises, by defining re-
quirements for processing this kind of data. Specifically, the GDPR requires
that any business process must implement data protection by design and by
default.

One principled approach to achieve this in the context of data mining
is the mechanism of differential privacy. With differential privacy, there
is a guarantee that individual records of a dataset cannot be learned even
when an arbitrary external information is provided. This is achieved by
introducing randomness, by the data curator, into response to queries, posed
by machine learning algorithms to the database. The size of the randomness
is controlled by the, so called, epsilon factor, or the privacy budget that
trades-off the level of achieved privacy with performance of the machine
learning algorithm in question.

Depending on a given machine learning algorithm, there are many ways
in which one can implement differential privacy. In practice, the latter
translates into the question at what level of the algorithm and what kind of
queries will be perturbed by noise.

This master thesis aims at surveying different differential privacy schemes
and the resulting system architectures. Specific examples that will be used
for illustration of general principles for query perturbation will include de-
cision tree algorithm, i.e., two commonly used differentially private deci-
sion tree algorithms will be described theoretically and implemented on real
datasets.
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1 Introduction

Historically, privacy was almost implicit,
because it was hard to find and gather
information. But in the digital world,
whether it’s digital cameras or satellites
or just what you click on, we need to
have more explicit rules - not just for
governments but for private companies.

Bill Gates

In the past decades, private companies, governments, hospitals, social
networks etc. have been collecting vast amount of digitized personal infor-
mation about the individuals who are theirs clients, customers or patients.
Collected data created opportunities for improvement of human well-being
in various ways. For example, medical data can be used and analysed in
order to prevent epidemics, discover hidden connections between diseases,
track the spread of a disease, etc. While it is very useful to gain knowledge
from the data, it is also important to preserve the privacy of the individuals
who are participating in the research. Since the collected data may be highly
sensitive in terms of privacy (e.g., personal information like name, surname,
tax and national ID number, address, etc. ), data owners must find a way
to protect the data from any attack.

In this thesis, we will describe one solution that preserves data privacy.
The solution relies on the implementation of differential privacy within ma-
chine learning algorithm decision tree.

The thesis consists of 8 chapters organized as follows. Chapter 2 - Pri-
vacy preservation techniques reviews the related work on the privacy preser-
vation methodologies. Chapter 3 - Differential privacy explains in more
details the main concept of Differential Privacy, its properties and mech-
anisms. Chapter 4 - Data mining with differential privacy describes two
commonly used approaches for applying differential privacy in data mining.
Chapter 5 - Decision tree algorithm reviews the basic workflow of decision
tree algorithm in non-private scenario. Chapter 6 - Differentially private
decision tree algorithm introduces two versions of differentially private deci-
sion tree algorithm, each covering first the theoretical background and then
implementation in Python. Chapter 7 - Experimental results explains test-
ing setups and discusses the results. Chapter 8 - Conclusion summarizes the
whole work and proposes ideas and directions for future work and improve-
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ments. Finally, in Appendix we added Python script developed for testing
the presented algorithms.
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2 Privacy preservation techniques

In this chapter we will review some of the most commonly used privacy
preservation techniques developed before differential privacy. We will briefly
explain how they work and why they were not sufficient for privacy protec-
tion.

2.1 Anonymization

Personally identifiable information (PII) is any data that can be used to
identify individuals, either directly or by combining the information with
other data. For example, name, social security number and mobile phone
number of an individual are all instances of PII.

Data anonymization is the process of either encrypting or removing per-
sonally identifiable information from a dataset in order to protect the privacy
of the individuals. The main goal of the anonymization is to ensure that
any individual’s PII will not be disclosed by releasing the data and yet to
provide valuable data for the analysis.

Even though it sounds like the process of anonymization should perfectly
protect individual’s privacy, in 1997 Latanya Sweeney, then MIT graduate
student in computer science, demonstrated the opposite [1], [2]. She had
shown that the information about the individuals in in the published dataset
with identifying information removed, could still be uniquely re-identified.
She also found that 87% of the American population can be uniquely iden-
tified by date of birth, gender and postal code1.

1Sweeney’s studies in computational disclosure control had brought to her attention
hospital records data released to researchers by the Massachusetts Group Insurance Com-
mission (GIC) for the purpose of improving healthcare and controlling costs [2]. At the
time GIC released the data, William Weld, the Governor of Massachusetts, assured the
public that GIC had protected patients’ privacy by deleting personally identifiable infor-
mation of the patients. In order to demonstrate the opposite, Sweeney started hunting
for the Governor’s hospital records in the GIC data (she knew that he had collapsed in
public earlier that year). For twenty dollars, she purchased the complete voter rolls from
the city of Cambridge. The purchased database contained, among other things, the name,
address, ZIP code, birth date, and gender of every voter. By combining this data with
the GIC records, Sweeney easily found Governor Weld. Only six people in Cambridge
shared his birth date, only three of them were men, and only he lived in his ZIP code. In
a theatrical flourish, Dr. Sweeney sent the Governor’s health records to his office [2].
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This identity disclosure motivated scientists to search for better solutions
for privacy preservation that simple identity suppression. The following
subsection introduces three more advanced privacy protection techniques:
K-anonymity, L-diversity and T -closeness.

2.2 K-anonymity, L-diversity and T -closeness

K-anonymity

The idea of K-anonymity is to protect the privacy of the data by using
quasi-identifiers.

Quasi-identifiers are the attributes that can be used jointly to identify
a person or a group of persons, such as gender, ZIP code, profession, birth
date, race, etc. In the Sweeney example, neither birth date, nor ZIP code or
sex could identify an individual, but thier combination is likely to achieve
this.

K-anonymity is a privacy property requiring that all combinations of
quasi-identifiers in a database are repeated for at least k individuals [3].
This technique was proposed by Samarati and Sweeney [1] and it guarantees
that whenever an attacker uses a quasi-identifier to attack a user, he/she
will always obtain at least K similar candidates [30]. Hence the probability
of re-identification of a particular individual in the database is 1

K .
K-anonymity provides stronger privacy protection than anonymization,

but it still has some weaknesses. For example, if an attacker wants to find
out whether or not a certain individual in a K-anonymous dataset has cancer
and the group of individuals with the same quasi-identifiers (e.g., birth year
and city) all have cancer, it is obvious that the privacy of the information is
still compromised. If the attacker knows the individual’s birth year and city,
even though the observed dataset is K-anonymous, he can easily conclude
that the individual has cancer, because he knows that all individuals in the
dataset that are born in the same year and living in the same city as the
observed individual are ill. This example shows us that K-anonymity can
create groups that leak information due to lack of diversity in the sensitive
attribute.

L-diversity

The L-diversity models are proposed to deal with the drawbacks of K-
anonymity technique. L-diversity requires the sensitive information in an
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anonymous group, i.e., group of individuals with the same quasi-identifiers,
must have enough “diversity” [30]. More formally, a dataset is said to satisfy
L-diversity if, for each group of individuals sharing a combination of quasi-
identifiers, there are at least L “well-represented” values for each confidential
attribute [3].

T -closeness

T -closeness requires the distribution of sensitive information in any anony-
mous group must be close enough to the distribution of the whole dataset [30].
A data set is said to satisfy t-closeness if, for each group of individuals shar-
ing a combination of quasi-identifiers, the distance between the distribution
of the confidential attribute in the group and the distribution of the attribute
in the whole data set is no more than a threshold t [3].

The biggest weakness of the privacy protection techniques described in
this subsection is the need of predefining the background knowledge of the
attackers. In order to define quasi-identifiers, data owners must know the
level of knowledge of the attackers, which is quite a strong requirement. If
the background knowledge of the attackers is unknown, the protection may
fail completely.

Unlike previous methods for privacy protection, mechanisms of differen-
tial privacy provide a powerful privacy protection which does not require any
insights into the structure of knowledge of the attackers. The next chapter
reviews differential privacy mechanisms.
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3 Differential privacy

The main goal of data analysis and machine learning is to extract useful
information about the data, such as how to find clusters of similar samples,
how to predict a certain quantity or how to classify the data. The output
model of machine learning algorithms can be used to represent the distribu-
tion of the analysed data or to deal with future data. Therefore, the model
encodes information about analysed data.

On the other hand, the goal of privacy preservation in data mining is
to protect the privacy of the data. It is obvious that machine learning and
privacy preservation are in opposition, but it is not impossible to achieve
both. The solution for this problem is to make machine learning more
privacy aware and to find optimal trade-off between the privacy protection
and data analysis. The objective of privacy aware data analysis is to discover
useful information without sacrificing the privacy of any individual in the
database.

Differential privacy is a powerful definition for privacy preservation pro-
posed by Cynthia Dwork, and it is one of the most popular definitions of
privacy today [4], [5], [6]. Google and Apple were the first two companies
that implemented differential privacy in their businesses [18], [16]. Differen-
tial privacy is based on the idea that the outcome of the statistical analysis
is essentially equally likely independent of whether any individual joins or
refrains from joining the database, i.e., one learns approximately the same
thing either way [11]. Differential privacy addresses the paradox of learn-
ing nothing about an individual while learning useful information about a
population [4].

The following subsections formally define differential privacy and intro-
duce commonly used methods and mechanisms for achieving differential pri-
vacy.

3.1 Preliminaries

First we will introduce some basic concepts and notations which will be
helpful later.

Let D be the dataset with n samples, where each sample has d features.

Neighboring datasets: Two datasets D1 and D2 (subsets of D) are
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called neighboring if they have the same cardinality but differ in only one
record.

Query: A query q is a mapping that maps dataset D to the set of real
numbers, i.e., q : D 7→ IR. A group of queries is denoted by Q.

Differential privacy provides a randomized mechanism M to mask the
difference of query q between two neighboring datasets D1 and D2 [15]. The
maximal difference on the results of query q is known as the l1 sensitivity
of the query q. l1 sensitivity is then used to define how much perturba-
tion is required in order to preserve privacy of the desirable answer. The
randomized mechanism M can be consider as an algorithm which accesses
the dataset and performs some functionality, while ensuring required level
of privacy. For example, if we add noise σ to the query result q (D), then
the noisy answer q̂ (D) denotes the randomized answer of query q.

Randomization is an essential element of privacy preservation based on
differential privacy. Actually, any non-trivial privacy guarantee that holds
regardless of all present or even future sources of auxiliary information,
including other databases, studies, Web sites, online communities, gossip,
newspapers, government statistics, and so on, requires randomization [4].
And why is that? Well, let us suppose the contrary. Suppose that there
exists a query q and two datasets D1 and D2 that yield different outputs,
q1 and q2, under the query q. Changing one record at a time we see there
exists a pair of datasets differing in only one record, on which the same
query yields different outputs, and knowing that the dataset is one of these
two almost identical datasets, an adversary learns the value of the data in
the unknown record. By masking the difference of the outputs q1 and q2,
differential privacy promises that an adversary learns nothing more about an
individual record regardless of its present in the dataset. The next subsection
gives the formal definition of differential privacy.

3.2 Definition of differential privacy

Differential privacy gives a promise that releasing the aggregated results
should not reveal too much information about any individual record in the
dataset. More formally:

Definition 1 ((ε, δ) - differential privacy) [4].
A randomized mechanism M provides (ε, δ) - differential privacy if for
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all Ω ⊆ Range(M) and for any pair of neighboring datasets D1 and D2,M
satisfies:

Pr[M(D1) ∈ Ω] ≤ exp(ε) · Pr[M(D2) ∈ Ω] + δ.

For δ = 0, M provides ε-differential privacy. More formally,

Definition 2 (ε - differential privacy) [7].
A randomized mechanism M provides ε - differential privacy if for all

Ω ⊆ Range(M) and for any pair of neighboring datasets D1 and D2, M
satisfies:

Pr[M(D1) ∈ Ω] ≤ exp(ε) · Pr[M(D2) ∈ Ω].

The ε-differential privacy provides stronger privacy guarantee than the
(ε, δ) - differential privacy. Because of that, for the rest of the thesis, we will
focus on the ε-differential privacy.

Let us explain the previous definition in more details. From Definition 1,
for δ = 0 we have:

Pr[M(D1) ∈ Ω]

Pr[M(D2) ∈ Ω]
≤ exp(ε).

Furthermore, considering that we can exchange D1 and D2, Definition 1
implies:

exp(−ε) ≤ Pr[M(D1) ∈ Ω]

Pr[M(D2) ∈ Ω]
≤ exp(ε).

Finally, since exp(ε) ≈ 1 + ε, for ε small enough, we have:

1− ε ≤ Pr[M(D1) ∈ Ω]

Pr[M(D2) ∈ Ω]
≤ 1 + ε.

So, Definition 1 claims that, for ε small enough, the probability that the
output of the mechanismM over dataset D1 falls into the set of outcomes Ω
is nearly the same as the probability that the output of the mechanism M
over datasetD2 falls into the same set of outcomes. Thus, as it is presented in
Figure 1, differential privacy ensures that observing the output of mechanism
M over the two neighboring datasets, an adversary learns nothing more
about an individual record regardless of whether the record is present or
absent in the analysis.
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Figure 1: Definition of Differential Privacy [46], [47], [49]

Parameter ε from Definition 1, is called the privacy budget [15]. Privacy
budget controls the level of privacy of the mechanismM. Smaller values of ε
imply stronger privacy. After introducing differentially private mechanisms,
we will review commonly used properties of the privacy budget in subsection
3.4 Composition Theorems.

3.3 Differentially private mechanisms

After formal definition of differential privacy, we will explain in which ways
differential privacy can be achieved in practice.

There are three widely used mechanisms that achieve differential privacy:
Laplace mechanism, Gaussian mechanism and Exponential mechanism. In
our work we implemented Laplace and exponential mechanisms, which we
will now define.

3.3.1 Laplace mechanism

Laplace mechanism is used for numeric types of queries. For example, if one
were to apply a query that counts the number of records in a dataset, then
the Laplace mechanism should be used. The mechanism is very simple. It
consists of adding Laplacian noise to the answer of query q before returning
the result to the data analyst (i.e., data mining algorithm). The addition of
noise is sampled from the Laplace distribution shown in Figure 2, and the
scale of noise is calibrated to the sensitivity of query q divided by ε.

Before we give a formal definition of Laplace distribution and Laplace
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mechanism, we will introduce l1 sensitivity - one of the important parameters
that determines how accurately we can answer numeric queries.

Definition 3 (l1 sensitivity) [4].
The l1 sensitivity of a function f : D 7→ IR is:

∆f = max
D1,D2⊆D
‖D1−D2‖1=1

‖f(D1)− f(D2)‖1.

The l1 sensitivity of a function f is the parameter that defines the amount
of perturbation required in the differentially private mechanisms. It captures
the magnitude by which a single individual’s data can change the function
f in the worst case, and therefore, the uncertainty in the response that we
must introduce in order to hide the participation of an individual. The l1
sensitivity of a function is defined, in a sense, for the worst case neighboring
database pair and because of that it gives an upper bound on how much we
must perturb its output to preserve privacy [4].

Definition 4 (The Laplace Distribution) [4].
The Laplace Distribution (centered at 0) with scale b is the distribution

with probability density function:

Lap(x|b) =
1

2b
exp (−|x|

b
).

The variance of this distribution is σ2 = 2b2. We will write Lap(b) to
denote the (0-centered) Laplace distribution with scale b.

The Laplace mechanism is formally defined as:

Definition 5 (The Laplace Mechanism) [15], [8].
Given a function q : D 7→ IR over a dataset D, the Laplace mechanism,

denoted by ML, is defined as:

ML(D, q, ε) = q(D) + Lap

(
∆q

ε

)
,

where ∆q denotes the l1 sensitivity of query q.
It is easy to show that Laplace mechanism, ML(D, q, ε), satisfies the

following property.
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Figure 2: Laplace distribution

Theorem 1. The Laplace mechanism preserves ε-differential privacy [4].

The Gaussian mechanism has quite similar principle as the Laplace mech-
anism. It works in analogous way, except that the noise is now sampled from
the Gaussian distribution instead of Laplacian.

3.3.2 Exponential mechanism

Even though the Laplace mechanism is a powerful method that ensures dif-
ferential privacy, it can not be applied to non-numeric (categorical) queries.
For that reason, the exponential mechanism has been proposed. The expo-
nential mechanism represents another way to implement differential privacy
and it is suitable for categorical queries. It was designed for situations in
which we wish to choose the “best” response but adding noise directly to the
computed quantity can completely destroy its value. Example include set-
ting a price in an auction where the goal is to maximize revenue. If we add
the small amount of Laplacian noise to all of the observed prices (in order to
protect the privacy of a bid), before choosing the best one (the one that max-
imizes revenue) we could dramatically reduce the resulting revenue [4]. The
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exponential mechanism is the natural building block for answering queries
with arbitrary utilities (and arbitrary non-numeric output), while preserving
differential privacy.

Given some arbitrary range R, the exponential mechanism is defined
with respect to some utility (quality) function u : D×R 7→ IR, which maps
dataset-output pairs to utility scores. Intuitively, for a fixed dataset D,
the user prefers that the mechanism outputs some element of R with the
maximum possible utility score. The sensitivity of the utility score u, ∆u,
is defined as the largest possible difference in the utility score when applied
to two inputs that differ only on a single record, for all r [12].

∆u = max
r∈R

max
D1,D2⊆D
‖D1−D2‖1=1

‖u(D1, r)− u(D2, r)‖1 [4].

The intuition behind the exponential mechanism is to sample the out-
come from the probability distribution induced over the output domain of
the utility function u, i.e., to output each possible r ∈ R with probability
proportional to exp ε(u(D,r)

2∆u
). Mechanism gives strong utility guarantees,

because it discounts outcomes exponentially quickly as their quality score
falls off.

The exponential mechanism is formally defined as:

Definition 6 (Exponential Mechanism) [4].
The exponential mechanism ME(D,u,R, ε) selects and outputs an ele-

ment r ∈ R with the probability proportional to exp ε(u(D,r)
2∆u

).
The following property holds.

Theorem 2. The exponential mechanism preserves ε-differential pri-
vacy [4].

More details about differentially private mechanisms as well as proofs of
Theorem 1 and Theorem 2 can be found in [4].

One useful property of differential privacy that makes it much more
practical is composability. Next subsection introduces two commonly used
composition theorems.
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3.4 Composition theorems

Now that we have several building blocks for designing differentially private
algorithms, we want to understand how we can combine them to design more
sophisticated algorithms. In order to use these tools, we would like that the
combination of two differentially private algorithms be differentially private
itself [4]. In this subsection we give theorems showing the parameter ε
compose when differentially private algorithms are combined.

There are two basic privacy budget compositions which are widely used
in practice: the sequential composition and the parallel composition. Se-
quential composition guarantees that a sequence of k mechanisms applied
on the same dataset, where each of them ensures ε-differential privacy, will
ensure (k · ε)-differential privacy. Suppose now that we would like to apply a
sequence of k mechanisms on a k disjoint subsets of a given dataset D, such
that each of the k mechanisms is applied on exactly one subset of D. Parallel
composition states that the final mechanism that includes the combination
of k ε-differentially private mechanisms will also ensure ε-differential pri-
vacy. In other words, the privacy cost of multiple queries applied to the
same data composes (i.e., is summed together), and a single query applied
to different subsets of data (with no overlapping records) can be posed in
parallel at no extra cost [34].

3.4.1 Sequential composition

Theorem 3 (Sequential Composition) [15], [14].
Suppose that a set of privacy mechanisms M = {M1,M2, ...,Mk} are

sequentially performed on a datasetD, where eachMi provides εi-differential
privacy. Then M will provide (ε1 + ε2 + · · ·+ εk)-differential privacy.

Sequential composition helps us in scenarios where we have a series of
randomized mechanisms performed sequentially on a dataset, i.e., it guaran-
tees privacy for a sequence of differentially private computations. Property
says that the privacy budget will be added up (or, alternatively, reduced
from the total budget epsilon) for each step of mechanism M.
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3.4.2 Parallel composition

Theorem 4 (Parallel Composition) [15], [10].
Suppose we have a set of privacy mechanisms M = {M1,M2, ...,Mk}.

Furthermore, suppose that each Mi provides εi-differential privacy on dis-
jointed subsets of the dataset D. Then the sequence of Mi will provide
max {ε1, ε2, ..., εk}-differential privacy.

The parallel composition property is used in cases where each Mi is
implemented on disjointed subsets of a dataset D. The property says that
the final privacy guarantee only depends on the largest privacy budget.
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4 Data mining with differential privacy

Combining differential privacy with data mining and machine learning al-
gorithms is not an easy task. There are various situations that can happen
during differentially private data mining, so every single step should be pre-
defined well. The goal is to find a trade-off between the privacy and the
utility of the machine learning algorithm. Before we explain two basic ap-
proaches for achieving differentially private data mining, we will assume the
existence of a trusted and trustworthy curator (data owner) who holds the
data of individuals in a database D. The intuition is that each record of the
database D contains the data of a single individual, and the privacy goal is
to simultaneously protect every individual record while permitting statisti-
cal analysis of the database as a whole [4]. Data mining with differential
privacy can be achieved with two basic approaches: interactive approach
and non-interactive approach [4], which we explain next.

4.1 Interactive approach

Basic workflow of the interactive approach is shown in Figure 3.
As the title of this subsection indicates, this approach involves interaction

between the data analyst and data owners from the start to the very end of
the process. Only data owners have a permission to query the true database
(i.e., raw data). Data analyst is posing different queries to the database and
data owners return back a noisy response. Data owners should predefine
the amount of privacy budget they are willing to spend on data analysis,
which implies that data analyst should plan his steps of data exploration
beforehand because he does not want to be left ”broke” before the full
analysis. Once he spends all of the privacy budget he has been given, he has
to stop the interaction.
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Figure 3: Simplified scheme of Interactive approach [50], [51], [48]

4.2 Non-interactive approach

Simplified scheme of non-interactive approach is shown in Figure 4. In
contrast with the interactive approach where data owners should collaborate
with data analyst along the whole process of any kind of statistical analysis
over the true database, data owners publish a synthetic database. In this
scenario anyone can have a permission to analyse the synthetic database
and data owners do not need to worry about privacy preservation once they
publish synthetic database.

Synthetic database can be developed from the true database in vari-
ous ways. We will cover two most common designs: central privacy and
local privacy.
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Figure 4: Simplified scheme of Non-Interactive approach [50], [51], [48]

4.2.1 Central privacy

Basic idea of central privacy is shown in Figure 5. Central Privacy requires
from the data owners to collect raw data on the server first. True database D
is stored in the data silos, after which the data is being manipulated in order
to produce synthetic database D′ which is not privacy sensitive at all. Once
synthetic database has been produced, true database can be removed from
the server forever.

4.2.2 Local privacy

A superior model - from the perspective of the owners of private data -
would be a local model, in which agents could (randomly) answer questions
in a differentially private manner about their own data, without ever sharing
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Figure 5: Central Differential Privacy [52]

it with anyone else [4]. So, unlike the previous model, in the local privacy
scenario there is no trusted party at all. As it is presented in Figure 6, noise is
added to the data even before it gets stored in the data silos, so no one has an
insight into the true database D, i.e., only synthetic database D′ is available
for analysis. This kind of privacy preservation technique is commonly used
for the Telecom operators, social networks and any kind of data that is
collected through the internet.

For example, Apple is implementing local differential privacy techniques.
They are using it for their Health application [17] and to calculate the fre-
quency of used emojis in their applications. More about this work can be
found in [16].

Figure 6: Local Differential Privacy [52]

4.3 Privacy vs. utility

While differential privacy is nice conceptually, it has been difficult to apply in
practice. The parameters of differential privacy have an intuitive theoretical
interpretation, but the implications and impacts on the risk of disclosure
and choosing appropriate values for them is non-trivial.

A frequently asked question about both approaches is how much of a
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privacy budget is enough to preserve the privacy of the true database and
yet to allow the data analyst to gain useful insights from the data, i.e., how
to determine the amount of ε required in order to protect the individuals
privacy.

The answer is that it depends on many things, but it mostly depends
on the domain of the analysed data and on the size of the dataset. If the
domain of the data is highly sensitive (medical data, financial data, etc.),
the privacy budget should be small, because there is more concern about
privacy preservation. If the number of samples in the dataset is small, then
the privacy budget should be large and vice versa.

Another question is which approach performs better and how to know
which one is suitable for the certain data? The answer is the same as in the
previous case, it all depends on the domain and specifications of the data.

4.4 Choosing the privacy budget ε

Despite the fact that the privacy budget ε is at the core of differential privacy
mechanisms, very little work has been done in how to choose an appropriate
value for ε in real world scenarios. Optimal ε should ensure good utility of
machine learning algorithms, while providing an appropriate amount of pri-
vacy protection to each of the individuals in the dataset. To the best of our
knowledge, a few papers have provided practical guidelines for choosing ε.

Vu and Slavkovic [19] provided guidelines for how to use hypothesis
testing in a scenario where sensitive information needs to be protected. The
main idea of this research was to try to estimate the additional number of
records that are needed in order to produce the same quality of the results
that the test would produce if privacy was not involved. They do so in
terms of two main metrics: the confidence level of the hypothesis test (type
I error) and the power of the hypothesis test (type II error) [33].

Lee and Clifton [20] proposed a model for calculating the optimal ε by
considering an analyst as a Bayesian agent and observing a value of ε that
controls how much the analyst’s belief can change. They derived a bound
of ε for the analyst’s belief to remain below a given threshold.

He et al. [21] proposed an attack model that can provide the probability
of success. They found that the upper bound of ε can be computed if the
sensitivity ∆f and length of the fault-tolerant interval are provided.

Justin et al. [22] proposed a principled economic approach for choosing
the optimal ε.

30





5 Decision tree algorithm

Since the work presented in this thesis is based on the implementation of
differentially private mechanisms within decision tree algorithm, here we will
briefly introduce decision tree algorithm. First we will describe how it works
in a non-private scenario, after which we will explain in which ways one can
build differentially private decision tree.

5.1 Motivation

In machine learning, supervised learning is a process in which we are training
our models (algorithms) to learn to classify data points correctly by feeding
them with labeled data points. Decision tree is a commonly used supervised
learning method for solving classification problems [23]. The main advantage
of decision tree over other algorithms used for classification is that it is very
explainable, it is a non-parametric algorithm, and it has the ability to reveal
non-linear relationships among the features.

5.2 Creating a tree

Simply speaking, decision tree is an acyclic graph that can be used to make
decisions [25]. There are different algorithms that can be implemented for
creating a tree. In this subsection we will cover general principles underpin-
ning decision tree algorithm.
Suppose we are given a datasetD with a set of attributesA={A1, A2, ..., Ad}
and a class attribute C={c1, c2, ..., ck} that can take k different values.
Each of the attributes in A can also take a number of values. Suppose
further that we want to solve a multi-class classification problem over the
dataset D with decision tree algorithm. Each record s ∈ D has a class
value c, from the class attribute C. The aim of a decision tree algorithm
is to predict the class value for future unseen records snew. We will denote
with Dcl the subset of dataset D, such that, for each l = 1, 2, ..., k, Dcl

contains records having the class attribute equal to cl, and let Dc be a set
that contains all |Dcl |, if Dcl 6= ∅, i.e., Dc contains the number of appear-
ances of each class in dataset D. It is easy to see that the following equality
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holds:
∑k

l=1 |Dcl | = |D|2.
Decision tree works recursively. In each iteration, the goal of any de-

cision tree algorithm is to split the input dataset D in a way which will
separate classes the best. The most common way is binary splitting into
non-overlapping subsets (nodes) D1 and D2, which we also follow in this
paper3. Algorithm chooses an attribute A from the set of attributes A and
it chooses value v from all possible values of attribute A. If the attribute
is numerical, algorithm should split D such that the values smaller than v
fall into D1 and values greater than v fall into D2. Otherwise, if the at-
tribute is categorical, algorithm puts all samples with the value of attribute
A equal to v in D1, and the rest in D2

4. After this, the whole procedure
is done recursively on D1 and D2 by splitting them further with respect to
new attributes, until the maximal depth is reached or predefined stopping
criterion is satisfied. In each iteration the objective is to separate input
dataset as “pure” as possible with respect to the class attribute C, that is,
we seek for separations that yield child nodes (and eventually leaf nodes)
as homogeneous as possible. Ideally, at the end of the procedure, we would
like to have leaf nodes containing records representing just one class (if the
latter is possible).

Algorithm 1 presents the general structure of the decision tree algorithm.
The algorithm takes as input a dataset D, the set of attributes A, the class
attribute C, a maximal tree depth d, a quality function q and a parameterms

representing minimal number of samples required in the training set in order
to continue the algorithm, serving as a parameter for stopping criterion. The
output of the algorithm is a decision tree model. Procedure BuildTree is
responsible for node creation. In each iteration procedure BuildTree first
checks if the stopping criteria are satisfied. If they are, the procedure returns

2Since Dcl is a subset of D that contains all records from D, such that sc = cl, and
since

⋂k
l=1Dcl = ∅ (one record can not be labeled with two different classes), we can

conclude that this equality holds. This conclusion will be important in subsection 6.3
Creating a private tree.

3There exist also k-ary splittings, k > 2 [24], but they are less commonly used in
practice.

4Suppose we are given a dataset D, where each record in D refers to an individual,
and let the attributes of the dataset D be the following: Name, Surname, Town and
Gender. Furthermore, suppose that the attribute chosen for the splitting attribute is a
categorical attribute Town, that represents a town in which an individual is living. Finally,
suppose that the attribute Town is taking three possible values : ‘Beograd’, ‘Novi Sad’
and ‘Kragujevac’. If the value chosen for splitting is ‘Beograd’, then the algorithm will
split dataset D on subsets D1 and D2, such that all records having the value of attribute
Town equal to ‘Beograd’ will fall into D1, and all the rest records will fall into D2.
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a leaf node, and if not, it searches for the best value for further splitting.
After finding the best value for splitting, procedure splits the dataset based
on the chosen value and continues iteratively on created subsets.

Algorithm 1 Decision Tree algorithm

1: procedure DTree(D,A, C, d, q,ms)
Input: D - dataset, A={A1, A2,..., Ad} - a set of attributes,

C={c1, c2, ..., ck} - a class attribute, d - maximal tree depth, q - quality
function, ms - minimal sample threshold

BuildTree(D,A, C, d, q,ms)
return Decision Tree model

2: end procedure
3: procedure BuildTree(D,A, C, d, q,ms)
4: if A = ∅ or d = 0 or |D| <= ms or |Dc| = 1 then

return a leaf labeled with argmaxcl
Dcl

5: end if
(Aopt, vopt) = arg max q (D,A)
(D1, D2) = Split(D,Aopt, vopt)
BuildTree(D1,A \Aopt, C, d− 1, q,ms)
BuildTree(D2,A \Aopt, C, d− 1, q,ms)
return Decision node

6: end procedure

5.3 Choosing a value for splitting

Now the question is, how to choose this value vopt? There are several quality
functions that can be used for choosing value vopt. The most commonly used
is Information Gain, but in our work we focused on Gini Index and Max
Operator because they are more adoptable to differential privacy frameworks
(a broader explanation is given in subsection 6.4).

The job of the quality function q from Algorithm 1 is to decide which
attribute and which value of that attribute will be used for splitting.

More formally, let q be a chosen quality function which will rank the val-
ues of the attributes. Also, let (Aopt, vopt) be the solution of the optimization
problem:

arg max
A∈A

arg max
v∈A

q(D,A).
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Then a pair (Aopt, vopt) represents optimal attribute and a value, respec-
tively, that should be chosen for a splitting.
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6 Differentially private decision tree algorithm

After introducing decision tree algorithm, in this section we will see how
one can achieve differentially private decision tree. Algorithm 2 presents
a differential privacy adaptation of decision tree algorithm. The algorithm
is very similar to Algorithm 1, so here we will focus on the parts of the
algorithm concerning differential privacy.

The input parameters of the Algorithm 2 are the same as the input
parameters of the Algorithm 1, except that the second algorithm has one
additional parameter - a differential privacy budget denoted by ε. Here we
will suppose that each sample in the dataset D pertains to one individual5.
With Ncl we will denote noisy count of elements in a subset Dcl , and finally
similar to Dc in non-private scenario, with Nc = {Ncl , l = 1, ..., k} we
will denote a set of noisy count of elements in subset Dcl , if Ncl 6= 0 (see
Subsection 6.3 further ahead).

6.1 Differentially private mechanisms within decision tree
algorithm

As we mentioned earlier, the noise that is introduced to a query depends on
the sensitivity of the function applied to a dataset. In differentially private
decision trees we will have two types of queries. One will be a counting query
q1, and the other one will be a splitting query q2. Counting query is used
in the part where the algorithm is calculating the number of appearances
of each class in dataset D. Sensitivity of the counting query is 1, and
for this evaluation Laplace mechanism is used. Splitting query request is
conceptually more complex than the previous one, as it requires the use of
the exponential mechanism.

The design of splitting query evaluation is shown in Figure 7. The expo-
nential mechanism ME takes as an input a dataset D, a differential privacy
budget ε, and a quality function q, that can be gini index or max operator,
as described in the preceding section. The mechanism returns the attribute
and the value of that attribute that should be used later in branch creation.
In this way, the answer of each splitting query request is fully differentially
private, implying that the final model is also differentially private.

5This assumption is given in order to enable a reader better understanding of the
algorithm. It is more intuitive to think about privacy preservation when a dataset refers
to individuals.
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Figure 7: Splitting query request

6.2 Dividing a privacy budget

It is important to make a good plan about how privacy budget ε is going to
be spent even before starting to create the model. Since decision tree works
recursively, privacy budget should be divided through each recursion. One
common way to divide the privacy budget is to split it in equal amounts to
each level of the tree. Sequential and parallel composition properties help
in here.

Figure 8 presents the idea of budget allocation within decision tree algo-
rithm. Since by the construction of decision tree, the subsets that constitute
each layer of the tree are disjoint (i.e., they have no common data points),
parallel composition leads us to the conclusion that privacy budget should
be equally split among different layers of the tree. From the root to the
leaf we have d + 1 layers (including the root and the leaf), where d is the
predefined tree depth. Applying the sequential composition it is obvious
that each layer of the tree should get ε = ε

d+1 amount of privacy budget6.

6Suppose that we are given a tree with 2 layers, and suppose that we want to allocate
privacy budget ε among those layers. Dataset D (first layer) and subsets D1 and D2

(second layer) have records in their intersection, which implies that a privacy budget ε
should be equally spilt among them, i.e., D should get ε

2
and D1 and D2 should get ε

2

together. Subsets D1 and D2 (second layer) will be disjoint, therefore, there is no need
to split the privacy budget among those two, i.e., each of them should get ε

2
amount of

privacy budget (instead of getting ε
2(2)

).
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Figure 8: Dividing a Privacy Budget

As we mentioned earlier, in each node of the tree we will have two types
of queries (qounting query q1 and splitting query q2). So we need to split
privacy budget among those queries also. If each node gets ε

d+1 amount of
privacy budget, then we can easily conclude that each query in the node
should get ε

2(d+1) amount of privacy budget. Finally, if we take into account
that once a stopping criteria is satisfied, algorithm will not create any further
branches (which implies that in leaf nodes only q1 will be executed), we can
conclude that each query should get ε

2(d+1)−1 amount of privacy budget.

The idea of budget allocation is taken from [30].

6.3 Creating a private tree

In this subsection we will explain the workflow of the Algorithm 2.
Procedure BuildDiffPDTree is responsible for node creation, as it was

the case with the procedure BuildTree from the Algorithm 1. In each
execution, procedure first calculates query q1 that returns the noisy count
of elements in subset Dcl . Laplace mechanism is applied on subsets Dcl in

order to calculate Ncl . Subsets Dcl are disjoint, i.e.,
⋂k

l=1Dcl = ∅, so we
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can apply parallel composition to conclude that there is no need to split
the privacy budget on l equal parts. After this, two additional concepts are
derived based on the noisy counts Ncl : Nc and Nn.

Nc = {Ncl , l = 1, ..., k}, represents a set that contains all Ncl , such that

Ncl 6= 0 and Nn =
∑k

l=1Ncl represents noisy counts of records in dataset
D7, Both of them will serve as a stopping criterion. If the stopping criteria
are satisfied, the procedure chooses the maximum among calculated noisy
class count Ncl and returns as a leaf node labeled with a majority class.
If convergence conditions are not satisfied, procedure searches for the best
value for further splitting using exponential mechanism. Attributes with
better scores with respect to the quality function q have higher probability of
being chosen. After finding the best value for splitting, procedure splits the
dataset based on the chosen attribute and continues the procedure iteratively
on created subsets. The output of the algorithm is a differentially private
decision tree model.

Please note that in differentially private decision tree we assume that the
attribute schema is publicly available, including the description (domain,
data type, etc.) of each of the attribute. In differentially private data
mining, an analyst does not have an insight into the true dataset, but in
order to be able to create a model, analyst must receive (from data owner)
some basic information about the attributes.

7In order to save up the privacy budget, instead of calculating Nn directly with
Laplace mechanism (in that scenario Nn would be calculated on the following way:
Nn = ML(D, count(·), ε)), we choose to calculate Nn by summing already calculated
noisy number of records in subsets Dcl
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Algorithm 2 Differentially Private Decision Tree algorithm

1: procedure DiffPDTree(D,A, C, d, q,ms, ε)
Input: D - dataset, A={A1, A2,..., Ad} - a set of attributes, C -

class attribute, d - maximal tree depth, q - quality function, ms - minimal
sample threshold, ε - differential privacy budget

ε = ε
2·(d+1)−1

BuildDiffPDTree(D,A, C, d, q,ms, ε)
return Differentially Private Decision Tree model

2: end procedure
3: procedure BuildDiffPDTree(D,A, C, d, q,ms, ε)

Ncl = ML(Dcl , count(·), ε), l = 1, ..., k
Nc = {Ncl , l = 1, ..., k}
Nn =

∑k
l=1Ncl

4: if A = ∅ or d = 0 or |Nc| = 1 or Nn <= ms then
return a leaf labeled with argmaxcl

Ncl

5: end if
(Aopt, vopt) = ME(D, q, ε)
(D1, D2) = Split(D,Aopt)
BuildDiffPDTree(D1,A \Aopt, C, d− 1, q,ms, ε)
BuildDiffPDTree(D2,A \Aopt, C, d− 1, q,ms, ε)
return Decision node

6: end procedure
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The following subsection will introduce the quality functions that we
used in our work.

6.4 Quality functions

It is important to mention that both mechanisms are highly dependent on
the choice of the quality function. That is because the noise depends on the
sensitivity of the quality function: higher sensitivity of the function implies
higher noise, which then implies lower accuracy of the decision tree classifier.
Information gain has the highest sensitivity and because of that we decide
to focus on the other two functions, i.e., gini index and max operator.

Let us first introduce some basic notations which will be used in quality
functions introduction. Let D, A, C, D1 and D2 be defined as in Algo-
rithm 2. Furthermore, Let n1 and n2 denote, respectively, the number of
samples in D1 and D2. Finally, denote by n1l and n2l the number of ap-
pearance of class cl in subsets D1 and D2, respectively, that is, n1l = |D1cl |
and n2l = |D2cl |. We will now introduce max operator quality function.

6.4.1 Max operator

Among all quality functions, max operator is the most intuitive one. The
goal of the max operator is to choose an attribute Aj from the set of at-
tributes A and the value vji of the attribute Aj which will have the highest
class counts in partitions D1 and D2. For each value vji the algorithm first
splits D into D1 and D2, after what max operator is applied. Max opera-
tor finds the most frequent class in D1 and the most frequent class in D2

(classes do not have to be the same), sums those two numbers and chooses
for the splitting an attribute Aj and a value vji which have the highest sum
of maximums. More formally, the max operator can be represented as:

qmax(D,A) = max
l
n1l + max

l
n2l .

The sensitivity of the max operator is 1. That is the reason why max
operator is the best choice for the quality function in the case of differentially
private decision trees. More details about quality functions can be found
in [29].
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6.4.2 Gini index

Gini index is impurity measurement used in CART algorithm [28]. Gini
index tells how often a randomly chosen sample from the dataset D could
be labeled incorrectly if it was labeled randomly according to the distribution
of labels in D1 and D2. We did not use original gini index function in our
implementation. We used approximation of the function developed in [29].
It is not such a rare case that the function needs to be modified in order to
apply differential privacy within it. Again, this is because the sensitivity of
a function greatly impacts the amount of noise that needs to be introduced.
In order to reduce the added noise sometimes it is recommended to redefine
a function if it is possible. We will now define (the variant of) gini index
used in this paper. Approximation of the gini index function that we use is:

qgini(D,A) = −

(
n1 ∗

(
1−

k∑
l=1

(
n1l

n1

)2
)

+ n2 ∗

(
1−

k∑
l=1

(
n2l

n2

)2
))

.

The goal is to find value vopt in which our function qgini will reach the
maximum. The sensitivity of the approximated gini index function is 2.

6.5 Stopping criteria

In the case of differenctially private decision tree, algorithm stops if [34]:

• All attributes of the dataset are used for splitting (A = ∅);

• Number of iterations have achieved specified limit (d = 0).

• Noisy number of samples in the training set is less than a specified
threshold (Nn <= ms);

• There are instances representing only one class in the training set
(|Nc| = 1).
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6.6 Implementation in Python

We based implementations of differentially private decision trees on the im-
plementation presented in [27]. The basic concept of the implementation
of decision tree algorithm is the same as it is there, except the fact that
the quality function used in [27] is Information gain. In this thesis we fo-
cus on max operator and gini index quality functions because they are less
sensitive to noise. Primarily, we implemented a differentially private deci-
sion tree with the Information gain quality function, but since the accuracy
score results of the classifier were not satisfying at all, we decided to give
up this approach. We will now introduce our two implementations, with
explanation concerning differential privacy.

Max operator implementation

Method .fit () from the class DecisionTree () builds a differentially
private decision tree. The method takes as an input training set and total
amount of privacy budget denoted by EPSILON . The method first divides
the privacy budget according to the previously defined rules, after which the
model is generated with function build tree. Function build tree takes
privacy budget as a parameter, i.e., whenever the function is executed, ε

d+1
amount of budget is spent. This fits perfectly with a theoretical approach of
budget allocation. Every execution of the function implies a creation of new
node, which implies that each note gets ε

d+1 of privacy budget. Differential
privacy mechanisms are applied in functions Best split and class count.
As it was explained in subsection 6.2 (Dividing a privacy budget), each mech-
anism will get ε

2(d+1)−1 amount of privacy budget. Function Best split calls
function max operator which returns the best value for splitting based on
the max operator quality function. Exponential mechanism is used here to
choose the best attribute for splitting the training set. Attributes with bet-
ter rates (higher max operator value) are going to have higher probability of
being chosen. Function class count returns noisy class counts of the input
dataset, which are then used for stopping criteria and for creation of the
leaf nodes if the criteria are satisfied. Laplace mechanism is used for this
evaluation.
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import os
import numpy as np
import pandas as pd
from random import sample
from s k l ea rn . met r i c s import a c cu racy s co r e
from numpy import l i n a l g as LA

c l a s s Dec i s ionTree ( ob j e c t ) :
‘ ‘ ’
Dec i s i on Tree Algorithm
param max depth : maximum alowed depth o f the t r e e
param min sample : minimum number o f po in t s in datase t

in
order to s p l i t i t any f u r t h e r
‘ ‘ ’
de f i n i t ( s e l f , max depth =5 , min sample = 5 ,

t r e e = None , columns = {} :
s e l f . max depth = max depth
s e l f . min sample = min sample
s e l f . t r e e = t r e e
s e l f . columns = columns

de f f i t ( s e l f , data , EPSILON) :
e p s i l o n=EPSILON/(2∗ ( s e l f . max depth+1)−1)
a t t ty pe = [ ]
f o r i in range ( data . shape [1 ]−1) :

26 i f l en (np . unique ( data [ : , i ] ) )>20:
a t t ty pe . append ( ’num ’ )

e l s e :
a t t ty pe . append ( ’ cat ’ )

t r e e = b u i l d t r e e ( data , s e l f . max depth ,
s e l f . min sample , np . array ( a t t ty pe ) , e p s i l o n )

s e l f . t r e e = t r e e
re turn t r e e

de f p r ed i c t p roba ( s e l f , data ) :
t r e e = s e l f . t r e e
i f l en ( data . shape ) == 1 :

re turn proba2 ( proba1 ( data , t r e e ) )
i f l en ( data . shape ) == 2 :

r e s = [ proba2 ( proba1 ( data [ i ] , t r e e ) ) f o r i in
range ( l en ( data ) ) ]

r e turn r e s
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de f p r e d i c t ( s e l f , data ) :
t r e e = s e l f . t r e e
i f l en ( data . shape ) == 1 :

re turn pred1 ( data , t r e e )
i f l en ( data . shape ) == 2 :

r e s = [ pred1 ( data [ i ] , t r e e ) f o r i in
range ( l en ( data ) ) ]

r e turn r e s
52

c l a s s Question :
”””
A Question i s used to p a r t i t i o n a datase t .
”””

de f i n i t ( s e l f , column , value , a t t ty pe ) :
s e l f . column = column
s e l f . va lue = value
s e l f . a t t t y pe = a t t ty pe

de f match ( s e l f , data ) :
i f l en ( data . shape ) == 1 :

va l = data [ s e l f . column ]
i f l en ( data . shape ) == 2 :

va l = data [ : , s e l f . column ]
i f s e l f . a t t t y pe [ s e l f . column ] == ’num ’ :

r e turn va l >= s e l f . va lue
e l s e :

r e turn va l == s e l f . va lue

de f s p l i t ( data , column , value , a t t ty pe ) :
ques t i on = Question ( column , value , a t t ty pe )
re turn data [ ques t i on . match ( data ) ] ,

data [ np . i n v e r t ( ques t i on . match ( data ) ) ]

78 de f max operator va lue ( Data , Att , value , a t t ty pe ) :

X, Y = s p l i t ( Data , Att , value , a t t ty pe )

i f f l o a t ( l en (X) ) == 0 or f l o a t ( l en (Y) ) == 0 :
re turn 0

unique = np . unique ( Data [ : , −1 ] )
#l a b e l s o f data po in t s
arrX = np . array (X[ : , −1 ] ) #c l a s s l a b e l o f X
arrY = np . array (Y[ : , −1 ] ) #c l a s s l a b e l o f Y
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countX = np . array ( [ ( arrX == i ) . sum ( ) f o r i in unique
] )

#count c l a s s e s f o r va lue v in X
max X=max ( countX ) #choos ing max c l a s s in X
countY = np . array ( [ ( arrY == i ) . sum ( ) f o r i in unique

] )
#count c l a s s e s f o r va lue v in Y
max Y=max ( countY )
max count=max X+max Y #sums those 2 maximums
return max count

de f max operator ( Data , Att , a t t ty pe ) :
#apply ing max operator va lue to each value o f a t t r i b u t e Att

V = np . unique ( Data [ : , Att ] )
i f a t t t y pe [ Att ] == ’ cat ’ :

g = [ ( value , max operator va lue ( Data , Att , value ,
a t t ty pe ) ) f o r va lue in V]

104 e l s e :
g = [ ( value , max operator va lue ( Data , Att , value ,

a t t ty pe ) ) f o r va lue in V]
val , max score = max ( g , key=lambda t : t [ 1 ] )

#max score r e tu rn s sum of maximums o f p a r t i t i o n s

re turn val , max score

#exponent i a l mechanism f o r max operator
de f B e s t s p l i t ( data , a t t type , e p s i l o n ) :

va l =[ ]
e v a l s = [ ]
const=e p s i l o n /2 #s e n s i t i v t y o f max operator i s 1
f o r Att in range ( data . shape [1 ]−1) :

va l . append ( max operator ( data , Att , a t t ty pe ) [ 0 ] )
e v a l s . append ( max operator ( data , Att , a t t ty pe )

[ 1 ] )
weights=np . exp ( const ∗np . array ( e v a l s ) )
prob=weights /LA. norm ( weights , 1)
max choise = np . random . cho i c e (np . array ( e v a l s ) , p=prob

)

a t t=e v a l s . index ( max choise )
va l=va l [ e v a l s . index ( max choise ) ]

r e turn att , va l

46



130 de f c l a s s c o u n t ( a , e p s i l o n ) :
unique = np . unique ( a [ : , −1 ] )
a r r = np . array ( a [ : , −1 ] )
count = np . array ( [ np . random . l a p l a c e ( ( a r r == i ) . sum

( ) ,
1/ e p s i l o n ) f o r i in unique ] )

d i c=d i c t ( z ip ( unique , count ) )
max c lass=max ( [ (k , v ) f o r k , v in d i c . i tems ( ) ] ,

key = lambda t : t [ 1 ] ) [ 0 ]
r e turn dic , max c lass

c l a s s Leaf :
de f i n i t ( s e l f , rows , e p s i l o n ) :

s e l f . p r e d i c t i o n s = c l a s s c o u n t ( rows , e p s i l o n ) [ 0 ]
# f o r p r e d i c t i n g p r o b a b i l i t i e s

s e l f . category = c l a s s c o u n t ( rows , e p s i l o n ) [ 1 ]
# f o r p r e d i c t i n g c l a s s

c l a s s Decis ion Node :
de f i n i t ( s e l f , l e f t b r a n c h , r ight branch , att , val

,
i t t e r , ques t i on ) :

s e l f . l e f t b r a n c h = l e f t b r a n c h
s e l f . r i gh t branch = r ight branch
s e l f . a t t = at t
s e l f . va l = va l
s e l f . i t t e r = i t t e r
s e l f . ques t i on = ques t i on

156
de f b u i l d t r e e ( data , max depth , min sample , a t t type ,

e p s i l o n
c l a s s e s , i t t e r = 0) :
a t t ty pe = a t t ty pe
c l a s s e s = Leaf ( data , e p s i l o n )
a=c l a s s e s . p r e d i c t i o n s
i f i t t e r == max depth or data . shape [1]−1==0 or

sum( a . va lue s ( ) ) <= min sample or l en ( a ) == 1 :

re turn c l a s s e s
att , va l = B e s t s p l i t ( data , a t t type , e p s i l o n )

ques t i on = Question ( att , val , a t t t y pe )

l e f t d a t a , r i g h t d a t a = s p l i t ( data , att , val , a t t t y pe
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)
i t t e r += 1

i f a t t ty pe [ a t t ] ==’ cat ’ :
l e f t d a t a = np . d e l e t e ( l e f t d a t a , att , 1)
r i g h t d a t a = np . d e l e t e ( r i gh t data , att , 1)
a t t ty pe = np . d e l e t e ( at t type , a t t )

l e f t b r a n c h = b u i l d t r e e ( l e f t d a t a , max depth ,
min sample , a t t type , ep s i l on , i t t e r )

r i gh t branch = b u i l d t r e e ( r i gh t data , max depth ,
min sample , a t t type , ep s i l on , i t t e r )

182
return Decis ion Node ( l e f t b r a n c h , r ight branch , att ,

va l
, i t t e r , ques t i on )

de f proba1 ( row , node ) :
‘ ‘ ’
counts occurance o f c l a s s e s in each l e a f
‘ ‘ ’

# Base case : we ’ ve reached a l e a f
i f i s i n s t a n c e ( node , Leaf ) :

r e turn node . p r e d i c t i o n s
# Decide whether to f o l l o w the l e f t or r i g h t branch .
i f node . ques t i on . match ( row ) :

r e turn proba1 ( row , node . l e f t b r a n c h )
e l s e :

r e turn proba1 ( row , node . r i gh t branch )

de f proba2 ( counts ) :
‘ ‘ ’
p r e s en t s counts in pe rcent s
‘ ‘ ’
t o t a l = sum ( counts . va lue s ( ) ) ∗ 1 .0
probs = {}
f o r l b l in counts . keys ( ) :

probs [ l b l ] = round ( counts [ l b l ] / t o ta l , 2)
re turn probs

208
de f pred1 ( row , node ) :

‘ ‘ ’
p i ck s major i ty c l a s s in each l e a f
‘ ‘ ’
i f i s i n s t a n c e ( node , Leaf ) :
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re turn node . category
i f node . ques t i on . match ( row ) :

r e turn pred1 ( row , node . l e f t b r a n c h )
e l s e :

r e turn pred1 ( row , node . r i gh t branch )

Listing 1: Python Implementation of Differentially Private Algorithm with Max
Operator quality function

Gini index implementation

Implementation of the differentially private decision tree with the gini index
quality function is similar to the previous one, we only used gini index in-
stead of max operator quality function. So, by replacing part of the previous
code starting from line 78 all the way to line 130, with the code that fol-
lows next, we will get a complete implementation of the differentially private
decision tree with the gini index quality function.

de f g i n i e n t (X) :
E = 0
n = len (X)
f o r i in np . unique (X) :

m = len (X[X == i ] )
i f m != 0 :

E += np . exp2 (m/n)
return 1−E

def g i n i i n d e x v a l u e ( Data , Att , value , a t t ty pe ) :
X, Y = s p l i t ( Data , Att , value , a t t ty pe )
i f f l o a t ( l en (X) ) == 0 or f l o a t ( l en (Y) == 0) :

re turn 0 .0
g i n i = − ( l en (X) ∗ g i n i e n t (X[ : , −1 ] )+len (Y) ∗

g i n i e n t (Y[ : , −1 ] ) )
re turn g i n i

de f g i n i i n d e x ( Data , Att , a t t ty pe ) :
V = np . unique ( Data [ : , Att ] )
i f a t t t y pe [ Att ] == ’ cat ’ :

g = [ ( value , g i n i i n d e x v a l u e ( Data , Att , value ,
a t t ty pe ) ) f o r va lue in V]
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e l s e :
g = [ ( value , g i n i i n d e x v a l u e ( Data , Att , value ,

a t t ty pe ) ) f o r va lue in V]
val , g i n i = max ( g , key=lambda t : t [ 1 ] )
r e turn val , g i n i

#exponent i a l mechanism f o r g i n i index
de f B e s t s p l i t ( data , a t t type , e p s i l o n ) :

va l =[ ]
e v a l s = [ ]
const=e p s i l o n /4 #s e n s i t i v t y o f g i n i index i s 2
f o r Att in range ( data . shape [1 ]−1) :

va l . append ( g i n i i n d e x ( data , Att , a t t ty pe ) [ 0 ] )
#value f o r a t t r i b u t

e v a l s . append ( g i n i i n d e x ( data , Att , a t t ty pe ) [ 1 ] )
#g i n i index f o r that va lue

weights=np . exp ( const ∗np . array ( e v a l s ) )
prob=weights /LA. norm ( weights , 1)
max choise = np . random . cho i c e (np . array ( e v a l s ) , p=prob

)
a t t=e v a l s . index ( max choise )
va l=va l [ e v a l s . index ( max choise ) ]
r e turn att , va l

Listing 2: Python Implementation of Differentially Private Algorithm with Gini
Index quality function

The output of the algorithms are models that ensure differential privacy,
i.e., the training dataset is fully protected from anyone. This means that
not a single information about the individual records in the datasets can be
learned from the final model. More details can be found in [30]. The idea for
the implementation of differentially private decision tree is taken from [29].

It should be emphasized that in differential privacy schemes presented in
this thesis, the privacy of individuals in training data is protected, but the
privacy of individuals in testing data is not. The privacy of individuals in
the training data must be protected, because data analyst is involved in the
feature and model design (model training), while in the prediction stage,
data analyst does not need to be involved in the prediction process. The
model can be deployed on a security guaranteed platform and automatically
runs. In this case, privacy protection is not necessary [30].
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7 Experimental results

In this chapter, we introduce the datasets that were used for testing de-
scribed Algorithms and discuss the classification results. We compare our
results of differentially private decision trees with the results of non-private
decision tree developed in [27].

7.1 Experimental setup

We tested our algorithms on a single laptop computer with the following
specifications:

• processor: Intel R© CoreTM i7-8750H (2.2 GHz base frequency, up to
4.1 GHz with Intel R© Turbo Boost Technology, 9 MB cache, 6 cores),

• installed memory (RAM): 16 GB DDR4-2666 SDRAM (2 x 8 GB),

• system type: 64-bit Operating System, x64-based processor.

7.2 Programming language

Algorithms were implemented and tested in Python programming language
[43], [26].
Nowadays Python is widely used across multiple domains in computer sci-
ence, especially in data science. This is because it is known to be an intuitive
language, it is open source and is easy to work with. Another reason why it
is so popular in data science community is because of its wide range of li-
braries which are suitable for machine learning and statistical analysis. Some
of the libraries which were helpful to us through our work are numpy [38],
pandas [39], scipy [42], matplotlib [41], seaborn [40], scikit-learn [45] etc.
In our work we used Python 3.6 version and we wrote the codes in Spyder
environment [44].
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7.3 Metrics, cross–validation and privacy budget

Accuracy score

Since we focused on the classification problem, for measuring the utility of
our algorithms we used accuracy score.
Scikit Learn library has built in function accuracy score that takes as an
input predicted and true values and calculates the ratio of correctly predicted
instances. The range of the function is [0, 1]. If the accuracy score takes
value 0, that means that all predicted labels are wrong, and if it takes value 1,
that means that they are all correct.

Cross–validation and privacy budget

Cross–validation is a machine learning technique that is used as a tool to
avoid overfitting. Overfitting means that the model we are fitting is too much
adapted to the training data (model is giving perfect results on the training
data, but not so good results on the test data). K-fold cross–validation is
one of the most widely used cross–validation techniques. It splits dataset
into k different subsets. K − 1 subsets are used for training the model, and
the remaining one is used for testing. Algorithm fits the model k times. At
the end it returns as a result the average accuracy value.
In our experiments, we executed 5 runs of 5-fold cross–validation. For each
run we evaluated the results for seven different values of privacy budget, i.e.,
ε takes values from the following subset: {0.5, 0.75, 1, 2, 3, 4, 5}. Although
the value of privacy budget should be relatively small (less than 1), in our
experiment we used larger values because datasets used for evaluation are
not so big.

7.4 Datasets

In this thesis we focus on categorical data. All datasets were downloaded
from the UCI machine Learning Repository [45]. We will now briefly de-
scribe each of them.

Amphetamine, Benzodiazepine, Cocaine, Ecstasy, Legal highs,
Magic Mushrooms and Nicotine dataset
All seven datasets are derived from a Drug consumption dataset. Dataset
contains 1885 records. In this dataset there are 12 features describing each
respondent. Features represent personality measurements which include
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NEO-FFI-R (neuroticism, extraversion, openness to experience, agreeable-
ness, and conscientiousness), BIS-11 (impulsivity), and ImpSS (sensation
seeking), level of education, age, gender, country of residence and ethnicity.
Participants were questioned about their usage of 18 legal and illegal drugs
(alcohol, amphetamines, amyl nitrite, benzodiazepine, cannabis, choco-
late, cocaine, caffeine, crack, ecstasy, heroin, ketamine, legal highs, LSD,
methadone, mushrooms, nicotine and volatile substance abuse and one fic-
titious drug (Semeron)). Each label variable contains seven classes: “Never
Used”, “Used over a Decade Ago”, “Used in Last Decade”, “Used in Last
Year”, “Used in Last Month”, “Used in Last Week”, and “Used in Last
Day”.
For testing our algorithms we made seven datasets, all containing the same
features and different label variables8. This dataset can be used for multi-
class classification problems or it can be transformed into binary classifica-
tion problem. We choose the second approach. We made two new classes
by union of part of classes in the following way: “Never Used”, “Used over a
Decade Ago” form class “Non-user” and all other classes form class “User”.

Mushroom, Car Evaluation and Tic-Tac-Toe dataset
Again, all three datasets are publicly available at UCI Machine Learning
repository. Here we almost did not have to do any data preprocessing work,
i.e., datasets were “clean” and ready to use.
Mushroom dataset This dataset consists of 8124 instances with 22 at-
tributes and this dataset is used for binary classification problem.
Car Evaluation dataset This dataset consists of 1728 instances. Number
of attributes in Car Evaluation dataset is 6. Each record can take one of
the 4 possible classes. This is the only dataset which is used for multi class
classification.
Tic-Tac-Toe dataset In this dataset, there are 958 incstances described
with 9 features. All instances can take one of the two possible classes.

8We choose 7 (Amphetamine, Benzodiazepine, Cocaine, Ecstasy, Legal highs, Magic
Mushrooms and Nicotine) of 18 drugs, and extracted 7 new datasets where each of them
is related to one drug. Features in the datasets are always the same namely: neuroti-
cism, extraversion, openness to experience, agreeableness, conscientiousness, impulsivity,
sensation seeking, level of education, age, gender, country of residence and ethnicity and
datasets differ in their class variables. For example, in case of Cocaine dataset, class vari-
able is describing individual’s usage of Cocaine, in case of Ecstasy dataset, class variable
is describing individual’s usage of Ecstasy, etc.
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7.5 Results

Obtained results are shown in figures and tables below.
We can see that, in most cases, decision tree with the max operator qual-
ity function performs better than the same classifier with the gini index
quality function. The reason for this is the fact that the sensitivity of the
quality function influences the magnitude of noise introduced to the ex-
ponential mechanism. In other words, for the same privacy parameter ε,
exponential mechanism will have different effectiveness for different quality
functions [29]. So, decision tree with the max operator quality function
performs the best because max operator is the least sensitive to noise.
In theory, for larger values of privacy budget, classifiers should have better
accuracy score results. In our experiments this was not always the case.
The reason for this is the small size of training set. Because datasets were
relatively small, Laplacian noise added to a class counts in a leaf node has
more prominent effect on the accuracy score results.
A drawback of our algorithms is high variance of the experimental results.
The introduced noise cannot be controlled and is not the same in each evalua-
tion, i.e., introduced randomness leads to different results in each algorithm.
Also, for the same reason curves describing accuracy score are not strictly
increasing as they should be theoretically. The solution to this problem
can be higher number of folds in cross-validation process. Since the accu-
racy score results of the private classifiers depend on the noise introduced
by differential privacy, by increasing the parametar K in cross-validation
technique we will get more stable results, since the introduced noise will be
sampled over the larger number of iterations.
Another reason for not getting strictly increasing results is high dimension-
ality of a dataset. For example, accuracy of the Mushroom dataset tends
to decrease more comparing to other datasets. This is because the dimen-
sionality (as measured by the number of features) of the dataset is 22. In
summary, we got to the conclusion that small dataset size and high dimen-
sionality affect the results of private classification much more than they do
in non-private scenario.
Note that the quality function used in non-private classifier is Information
gain, while the quality funcitons used in private classifiers are max operator
and gini index. For that reason in some cases it can happen that accu-
racy score results of the private classifiers can reach higher values than the
accuracy score results of non-private classifier.
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Figure 9: Performance on Amphetamine dataset

Figure 10: Performance on Benzodiazepine dataset
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Figure 11: Performance on Cocaine dataset

Figure 12: Performance on Ecstasy dataset
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Figure 13: Performance on Legal highs dataset

Figure 14: Performance on Magic Mushrooms dataset
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Figure 15: Performance on Nicotine dataset

Figure 16: Performance on Mushroom dataset
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Figure 17: Performance on Car Evaluation dataset

Figure 18: Performance on Tic-Tac-Toe dataset
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8 Conclusion

In this work, we described two ways to build differentially private decision
tree classifier. For both algorithms we presented the theoretical background,
the implementation in Python and the performance on several real public
datasets.
We illustrated that it is possible to achieve good prediction accuracy while
preserving the privacy of the individual records in the datasets.

The final conclusion is that in order to achieve differential privacy, some-
times machine learning models need to be modified. The approaches which
are giving the best results in non-private scenario may not be giving the
best results in the case of differentially private models. As we saw in our
experiments, the sensitivity of the queries becomes crucial to performance
of the algorithm when differential privacy is involved. Since we are planning
to improve our work, some of the future challenges will include:

• finding a solution to reduce the variance in the experimental results;

• handling numerical features;

• exploring different strategies for choosing/optimizing ε;

• implementing differentially private random forest.

Differential privacy is gaining a significant foothold in data mining and ma-
chine learning, evident by the recent surge in papers concerning the appli-
cation of differential privacy [30], [31], [32], [35]. Different architectures and
approaches for building differentially private decision trees can be found in
[33].
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9 Appendix

In this additional section we presented script developed for testing our dif-
ferentially private classifiers.
Script contains two functions test and plot results. Function test per-
forms K-fold cross–validation, trains the model on a given dataset and,
finally, calculates and returns prediction accuracy of a given classifier. Func-
tion plot results is used for visual representation of classification results.

Testing script

import numpy as np
import pandas as pd
from matp lo t l i b import pyplot as p l t
import seaborn as sns

from s k l ea rn . m o d e l s e l e c t i o n import KFold
from s k l ea rn . met r i c s import a c cu racy s co r e

from Max Operator import Dec i s ionTree as MaxTree
from Gini Index import Dec i s ionTree as GiniTree
from DT import Dec i s ionTree as BasicTree

MaxOperator=MaxTree ( )
GiniIndex=GiniTree ( )
NonPrivateTree=BasicTree ( )

’ ’ ’ Function t e s t i s used f o r t r a i n i g and t e s t i n g
c l a s s i f i e r s

( c r o s s va l i da t i on , measuring accuracy , averag ing the
r e s u l t s )

Function p l o t r e s u l t s i s used f o r v i s u a l r e p r e s e n t a t i o n
o f c l a s s i f i c a t i o n r e s u l t s .
’ ’ ’

de f t e s t ( data , name of data , c r i t e r i o n f u n c t i o n ,
K f o l d s p l i t s , e p s i l o n ) :
X=data [ : , :−1]
y=data [ : , −1]
k f = KFold ( n s p l i t s=K f o l d s p l i t s )
accuracy=0
f o r t ra in , t e s t in k f . s p l i t (X, y ) :
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i f c r i t e r i o n f u n c t i o n==NonPrivateTree :
c r i t e r i o n f u n c t i o n . f i t ( data [ t r a i n ] )

e l s e :
c r i t e r i o n f u n c t i o n . f i t ( data [ t r a i n ] , e p s i l o n )

r e s=c r i t e r i o n f u n c t i o n . p r e d i c t (X[ t e s t ] )
accuracy+=accu racy s co r e ( res , y [ t e s t ] ) /

K f o l d s p l i t s

r e turn round ( accuracy , 2)

de f p l o t r e s u l t s ( m a t r i x r e s u l t s , ep s i l on , C r i t f u n c t i o n s ,
Cr i t funct ions names , name of data , i t t e r a t i o n ) :

p l t . f i g u r e ( f i g s i z e= (10 , 6) , dpi =80)
p l t . subplot (1 , 1 , 1)
c o l o r s =[ ’ red ’ , ’ green ’ , ’ b lue ’ ]
markers=[ ’ v ’ , ’ ∗ ’ , ’D ’ ]
f o r i in range ( m a t r i x r e s u l t s . shape [ 0 ] ) :

p l t . p l o t ( ep s i l on , m a t r i x r e s u l t s [ i ] , c o l o r=c o l o r s [
i ]

, markeredgewidth =3.0 , marker=markers [ i ] ,
l i n ew id th =1.0 , l i n e s t y l e=”−” ,
l a b e l=Cr i t func t i on s names [ i ] )

p l t . xl im ( min ( e p s i l o n ) −0.5 , max ( e p s i l o n ) +0.5)
p l t . x t i c k s ( ep s i l on , ep s i l on , f o n t s i z e =10, r o t a t i o n =45)
p l t . yl im ( round ( m a t r i x r e s u l t s . min ( ) −0.1 , 2) ,

round (0.1+ m a t r i x r e s u l t s . max ( ) , 2) )
p l t . y t i c k s (np . l i n s p a c e ( round ( m a t r i x r e s u l t s . min ( )
−0.1 ,

2) , round (0.1+ m a t r i x r e s u l t s . max ( ) , 2) , 5 ,
endpoint=True ) )

p l t . l egend ( l o c=’ best ’ )
p l t . x l a b e l ( ’ Privacy Budget ’ , f o n t s i z e =10)
p l t . y l a b e l ( ’ Average Accuracy ’ , f o n t s i z e =10)
p l t . t i t l e ( ’ Accuracy vs . Privacy in the ’+name of data+

’ datase t ’ , f o n t s i z e =15)
p l t . s a v e f i g ( ’ Accuracy vs . Privacy in the ’+

name of data+
’ datase t . png ’ , format=’ png ’ , dpi =330 , bbox inches=’ t i g h t ’
)
p l t . show ( )

hmap=pd . DataFrame ( data=m a t r i x r e s u l t s ,
index = Cr i t funct ions names , columns=e p s i l o n )

ax=sns . heatmap (hmap , vmin=0, vmax=2, annot=True ,
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l i n e w i d t h s =.5 , cbar=False , cmap=’ Blues ’ )
ax . s e t t i t l e ( ’ Accuracy o f the ’+name of data+’ datase t
’ )
ax . s e t x l a b e l ( ’ D i f f e r e n t i a l pr ivacy parameter ’ ,

f o n t s i z e =10)
p l t . s a v e f i g ( ’ Accuracy o f the ’+name of data+’ datase t

. png ’ , format=’ png ’ , dpi =330 , bbox inches=’ t i g h t ’ )
p l t . show ( )

re turn

Listing 3: Testing Private Classifiers

66



10 List of Figures

1 Definition of Differential Privacy

2 Laplace distribution

3 Simplified scheme of Interactive approach

4 Simplified scheme of Non-Interactive approach

5 Central Differential Privacy

6 Local Differential Privacy

7 Splitting query request

8 Dividing a Privacy Budget

9 Performance on Amphetamine dataset

10 Performance on Benzodiazepine dataset

11 Performance on Cocaine dataset

12 Performance on Ecstasy dataset

13 Performance on Legal highs dataset

14 Performance on Magic Mashrooms dataset

15 Performance on Nicotine dataset

16 Performance on Mushroom dataset

17 Performance on Car Evaluation dataset

18 Performance on Tic-Tac-Toe dataset

67



11 List of Listings

1 Implementation of Differentially Private Algorithm with Gini Index qual-
ity function

2 Implementation of Differentially Private Algorithm with Max Operator
quality function

3 Testing Differentially Private Algorithms

68



12 List of Algorithms

1 Decision Tree Algorithm

2 Differentially Private Decision Tree Algorithm

69



References

[1] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-
tion and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10
(5):571–588, Oct. 2002.

[2] Daniel C. Barth-Jones. The ’Re-Identification’ of Governor William
Weld’s Medical Information: A Critical Re-Examination of Health Data
Identification Risks and Privacy Protections, Then and Now. Tech. rep.
Columbia University - Mailman School of Public Health, Department of
Epidemiology, July 2012.

[3] J. Domingo-Ferrer and V. Torra. A Critique of k-Anonymity and Some
of Its Enhancements. In Third International Conference on Availability,
Reliability and Security (ARES 08), pages 990–993. IEEE, 2008.

[4] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of
Differential Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (August
2014), 211-407. DOI=http://dx.doi.org/10.1561/0400000042.

[5] Cynthia Dwork. An Ad Omnia Approach to Defining and Achieving Pri-
vate Data Analysis. In: Proceedings of the 1st ACM SIGKDD Interna-
tional Conference on Privacy, Security, and Trust in KDD. PinKDD’07.
San Jose, CA, USA: Springer-Verlag, 2008, pp. 1–13. ISBN: 3-540-78477-
2, 978-3-540-78477-7.

[6] Cynthia Dwork. Differential Privacy. In: Automata, Languages and Pro-
gramming: 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II. Ed. by Michele Bugliesi et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–12. ISBN:
978-3-540-35908-1.

[7] Cynthia Dwork. Differential Privacy: A Survey of Results. In: Proceed-
ings of the 5th International Conference on Theory and Applications of
Models of Computation. TAMC’08. Xi’an, China: Springer-Verlag, 2008,
pp. 1–19. ISBN: 3-540- 79227-9, 978-3-540-79227-7.

[8] Cynthia Dwork et al. Calibrating Noise to Sensitivity in Private Data
Analysis. In: Theory of Cryptography: Third Theory of Cryptography

70



Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceed-
ings. Ed. by Shai Halevi and Tal Rabin. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 265–284. ISBN: 978-3-540-32732-5.

[9] Moritz Hardt and Kunal Talwar. On the Geometry of Differential Pri-
vacy. In: CoRR abs/0907.3754 (2009).

[10] Chao Li and Gerome Miklau. An Adaptive Mechanism for Accurate
Query Answering under Differential Privacy. In: CoRR abs/1202.3807
(2012).

[11] Frank McSherry. Privacy Integrated Queries: An Extensible Plat-
form for Privacy-preserving Data Analysis. In: Commun.ACM53.9 (Sept.
2010), pp. 89– 97. ISSN: 0001-0782.

[12] Frank McSherry and Kunal Talwar. Mechanism Design via Differential
Privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foun-
dations of Computer Science. FOCS ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 94–103. ISBN: 0-7695-3010-9.

[13] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth Sen-
sitivity and Sampling in Private Data Analysis. In: Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of Computing. STOC
’07. San Diego, California, USA: ACM, 2007, pp. 75–84. ISBN: 978-1-
59593-631-8.

[14] V. N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence
of Relative Frequencies of Events to Their Probabilities. In: Theory of
Probability and its Applications 16.2 (1971), pp. 264–280.

[15] Tianqing Zhu et al. Differential Privacy and Applications. Springer In-
ternational Publishing AG 2017. ISBN 978-3-319-62004-6.

[16] Learning wirh Privacy at Scale. Differential Privacy Team. Apple.
https://machinelearning.apple.com/docs/learning-with-privacy-at-
scale/appledifferentialprivacysystem.pdf

[17] https://www.apple.com/ios/health/

[18] RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Re-
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KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:
RBR
Identifikacioni broj:
IBR
Tip dokumentacije: monografska dokumentacija
TD
Tip zapisa: tekstualni štampani materijal
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Čuva se: u biblioteci Departmana za matematiku i informatiku, Prirodno-
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