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Chapter 1

Introduction

In the modern societies people live their day to day lives constantly interacting with technol-
ogy, producing more and more data with each interaction. To catch a glimpse of the meaning
and valuable information in that immense pool of data we need both powerful technology and
powerful, well optimized algorithms. From that need to have more efficient ways to analyse
the data some new scientific fields emerged such as Big Data, Data Science, Network Science,
etc. Particularly interesting is Network Science [1], which is a relatively young academic field
which studies complex networks such as telecommunication networks, computer networks,
web networks, biological networks, social networks etc. Any complex relational data could
be presented in the form of a network, which opens up a new potential to inspect the data
and relations in completely different way using methods from Network Science. We live in
the era of Big Data and complex systems that grow hopelessly complicated.

Traditionally the study of complex networks has been strongly related to the graph theory.
When we talk about networks we often imply to graphs because graphs are mathematical
representations of networks. Although a network and a graph is essentially the same thing,
there is subtle difference between the two terminologies. The network consists of the nodes
connected by edges, and they often refer to real systems such as WWW, or metabolic network
or telecommunications, etc. In contrast, when we use the terms graph, vertex, edge, we
usually discuss the mathematical representation of these networks. However, in practise and
among professionals this distinction rarely made, so the terminologies are considered as
synonyms.

To extract meaningful knowledge about complex networks that are represented using
graphs we can apply various algorithms. Commonly applied are traversal algorithms that are
used to find the shortest paths in the graph, graph cycles or graph directions, algorithms to
find minimum spanning tree, connected components, clustering algorithms, etc. In this thesis
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we would focus on one special group of algorithms that are used to find the subset of vertices
in the graph based on their importance for connectivity in the graph called K-cores.

1.1 Graph theory

Graph theory is field in mathematics that study graphs, which are mathematical structures
used to model pairwise relations between objects. Its roots go back to 1735 in Königsberg,
when Leonard Euler, a Swiss born mathematician was trying to solve the problem of Seven
Bridges of Königsberg1.

The problem consist of the question: Can one walk across all seven bridges and never
cross the same one twice? Euler represented the land areas separated by the river with single
point for each area. Next he connected with lines each piece of land that had a bridge between
them. He thus built a graph, whose nodes were pieces of land and links were the bridges.
Then Euler made a simple observation: if there is a path crossing all bridges, but never the
same bridge twice, then nodes with odd number of links must be either the starting or the
end point of this path. Indeed, if you arrive to a node with an odd number of links, you may
find yourself having no unused link for you to leave it. A walking path that goes through
all bridges can have only one starting and one end point. Thus such a path cannot exist on a
graph that has more than two nodes with an odd number of links. The Königsberg graph had
four nodes with an odd number of links, so no path could satisfy the problem. Eulers proof
that such path does not exists was the first time someone solved a mathematical problem
using a graph.

Before presenting some applications and properties of graphs, we need to introduce some
basic terminology. A graph G is the tuple (V, E) which consists of a finite set V of vertices
and a finite set E of edges, where each edge is a connection between pair of vertices [13].
The two vertices associated with an edge e are called the end-vertices of e. An edge between
two vertices u and v are often denoted by (u, v). The set of vertices of a graph G is denoted
by V(G) and the set of edges of G by E(G). Let e = (u, v) be an edge of a graph G. Then the
two vertices u and v are said to be adjacent in G and the edge e is said to be incident to the
vertices u and v. The vertex u is also called a neighbor of v in G and vice versa. The graph in
Figure 1.1 has seven vertices a, b, c, d, e, f, g and ten edges. Vertices a and b are end vertices
of edge (a, b). So, a and b are adjacent. Vertices b, c and f are the neighbors of the vertex a.

Graphs are data structures that have applications in many science and engineering disci-
plines, but to efficiently use them for large complex networks analysis we need to develop

1The Seven Bridges of Königsberg problem

https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
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fast and efficient algorithms. Some of the most common algorithms for graph analysis are
[6]:

• Graph Traversal and Search - Depth-First Search (DFS) and Breadth-First Search
(BFS) can be used to explore the structure and properties of graphs.

• Graph Isomorphism - Algorithms that determine if two graphs are structurally identical,
such as the Weisfeiler-Lehman algorithm.

• Minimum Spanning Tree (MST) - Kruskal’s and Prim’s Algorithms can be used to find
the MST, which can help analyze network structure and connectivity.

• Strongly Connected Components - Tarjan’s Algorithm and Kosaraju’s Algorithm
identify strongly connected components in directed graphs.

• Graph Clustering - Techniques like spectral clustering use eigenvalues of matrices
associated with graphs to identify clusters.

• Graph Partitioning - Algorithms like the Kernighan-Lin algorithm can be used to
partition a graph into subsets while minimizing the number of edges between them.

• Network Flow Algorithms - Ford-Fulkerson Algorithm: Determines the maximum
flow in a flow network.

• Random Walks - Random walk algorithms can help analyze the structure of a graph
and are used in PageRank, which ranks web pages.

Fig. 1.1 Example of a graph.

These algorithms for graph analysis can solve dif-
ferent problems and provide better insight to the data,
but one specially interesting, which have many ap-
plications in the filed of complex networks is the
problem of graph decomposition. Graph decom-
position aims to find the subset of a given graph for
which we would know its importance based on the
connectedness property, or simply how well is the
subset of the graph connected to the rest of the graph.
The problem is similar to the graph clustering prob-
lem, where we want to find the subset of nodes that
are strongly connected between each other, but with
graph decomposition we want to find the subset of "great" importance.
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Simply stated, the core decomposition of a network (graph) assigns to each graph node v,
an integer number c(v) (the core number), capturing how well v is connected with respect to
its neighbors. This concept is strongly related to the concept of graph degeneracy, which has
a long history in Graph theory [11].

There are several concepts and methods that could be used to detect cohesive group of
vertices or subgraphs such as cliques, n-cliques, n-clans, n-clubs, k-plexes, etc., but for most
of them it turns out they are algorithmically difficult. However, there is one technique that
proved to have higher efficiency, its k-core graph decomposition, which would be further
described in the next Chapter.

Next, we will describe the data that we used for experimental part of this thesis, data
preprocessing and graph preparation.

1.2 Large scale network data

We live in the era of great complexity. Everything around us is hopelessly interconnected and
we are using so much technology in our every day lives that generates new data with each
interaction that our digital footprints extend our ability to comprehend them. Nevertheless,
the run for more and more data and novel ways to analyse them and to extract meaningful
knowledge and patterns from it is never been greater. Our ability to reason and comprehend
our world requires the coherent activity of billions of neurons in our brain. Our biological
existence is rooted in seamless interactions between thousands of genes and metabolites
within our cells. These systems are collectively called complex systems, capturing the
fact that it is difficult to derive their collective behavior from a knowledge of the system’s
components. Given the important role complex systems play in our daily life, in science
and in economy, their understanding, mathematical description, prediction, and eventually
control is one of the major intellectual and scientific challenges of the 21st century [1].

The domains where we can apply the knowledge of complex systems are diverse, ranging
from biology to power grid networks. Some examples of large scale complex networks are:

• The cellular network contains the interactions between genes, proteins, and metabolites
integrates these components into live cells.

• The neural network holds the key to our understanding of how the brain functions and
to our consciousness, but in computer science it is also the heart of AI.

• In the recent time social networks are fluid of our society and determines the spread of
knowledge, behavior and resources.
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• Communication networks, describing which communication devices interact with each
other, through wired internet connections or wireless links, are at the heart of the
modern communication system.

• The power grid network, a network of generators and transmission lines, supplies with
energy virtually all modern technology.

• Trade networks maintain our ability to exchange goods and services, being responsible
for the material prosperity.

The study of large scale complex systems has been revolutionized by the unprecedented
amount of digital records that are constantly being produced by human activities such as
accessing Internet services, using mobile devices, and consuming energy and knowledge [2].

The overall extensive use of mobile phones and the exponential increase in the use of
Internet services is generating an enormous amount of data that can be used to provide new
fundamental and quantitative insights on socio-technical systems [2]. One type of mobile
phone data is specially interesting in the area of computational social sciences, it is the so
called Call Detail Records (CDR). The Call Detail Records (CDRs) of the 6.8 billion mobile
phone subscribers worldwide, potentially represent the most invaluable proxy for people’s
communication and mobility habits at a global scale. The availability of these data is indeed
defining a novel area of research that exploits CDRs to extract human mobility patterns and
social interactions [9, 5], estimates population densities, models cities structures, predicts
socio-economic indicators and outcomes of territories, and models the spread of diseases
[10], and many more.

As we previously noted, one of the most valuable real world large scale data are telecom
CDR data. Each time a user makes any interaction using mobile phone (sms, call or internet
traffic) one record is generated and stored in telecom operator database. These records are
used for billing purpose of the operator, but they contain much more valuable information
about general people activity. These records are very sensitive from user privacy perspective
and telecom operators are obliged to keep the safe and away from any external usage. In
some cases scientific community makes an agreement with telecom operator to provide the
anonymized data sets for the research purpose. In 2015 Telecom Italia opened some of their
data sets for the purpose of Big Data Challenge and those multi source data sets are still
available for research [2].

In this Thesis we will use telecom CDR data as an example of large scale network data
and for further analysis we will make connectivity graphs from it.
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1.3 Connectivity graphs

One way to analyse CDR data is through connectivity graphs. As described earlier, each
time a user makes an interaction using mobile phone (sms, call or internet traffic) one record
is generated and stored in telecom operator database. That one record represent connection
between two radio base stations in telecom operators network and those networks can be
represented as graphs. With the data that we are using, those connections are aggregated to
time intervals and real locations of radio base stations are approximated with regular grid
cells, so connectivity between radio base stations is actually connectivity between grid cells.
As these telecom data graphs are large and have very dense structure it is not simple to
visualize them.

In Figure 1.2 is presented graph structure plotted using Python NetworkX library, only
first 100 edges from the graph. As we can see from the Figure 1.2 these nodes seem clustered
and not well connected, but that is only because we plotted just part of the graph for the
simplicity. In Figure 1.3 is presented graph structure of only few nodes zoomed in from
previous graph plot. If we continue adding nodes to the graph plot we will see how structure
becomes more dense and graph more connected, Figure 1.4. By using NetworkX library we
can only plot parts of the graph, because our graph contains more than 6 000 000 edges and
NetworkX can not plot more than 1000.

In this Thesis we would not explore the diverse context of the data but we will focus
on computational and algorithmic challenges to extract knowledge from such complex data
sources, particularly from CDR data. We will use CDR data for Milan city and make
connectivity graphs from those records. Data is already processed by the operator prior to
releasing it for research, with the aim to anonymize the records and to preserve the true
location of operators Radio Base Stations hidden. To anonymize the data operator performed
the aggregation of telecom traffic between two Radio Base Stations over time interval of 10
minutes and assigned the weight value to each edge that reflect the real amount of traffic.
Since the data is georeferenced, to keep the true location of Radio Base Stations, the operator
distributed the traffic over regular grid with 10 000 cells. In this grid, each cell represent
one Radio Base Station in telecom network which refers to vertices in connectivity graphs.
The traffic that was registered between two cells refers to edges in connectivity graphs. In
Figure 1.5 is presented the regular grid over spatial area of Milan city [12].

Data is available for time period of two months, and in this research we would use only
one graph for one day to perform benchmark testing. When the data is obtained, first step is
to perform data preprocessing over raw data set. Our preprocessing include few steps:

1. Forming egde list from raw data following the structure (v1 v2 weight)
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Fig. 1.2 Graph plot of first 100 edges

2. Performing additional aggregation of weight to obtain unique edges per one day

3. Cleaning the edge list from self loops and directions

4. Eliminating not significant edges based on weights

5. Rescaling the weights and converting them from double to integer

In the table 4.2 is presented some basic statistics over graph edges, vertices and edge
weights. From table 4.2 we can see that graph has very dense structure with much greater
number of edges then number of vertices. Also, we can see that the weights over the edges
are not following any regular distribution with highest number of values between 0 and 1.
Mean weight is also below 1 meaning that the whole weight scale is shifted to interval below
1. Considering the minimal value for weight, we were motivated to eliminate those edges that
have weight less than 0.001, there is 202 695 edges with such small weight value. Finally, we
rescaled the weight values by multiplying them with 1000 and converting them from double
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Fig. 1.3 Graph plot of few nodes zoomed in

to integer to preserve the memory space. In Figure 1.6 is presented the final structure of the
edge list file. The file follows the structure (v1, v2, weight, rescaled weight).

Table 1.1 Statistics over graph vertices, edges and weights.

Number of edges 6 463 696
Number of vertices 10 000

Min weight 2.647e-05
Max weight 92.062
Mean weight 0.049

Number of weights between 0 and 1 6 434 211
Number of weights between 1 and 10 28 753

Number of weights between 10 and 100 732

From this brief statistical analysis we can conclude that the greatest challenge with
analysing real world telecom connectivity graphs is their very dense structure with high
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Fig. 1.4 Graph plot after adding mode nodes zoomed in

number of edges that also have the weight attribute which should be taken into account
during any knowledge extraction from the data.
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Fig. 1.5 Regular grid over spatial area of Milan city [12]

Fig. 1.6 Example of the final edge list file, first 10 lines



Chapter 2

K-core decomposition in large scale
graphs

One of the most common problems in Graph Theory is finding the subset of the graph that has
significant importance to overall information flow through the graph. K-core decomposition
is one approach to the problem, because knowing the core number of the node would give
us an insight into how important the node is in the graph. Simply speaking, the higher the
core number of the specific node, the importance of the node is greater because the nodes
in the higher core are more connected and have higher degree. Graph core decomposition
would give us the subsets of the graph depending on the importance of the nodes, which is in
some use cases very valuable information. When we are working with large scale graphs
from real world data such as Web connectivity graphs, telecom data graphs, social media
graphs, etc. we are working with millions of nodes and edges which makes any kind of
knowledge extraction difficult and computationally intensive, that is why the algorithms that
would provide the subset of a graph with it’s importance are bringing so much attention
in the network science community. In this thesis we would focus specifically to K-core
decomposition in large scale graphs.

2.1 K-core graph decomposition

The core decomposition of networks has attracted significant attention in science and research
due to its numerous applications in real-life problems. Simply stated, the core decomposition
of a network (graph) assigns to each graph node v, an integer number c(v) (the core number),
capturing how well v is connected with respect to its neighbors [11]. Although the core
decomposition concept is extremely simple, it is still largely explored field mainly due
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to its capability to analyze a network in a simple and concise manner by quantifying the
significance of graph nodes. K-core is a property that is important both as global graph
property because it tells a lot about graphs connectivity, as well as local property of the nodes
because it denotes the importance of the node in the network. Next, we will provide formal
definition of graph cores.

A graph is denoted by G(V, E), where V is the set of nodes or vertices and E is the set
of edges or links. The number of nodes is n = |V| and the number of edges is m = |E|. The
number of neighbors of a node u ∈V plays a central role in general, and it will be denoted
by deg(u).

Fig. 2.1 The example of graph cores [11]

Figure 2.1 presents a simple graph G(V, E) with n = 8 nodes and m = 12 edges. Based
on the degree definition, deg(v1) = 2, deg(v4) = 2 whereas node v3 has the highest degree
deg(v3) = 5. Therefore, node v8 has the smallest degree and node v3 the highest. From Figure
2.1 we can see that 1-core corresponds to the nodes that have the degree at least 1, 2-core
corresponds to the nodes that have the degree at least 2, 3-core corresponds to the nodes that
have the degree at least 3, etc. Intuitively it is clear what a core number represents in a graph.

Exploring and analyzing massive complex networks involves the execution of (usually)
computationally intensive tasks, aiming at uncovering the network structure and detecting the
presence of useful patterns that could be proven significant. Some important graph mining
tasks involve: reachability queries, graph partitioning, graph clustering, classification of
graph nodes, predicting network evolution, discovering dense subgraphs, detecting influential
spreaders [11].

In many cases we are searching for graph nodes that are considered “central” with
respect to a specific problem at hand. Therefore, the concept of node importance is crucial
in network analysis, since it is expected that among the nodes of a massive network, only
a small fraction is of high significance. Evidently, one should first determine a method to
quantify this significance (importance), since this concept is highly related to the application
and context of the network. One of the popular measures of importance is the total number
of shortest paths passing through a specific node (also known as betweenness centrality [7]).
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Also, one can quantify node importance using the concept of random walks and applying
techniques similar to PageRank [4]. In such a case, the importance of a node is represented
by the probability that this node will be visited by a random walker.

The concept of core decomposition can be used efficiently and effectively to quantify
node importance in many different domains, while avoiding the use of more complex and
computationally intensive algorithmic techniques. To be precise, the core decomposition of a
simple graph G can be computed in linear time with respect to the number of edges of G, if
the computation is done in main memory. Simply put, the k-core of a graph G is the maximal
induced subgraph Gk, where the number of neighbors of every node u in Gk is at least k. The
core number of a node u (c(u)) is defined as the maximum value of k such that u is contained
in Gk.

The k-core decomposition in general case considers that graphs are unweighted and
undirected. However, many real-world networks carry rich semantics, as expressed by more
complex graph types. To that end, there exist research efforts towards meaningful extensions
of the k-core decomposition to other types of graphs. In most of the cases, these extensions
pose additional challenges to the efficient computation of the decomposition as well [11].
Two most common extensions are for the cases of directed or weighted graphs, because many
real world networks have those characteristics.

Directed graphs or digraphs are characterized by rich semantics in comparison to simple
graphs, simply because edge direction is important. In a directed graph the degree of a node
u may refer to the number of incoming links degin(u) or to the number of outgoing links
degout(u). These are also known as the in-degree and the out-degree respectively. Giatsidis
et al. [8] introduced D-cores, an extension of the k-core structure to directed graphs. In
this case, the notion of (k, l)-core is used to represent subgraphs in which all nodes have
in-degree at least k and out-degree at least l respectively [11].

Another spacial case of the graph is weighted graph, more details of that case would
be described in this Thesis. A weighted graph is characterized by the existence of weights
on the graph edges. Each edge e is associated with a weight w(e) that may represent the
cost of the edge, or the strength of the link between the participating nodes, or any other
type of quantification, depending on the application. Computing the core decomposition
in a weighted graph is significantly harder than the computation in a simple graph, mainly
because there is no easily derived bound on the core number of a node [11]. In [3, 14],
the authors propose efficient algorithms for computing the core decomposition in weighted
graphs.

Core decomposition is a powerful tool for analyzing complex networks and it is proved
to be more efficient comparing to other techniques for network analysis. By focusing on
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densely connected subgraphs, researchers can gain insights into the network’s structure and
dynamics, and also time evolution of the network. In the following Chapter we will describe
in more details the general case of K-core decomposition for simple graphs and special case
of graph K - core decomposition for weighted graphs.

2.2 K-core for unweighted graphs

Base case for any core decomposition should be for unweighted graphs. This makes a good
starting point, and makes understanding of base and any subsequent Algorithm easier. Here
we present the "base" Algorithm for computing K-core decomposition for unweighted graphs
in Figure 2.2 [3].

Fig. 2.2 Batagelj and Zaversnik’s algorithm 1 [3] in pseudo-code

Although we believe the pseudo code of the Algorithm is pretty self explanatory we will
try to dig a bit deeper. We start from a graph that is represented by lists of neighbors for each
vertex and we want to get core values for each vertex in this graph. In order to get these
values, we start by computing the degrees of all the vertices in the graph, and storing them.
After we have these values we should sort them in increasing order of their degrees.

As will be mentioned later, please note that this here is a base algorithm, and that more
optimal data structures than lists can be chosen, as well as a fast sorting algorithm and similar
optimizations. All these changes might not affect the theoretical worst case run time, but in
real world will result in more than significant performance differences.
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After data preparation the main body of algorithm begins, it consists of two nested for
loops. We start by going through all the vertices in the sorted list of vertices by weight,
Firstly, we assign core value of that vertex to be the degree, and for all it’s neighbours we do
the following. If the degree of neighbour is higher than the degree of initial vertex from first
for loop, we subtract 1 from the value of degree of the current neighbour in iteration. And
we finish by reordering the list of vertices (because the values changed). All this mentioned
above is done in two loops, firstly we go through all the vertices, and then for each of them
we go through all their neighbours and rearrange the list.

This algorithm guarantees we will not skip over any vertex, since at most we subtract 1
from the degree of neighbour vertices. This is because we are only focusing on unweighted
graphs in this case, and every edge has the same weight-1. So there can be no leaping
during sorting, that would result in improper behaviour of Algorithm described here. In
the subsequent Chapter we will describe a more general scenario for the case graphs have
weights, and since we have to worry about vertices leaping, since the weights can be greater
than 1, we will have to adapt our algorithm to take this into account.

Although the Algorithm itself is not overly complex, we should pay significant attention
to the details of the implementation, the subroutines, data structures and general optimally
of code that is used, because as we will see later depending on this run times can vary
dramatically.

In Figure 2.3 we are presenting a case of K-core graph decomposition in a very simplified
graph. We start by assigning 0 for core values to all unconnected vertices. Then all the
vertices with degree 1 are removed, after sorting at each step, we proceed with examination
of vertices with degree 2. Interestingly, as can be seen on the Figure the majority of vertices
that have core of 2, started with higher initial degree, 3 or more. They get assigned 2 as core,
because their neighbours had lower degree and were removed, after which action a lot of
vertices got their degrees lowered by at least 1. The calculation for 3-core is identical to the
iterations before, so will not go into further detail.

2.3 K-core for weighted graphs

As we mentioned before, K-core for unweighted graphs since it is significantly easier for
calculation, mainly served as a good base ground for further explanations. In real world
scenarios, rarely are unweighted graphs encountered, much more often we have a case
of weighted and directed graphs. Direction of graph does not change the meaning in our
particular case, since we are more concerned with the algorithm itself. It is of no significance,
as it will be evident in examples to follow, if we use in-degree, out-degree or a sum of them.
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Fig. 2.3 Graph core decomposition by base algorithm [3]

The majority of complexity lies in weights, and potential leaping of vertices during sorting.
For that reason we will discuss modifications to the definition and improved Algorithms in
this chapter that handle weighted graphs.

We start by defining p-functions. P-function are vertex property function on a set of
vertices. For example:

• degree of vertex for unweighted graphs

• in-degree for weighted graphs

• out-degree for weighted graphs

• sum of weighted in-degrees and out-degrees

• all similar monotone functions

We define monotone functions and their main properties as follows:
Definition 1 Monotone function is a function which is either entirely non-increasing or

non-decreasing. Or in other words, a function is monotone if its first derivative does not
change sign.
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This term is commonly used to describe set functions which map subsets of the domain
to non-decreasing values of the co-domain. In particular, if f:X->Y is a set function from a
collection of sets X to an ordered set Y, then f is said to be monotone if for every A which is
subset of B, both of which have elements from X, the following holds f(A)<=f(B).

We will continue by listing few Theorems and Corollaries that will enable us to claim
that we have an efficient Algorithm for the weighted graph case, proofs will be omitted here,
since most are a simple case of counter-example but can be studied in depth in the following
paper [3]:

Theorem 1 For each monotone vertex property function p Algorithm determines the
p-core at level t.

Corollary 1 For each monotone p-function p the cores are nested
Theorem 2 For a monotone and local vertex property function p Algorithm 4 determines

the p-core hierarchy.
We will now present and describe the Algorithm 4 in more detail.

Fig. 2.4 Batagelj and Zaversnik’s algorithm 4 [3] in pseudo-code

As before, we start from a graph represented by lists of neighbors, and we want to
calculate core values for every vertex. The main difference being, we are not working in
specific unweighted case. Now we also have a monotone vertex property function p. It can be
any number of different functions, some of which are listed above. We are naturally mostly
interested in sum of weights for weighted graphs.

We initialize a helper list that will keep track of visited vertices. Also we should calculate
the values of defined p function for every vertex in set, and store the values. Afterwards,
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we build a Min Heap data structure based on values p function values for each vertex we
previously calculated. Now the main body of the algorithm is executed, it as before consists
of two nested loops. The first one is a while loop that spins until there are elements in the
min heap. Inside the loop, we start by removing the vertex that is on top of min heap from
the temporary list of vertices we defined before. Then we assign core value for the vertex
to be the value from the list of p-values we are keeping track. Finally we go over a list of
every neighbour from the recently removed vertex and update the p-function values list for
the neighbour to be maximum value of the top element that was recently removed or the
value of recalculated p-value for the subset without the newly removed vertex. This last part
is very important, as it enables us to bypass the problem we mentioned earlier, the leaping of
nodes as they are removed. We finish the iteration by updating the min heap, and execute
both loops again until the conditions for their termination are met.

Just for clarification, we will briefly go over Min Heap data structure explanation and key
points. Min Heap is as a type of a Heap Data Structure in which each node is smaller than or
equal to its children. While the heap data structure is a type of binary tree that is commonly
used in computer science for various purposes, including sorting, searching, and organizing
data.

Fig. 2.5 Min Heap and its opposite Max Heap

Without going into formal Big O notation and similar methodology for determining the
performance of data structures and algorithms. Min Heap has certain certain advantages that
are not easily overlooked:

• Efficient insertion and deletion. Min heap allows fast insertion and deletion of elements
with a rather low complexity.

• Efficient retrieval of minimum element. The minimum element in a min heap is always
at the root of the heap, which can be retrieved instantly.
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• Memory efficiency. Min heap is a compact data structure that can be implemented
using basic data structures.

• Sorting speed. Min heap can be used to implement an efficient sorting algorithm.

Finally, we will be presenting an Algorithm by Zhou et al. [14] in Figure 2.6 which
describes an alternative way of computing K-cores for weighted graphs. We believe this Al-
gorithm to also be important, because it highlights similarities between different Algorithms,
and enables us to better modify Algorithm 1 in next Chapter, and achieve best of both worlds,
an real-world efficient algorithm for computing K-cores for weighted graphs.

Fig. 2.6 Zhou - Huang - Hua’s Algorithm [14] in pseudo-code

We we will briefly go over main idea of the algorithm. The basic strategy of the algorithm
is deleting a vertex with the minimum weighted degree recursively. In each iteration, the
vertex with the minimum weighted degree is found, whose weighted core number is then
determined. The principle is that if its current weighted degree is larger than the weighted
core number determined in the last iteration, this means that current vertex can be in a
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weighted core with larger weighted core number, and so current vertex weighted core number
is set to its current weighted degree, or weighted core number is set to be the weighted core
number determined in the last iteration. At the end of the iteration, currently examined vertex
and its connected edges are deleted.

Previously discussed algorithm and Algorithm 4 by Batagelj and Zaversnik, share a
common feature and in this they mitigate the main concern with the Algorithm we discussed
for unweighted graphs. A leap can happen because a neighbour has an edge with high enough
weight so that the vertex we are currently examining is leaped when the set of vertices is
sorted again. Instead of allowing this, both algorithms do not reduce the weight or core
number of neighbouring edge if it is about to leap the edge that we are currently examining.
They do this with different approaches, but the idea and end goal are the same. In Batagelj’s
algorithm maximum value is assigned in each iteration. While in Zhou’s algorithm we will
reduce the number of neighbor but we will keep assinging the higher core number as before.

2.4 Python implementation

Although Python is a great language for starting point for any algorithm, for several reasons:

• large community

• plenty of resources

• lower barrier for entry - easier to learn

• plethora of libraries, especially in the field of Machine Learning

The main drawback of implementing compute or memory heavy algorithms in Python
will in majority of cases be the underlying execution speed. This is mainly due to the way
Python code is run. If there is need to speed things up in Python, more often than not, the best
approach would be to write the compute part in plain C programming language, and wrap it,
so that it can be used from Python libraries. This step also includes some performance loss
when compared to only writing everything in C, due to interoperability and the conversions
that are necessary when data is transferred to and from the C part of library. In most cases, it
is not a clear cut which program should be used. If we were looking at pure speed, everything
would be written in plain C, if we were looking at worldwide adoption, library support or
something similar Python would certainly be a serious contender. In our work here we have
chosen C# because we believe it offers a nice blend of performance, support and readability
as well as some other topics.
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To go into a bit more depth, code written in Python is executed via the Interpreter in the
following way.

When a Python program is compiled, the python compiler converts the Python source
code into another code that is called byte code (named due to the size of each byte code
instruction). This code can run on any Operating System and hardware. So mainly, byte code
instructions are platform-independent.

In order to run byte code on a machine, we first need to convert it to a machine un-
derstandable code or machine code, those are the 0s and 1s that the computer executes in
the end. To achieve this Python uses an interpreter called PVM (Python Virtual Machine),
which understands the byte code, includes all the used libraries and converts everything into
machine code.

Finally, machine code instructions can be executed by the CPU.

Fig. 2.7 Python code Interpreter

We started from a base algorithm for K-core decomposition for weighted graphs (gener-
alized k-cores) written by Antoine J.-P. Tixier and only slightly improved as a baseline. The
algorithm itself is based on Batagelj and Zaversnik’s (2010) algorithm number 4 [3].

Algorithm 4 is discussed and explained at length in the previous Sub-chapter, K-core for
weighted graphs, please refer to it if further clarification is needed.

Finally, we will explain Python implementation.
It is worth noting that this implementation is using IGraph library instead of some more

popular alternatives since IGraph library has support for weighted edges, which is in the core
of the problem of the dataset we are exploring.

In this explanation we have left out data consumption out of the more serious discussion to
follow. But we do feel it is worth noting that this part also posed quite a serious performance
challenge using Python. Although, the data was just consumed by IGraph library. The only
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operations were creation of graph, initialization of node weights tuples to zero and computing
the vertex strength by iterating over all the vertices.

Now we will describe the implementation of core algorithm in more details. We begin
by cloning the graph using deep copy, this is done so that original data is also maintained.
This is followed by necessary initialization, both the dictionary that will contain the core
numbers and min heap that will contain degrees are created and populated by relevant data at
this point. After neap data structure is reformatted, the main while loop begins. It iterates
as long as there are elements in the heap. We take the top element from heap, meaning the
smallest one. After we get its neighbours and setting the core number to the current value we
delete this vertex from the graph. If the vertex had no neighbours, we just restructure the
heap so that new minimal element is at the top. But if the removed vertex had neighbours,
than the flow is a bit more complex. We go over all of its neighbours, and for each one, we
calculate the maximum of the core value of the original vertex whose neighbours we are
currently examining and the strength of the vertex in the newly updated graph (without the
vertex that was removed previously), We den update this maximum as the new weight of the
neighbour we are currently iterating. This step enables the use of this algorithm on weighted
graphs, as we previously mentioned. This is because, by choosing maximum instead of just
recalculating the weight for the neighbour we essentially mitigate any issues we could have
with leaping vertices. Afterwards we just restructure the heap so that new minimal element is
at the top. We run this for loop for all the neighbours of the initial vertex in questions. After
it finishes, we will take another element from the top - vertex with the smallest weight, and
continue the whole procedure. This is done until we go over all the elements from the initial
graph. At the end we have a dictionary with keys as names and K-core values as values of
the dictionary.

There will be a more comprehensive description of the algorithms performance with
Python implementation in later Chapters. This will include comparisons with different imple-
mentations, relevant benchmarks, identified bottlenecks and potential areas for improvement.
For now it is sufficient to note that performance with Python was sub-par, and was not
sufficient to perform any deeper analysis on the data in any meaningful way, due to the size
of the graph. In a way, poor Python performance prompted us to explore possibilities of
alternative implementations and is partly responsible for the work that follows.
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Fig. 2.8 Batagelj and Zaversnik’s algorithm 4 core implementation in Python



Chapter 3

Efficient solution for k core
decomposition in C#

In this Chapter we cover several relevant topics with the end goal, an efficient algorithm
implemented in C# programming language. We start by giving a brief overview of C# and
.Net. In addition, we cover the most important part of .Net, CRL (Common Language
Runtime) and JIT (Just In Time) compiler in more details. This is followed by an overview of
the most important specification of the system on which tests for all the algorithms were run.
We list both important hardware and software components to guarantee reputability. Meaning
that the results that will be shown later will always be the same, if the machine with close
enough specification is used. Afterwards, we optimized the k-core decomposition algorithm
for the weighted graph case. We present the algorithm and give a brief commentary on its
key points and its importance. Finally, we present our implementation of the previously
mentioned algorithm in C# with necessary comments.

3.1 C# and .Net overview

We will briefly go over C# and .Net Framework basics. Then we will cover JIT compiler and
its specifics. Finally we will compare C# and Python execution speed.

C# (C Sharp) is a modern, object-oriented programming language developed by Microsoft.
It was introduced in the early 2000s as part of the .NET initiative. It’s key features are:

• Object-Oriented - Supports concepts like encapsulation, inheritance, and polymor-
phism

• Type Safety - C# enforces type checking at compile time, reducing runtime errors
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• Versatility - Suitable for various applications, including desktop, web, mobile, and
game development

• Rich Standard Library - Provides a vast set of libraries for common tasks

• Interoperability - Can easily interact with other languages and technologies, such as
C++, COM, and REST APIs

.NET Framework is a software development framework created by Microsoft that provides
a platform for building and running applications. Its key component is CLR or Common
Language Runtime. It is execution engine that manages running applications, providing
services like garbage collection, exception handling, and security.

Fig. 3.1 CLR flow

In .NET, CRL (Common Language Runtime) is a heart of .NET Framework. Without
CLR you can’t imagine .NET Framework at all. When you write any program using any
.NET language and run it, it won’t run directly on your system. In order to run a program it
is require to convert into binary so that operating system can understand and generate desire
output.

Here it is important to understand that each system may have different system architecture
and operating system. In order to run a program in any system, your program must be
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converted into the system specific native code. To do this CLR comes into the picture,
which takes program source code as input, compile and convert into the MSIL (Microsoft
Intermediate Language) which consists of CPU-independent code and instructions which is
platform independent. At run time this MSIL again convert into system specific native code
to run the program.

CLR handles the execution of code and provides useful services for the implementation
of the program. In addition to executing code, CLR provides services such as memory
management, thread management, security management, code verification, compilation, and
other system services.

Fig. 3.2 CLR components

In the past, it was often necessary to compile your code into several application and each
of which targeted to specific operating system and CPU architecture.

In .NET framework, when you compile your program it didn’t immediately create
operating system specific native code. Instead, it first compiles your code into Microsoft
Intermediate Language (MSIL). Usually all .NET languages such as C#, VB and F# etc are
initially compiled into MSIL by CLR compiler.
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The .Net language such as C#, VB and F#, which conforms to the Common Language
Runtime (CLR), uses its corresponding runtime which is responsible to run the application
on different operating system. Only needed managed code (MSIL) code is executed just
before the function is called. To do so CLR takes helps of Just In Time (JIT) compiler.

With the help of Just In Time compiler (JIT) the Common Language Runtime (CLR)
does these tasks. JIT converts the MSIL code to native code which is CPU-specific code that
runs on the same computer architecture as the JIT compiler and stores the resulting native
code in memory so that it is accessible for subsequent calls in the context of that process.

Fig. 3.3 JIT compiler

We will go over performance differences between C# and Python for different operations.

• Arithmetic Operations
C# Typically shows significant speed advantages in executing basic arithmetic opera-
tions. Benchmarks often indicate that C# can be 5 to 10 times faster than Python for
simple tasks.Due to Pythons ts interpreted nature, Python incurs overhead, making
arithmetic operations slower.

• Loop Performance
JIT compilation optimizations allow C# to handle loops very efficiently, often achieving
execution speeds that are several times faster than Python for tight loops. Loops in
Python tend to be slower due to dynamic typing and interpreted execution.
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• Function Calls
Function calls in C# are optimized, especially with inlining and other compiler op-
timizations. While on the other hand, Python can be significantly slower due to the
overhead of argument passing and dynamic type checking.

3.2 Benchmarking system overview

In order to guarantee repeatability of our experiments we have taken every precaution to
detail all the specifications of the machine that was used for testing purposes. The same
configuration (hardware and OS) was used for all the runs of algorithms for which we were
tracking performance,

We will list all the relevant hardware and software components:

• CPU - AMD Ryzen 5 2600
Cores: 6
Threads: 12
Socket: AMD Socket AM4
Cache L1: 96 KB (per core)
Cache L2: 512 KB (per core)
Cache L3: 16 MB (shared)
Frequency: 3.4 GHz
Turbo Clock: up to 3.9 GHz

• RAM - 32GB
Type: DDR4
Size: 32768 MBytes
Number of channels: 2
DRAM Frequency: 2666 Mhz
CL Latency: 16-18-18-39-60

• Motherboard - Gigabyte B450M DS3H
Manufacturer: Gigabyte Technology Co., Ltd.
Model: B450M DS3H-CF (AM4)
BIOS revision: F67d (Date 9/2/2024)

• GPU - Radeon RX 570 8GB
GPU Name: PowerColor Red Dragon RX 570 OC 8 GB (AXRX-570-8GBD5-
3DHD/OC)
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Base Clock: 1168 MHz
Boost Clock: 1250 MHz
Memory Clock: 1750 MHz
Bus Interface PCIe 3.0 x16
Memory Size: 8 GB (GDDR5)
Memory Bus: 256 bit
Bandwidth: 224.0 GB/s
TDP: 150 W

• Storage:

– KINGSTON SA400S37480G
Manufacturer: Kingston
Type: SSD
Capacity: 447 GB
SATA type: SATA-III 6.0Gb/s

– TOSHIBA HDWD130
Manufacturer: Toshiba
Type: HDD
Capacity: 2794 GB
SATA type: SATA-III 6.0Gb/s

• OS: Windows 10 Pro
Version: 22H2

• Framework version:

– Python 3.12.6

– .NET 8.0 Framework

• IDE:

– Visual Studio Code (Python)
Version: 1.93.1

– Microsoft Visual Studio Community 2022 (C#)
Version: 4.8.09037

We took special note to document all the relevant hardware and software that was used to
guarantee that results are reproducible. Please note, although the performance of any specific
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algorithm could be different on other machine, the relative performance of algorithms one
to another should always stay the same. Of course, if obvious minimum requirements are
met, i.e the system has enough RAM or base CPU power necessary for execution. Finally,
it is also worth mentioning that we did everything in our power to eliminate any effect of
background processes on the execution algorithm, and we believe they should not present
any impact in execution time.

3.3 Efficient algorithm for weighted k-core decomposition

As we discussed previously, the main problem with Algorithm 1 for unweighted graphs
from [3] are leap vertices in graph that has weights. Here we will present our solution to
the problem and adapt the base algorithm, so that all the cases are handled. We will also
proceed and prove that this algorithm is indeed good and that p-core hierarchy will indeed be
determined by our new algorithm.

In the algorithm the core number of vertex v, core(v), is represented by the table element
core[v], and its degree by the table element degree[v].

INPUT: graph G = (V, L) represented by lists of neighbors Neighbors(v) for each vertex
OUTPUT: table core with core number core[v] for each vertex v
01 compute the degrees of vertices
02 order the set of vertices V in increasing order of their degrees
03 for each v ∈ V in the order do begin
04 core[v] := degree[v]
05 for each u ∈ Neighbors(v) do
06 if degree[u] > degree[v] then begin
07 degree[u] := degree[u] − 1
08 reorder V accordingly
09 end for
10 end for

Now we will present modification of the base algorithm in such a way that weighted
Graphs will also be supported. In addition we will provide relevant explanation. We will
apply the following modifications to the base algorithm:
remove line 06
replace line 07 with degree[u] := max ( degree[v], degree[u] − w(u,v) )
After the aforementioned changes the algorithm should look as in the following pseudo-code:
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INPUT: graph G = (V, L) represented by lists of neighbors Neighbors(v) for each vertex
OUTPUT: table core with core number core[v] for each vertex v
01 compute the degrees of vertices
02 order the set of vertices V in increasing order of their degrees
03 for each v ∈ V in the order do begin
04 core[v] := degree[v]
05 for each u ∈ Neighbors(v) do
06 degree[u] := max ( degree[v], degree[u] − w(u,v) )
07 reorder V accordingly
08 end for
09 end for

We take graph as an input, represented by lists of neighbors for each vertex. And want
core number for each vertex as output. The same as before, for unweighted scenario. The
only difference is that now we have to take into mind the weights also. So the initial lists of
neighbours will have to either be double list, or alternative structures, because they have to
store weight of the edge also.

After the algorithm is started, the behaviour should be as follows. Degree computation
should stay the same, keeping in mind that we will add the weights of edges instead of
incrementing the value of total weight always by 1 as before. Afterwards, we order the set of
all vertices by their total degree - total weight of all the edges in increasing order.

Now we can start the main loop, where we go over all the vertices from the list. Keep in
mind that values, or more specifically the order of vertices can change after each iteration,
since we will sort it before the start of next iteration. This is done so that we always take the
vertex with lowest total weight from all the vertices that are not yet visited. At the start of the
loop we assign core value to the current total weight of the vertex.

Inside we begin another for loop, this time we will be looping through all the neighbours
from the original vertex V. The most important par is setting the value of total weight of
neighbour u to the maximum value from total weight of V or recalculated degree without the
vertex V in graph. This step enables us to take into account weighted graphs also. And is
differentiating part from the previously mentioned algorithm.

Please note that a slight optimization that is not mentioned here is sorting the collection
from the first for loop in increasing order. If the sorting is done after the inner for loop
finished, instead of inside double for loop we believe it will have significant positive impact
on performance, so in the actual implementation we have done so. Since here we are only
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focusing on general case for weighted graphs, we have omitted this change in the algorithm
to simplify things.

We finish when the first loop has gone through all the vertices and assigned core numbers.
Evidently we will also go over each of the remaining neighbours in the inner loop. So it is
worth noting, that in the real world implementation, the algorithm gets faster and faster after
each visited vertex from the initial set, since the edges will be removed inside the inner for
loop. This means that as the time goes by, less and less edges remain in the graph, and it
should take less time to go over them.

Finally, we would like to point out that this algorithm shares one important feature as the
algorithms for weighted graphs mentioned in the previous chapter. It will assignee maximal
values to the neighbours in the inner loop, this alone guarantees that there will be no leaping
done by vertices. This alone makes us confident that the algorithm is sound and core values
will be the same. Essentially, they represent similar ways of doing the same work, with
the main idea behind them being the same. We believe that this newly shown algorithm
should also have the benefit of better performance. We will go over this in more detail in
next chapter.

It is worth noting that in scenario where we have a weighted and directed graph, if
p-function is represented by the following formula:

p(V ) =
N

∑
n=1

indegree+outdegree

where V is vertex we are interested in, and some goes through the neighbours for that vertex
1,...,N. Clearly, for the given p-function Theorem 2 will hold, since it is obvious that it is
monotone. So our algorithm is clearly determining the p-core hierarchy, which was our
objective.

3.4 C# Algorithm implementation

No we will go over the concrete implementation of the algorithm we presented in the previous
section in C# programming language with short commentary. We will skip the class structure
and similar commentary for simplicity and will focus on methods.

We will briefly go over data consumption here, because it has proven to be much faster
than in Python. We create a Dictionary of Dictionaries to store adjacency lists. This is
done mainly because of performance, but more on that in later chapter. The rest is pretty
straightforward. Using StreamReader we go line by line through data, skipping the line with
headings, and add the edges to graph. We take special note, because of the input, and the
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fact that we are interested in undirected graphs to add the same edge for both vertices. For
example if we had in input that vertices 4 and 7 have and edge with weight 14, we will add
vertex 7 to vertex 4 neighbours list with the weight, but also we will do the opposite, edge 7
should also have edge 4 with the appropriate weight. This is done to reduce code complexity
later on, and speed up access to the neighbour we want.

Fig. 3.4 C# data consumption

Before the main body of algorithm, we will present also a helper method that will be
used for calculating the total weight of all the edges. This will be used quite extensively,
since the calculation of total weight is used inside the double for loop, when determining the
weight of the neighbour.

In addition, it is worth noting the structure of class Edge that will be used thought the
main body of the algorithm.
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Fig. 3.5 Total weight of vertex

Fig. 3.6 Edge class structure

The main body of algorithm, or its core, is pretty straightforward. Firstly we create
a data structure - Dictionary that will hold the values of k-cores for all the vertices. We
then compute the weighted degrees of all the vertices, and create a List to store the newly
calculated data. Afterwards we sort the newly created list by total weight value for every
node. This list will serve as a starting point, and we will go through all the vertices in it.

Once the data preparation is done, we start going over all the vertices in increasing order
of total weighted degrees in a for loop. Just to be on the safe side, we set the value of
the current vertex to (0,0), since we cannot remove an element from the list whom we are
iterating, at least not in a way that would be readable. After we add the value of k-core to the
dictionary that is storing the output, we determine the neighbours of the vertex we need to
iterate over.
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Once the neighbourhood is determined, we can go over each of them, in a foreach loop
and do the following. For each of the Neighbours, lets note one of them with U for easier
notation. Firstly, we remove the vertex from original loop (V) from the neighbours of vertex
U. Then we recalculate the new total weighted degree of U, after V has been removed from
its neighbourhood. Secondly, we get the vertex object by reference from the list of vertices
we are iterating over. Finally, we set the weight of vertex obtained in such a way to maximum
of total weighted degree of V or the previously recalculated total weighted degree of U.

After we finish with all the neighbours, we sort the list again. And continue going through
all the vertices. By choosing the maximum as is defined in the previous step for each of the
neighbours, we guarantee that all vertices will be visited. Or differently put, there will be no
leap vertices, and the total weighted degrees will appropriate. Sorting the list is needed at
this step to lower the vertices that have had V in their neighbours, because those edges are no
longer existing. Since we removed vertex V.

In the end, after all the iterations, we get k-core values for all the vertices in a Dictionary
structure.
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Fig. 3.7 Main body of the algorithm



Chapter 4

Results

In this chapter we will mainly cover comparison of performance between Python and our new
C# implementation of the previously discussed adapted algorithm for weighted graphs. In
addition, we will discuss some of the choices we have taken during the implementation that
have led to performance difference between the two algorithms. Finally, we will touch on
potential for improvements in some key areas including Data structures, Sorting algorithms
and multithreading.

4.1 Performance comparisons

We measured performance for both the implementations of k-core decomposition algorithm
that were described in previous chapters. The performance was measured for Python and for
C# in fashion that would guarantee their comparability. We measured performance only for
the main body of the algorithm, when all the data is fully loaded.

Before we start, it is worth noting that C# implementation also showed to be superior
when it came to Memory consumption and than C# was continuously consuming less
memory that Python implementation. Also the process loading the data into relevant
structures was also significantly faster for C#, initial loading of data into Python and
creating Graph took several minutes while for C# it was a matter of seconds.

Because of the very bad performances of algorithm in Python we measured it in following
way. After we set everything up, we let it run for 12 hours straight and determined how many
vertices were processed in that time. That gives us a great insight into how much time would
it take for the whole algorithm to finish, because we know that there are 10 000 vertices to go
over. Without the need to wait for the whole process, we were able to run it several times and
average the resuls from runs. Also we can determine the average time it takes the algorithm
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to process a single vertex. These parameters will be very useful, since they will enable us to
compare the results for both implementations.

After running for 12 hours Python implementation was only able to determine the k-core
for 294 vertices on average out of 10 000 vertices that the graph contains. We can easily
convert that to estimated run time of algorithm. So if there are 10 000 vertices in total, and
for 12h only 294 were process, that means that in order to process every vertex algorithm
would take approximately 408.16 hours, or more than 17 days. Or if we use the same initial
values to try and get the time necessary for computation of k-core for a single vertex, the
value amounts to .

To put the values into perspective:

Table 4.1 Python implementation statistics

Single k-core computation 2.44 minutes (147 seconds)
Determining k-core for the whole graph 17 days (408.16 hours)

Let us now go over the performance while using the C# implementation. Since the
algorithm had a reasonable runtime, we didn’t have to result to similar approximations that
we used to determine the runtime of Python implementation. C# implementation took on
average 10 minutes and 15 seconds to complete for the whole graph of 10 000 vertices. That
is true in Debug mode, when we switched to Release build the performance was even better.
We note that programs are usually run in Release mode after the implementation is finished
and that Debug is only used when the application is still under development. So, for Release
version all the work was done in just 06 minutes and 11 seconds!

When we divide the total runtime by the number of vertices, we can easily obtain the time
it took C# implementation to process a single vertex. On average C# algorithm processed a
node every 0.0371 seconds, or in milliseconds it amounts to just 37 milliseconds! So when
results for C# are put into table, it should look like following:

Table 4.2 C# implementation statistics

Single k-core computation 37 milliseconds
Determining k-core for the whole graph 6.17 minutes

The results are even beyond what we have hoped to achieve! We started from an algorithm
that was pretty much unusable, since for only a single day of data to process it would need
more than 17 days. If we wanted to run analysis in real time, it would not be possible with
Python, since for a single day of data it would take 17 days to process them. The final
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solution does the same work for around 6 minutes! The implementation in C# is orders of
magnitude faster, and enables serious data analysis to be performed on a series of similar
datasets, with each representing a day.

When we put the time from both runs in the same format, in this case minutes make
most sense as the common denominator we get the following comparison. Python took 24
489.6 minutes to determine the k-cores for the whole dataset, while C# took around 6.17
minutes. The C# algorithm implementation is about 4 000 times faster than its Python
counterpart! Or in other words, in C# all the processing is done for the whole 10 000
vertices, while in the same Python would only process 2.5 vertices.

It is also worth noting, that these huge performance gains were obtained without any
sacrifices. Memory footprint of C# algorithm during the execution was significantly lower,
as well as data preparation which took significantly less time.

4.2 Current implementation and potential improvements

In this section we will go over some aspects of the algorithm we were paying special attention
while we were implementing it for performance reasons. We will present these ideas briefly,
go over their usage and potential benefits as well as drawbacks. When measuring performance
of algorithm the most important things we can measure is time and space. Or in other words
CPU utilization and Memory consumption. We would also like to add here that potential for
parallelization also plays a big role in overall ability to increase performance of an algorithm
even further. So in the following subsections, we have taken special note on data structures,
sorting and multithreading that were used in our implementation as well as potential for
additional improvements.

4.2.1 Data structures

Lets first review the simple structures that were used in algorithm. Thought the algorithm we
used ushort for identifying vertices instead of more commonly used int structure. We believe
this structure would suffice our needs since the maximal value it can receive is 65 535, and
the memory consumption would only be 2 bytes (16 bits). And since we only had 10 000
vertices the structure had enough space. While on the other hand maximal value for int is 2
147 483 647 while it takes twice the memory - 4 bytes (32 bits).

Although, it might seem by a minuscule saving, since we are only saving 2 bytes per
vertex, we have to take account of the number of edges we have in the graph. Each of these
edges has to have a starting and ending vertex. So for 6 463 696 edges, each of whom have 2
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vertices, we would save 25 854 784 bytes, or around 25 MB (megabytes). And this is only
for one structure, if we were to store vertices in several places, or data structures the memory
saving would stack.

The same goes for using uint instead of double for weights for edges. Since the values of
weights can be stored in uint, at no cost whatsoever we could reduce memory consumption
by using it instead of more traditional double. We already explained that each uint consumes
4 bytes (32 bits) while double has twice the memory footprint of 8 bytes (64 bits). So the
memory usage difference, if we only used each edge once for every two vertices it connects,
would be 50 MB (megabytes).

Now that we have covered basic structures, we will go over our decision to try and
use Dictionary data structure over List as much as possible, both for storing vertices and
edges. We even used a IDictionary<int, IDictionary<ushort, uint» data structure for storing
neighbours for all the vertices together with their respective total weighted degrees. Using
a Dictionary<TKey, TValue> in C# has several key advantages over using a List<T> data
structure:

• Significantly faster lookup
Dictionary provides O(1) average time complexity for lookups based on keys, whereas
searching for an item in a List typically requires O(n) time, as it may involve scanning
through the entire list. This is the main reason all the algorithms try and avoid using
lists as much as possible, excluding some very specific scenarios.

• Key-Value pair storage
Dictionary stores data in key-value pairs, allowing us to associate a unique key with
each value. This is useful when there is need to retrieve values based on specific
identifiers. This case was present for as, as we used ids of vertices as keys in all
instances.

• Uniqueness of Keys
Each key in a Dictionary must be unique. This ensures that duplicate will not acciden-
tally be added to Dictionary. As we mentioned before this was very useful, since we
used ids of vertices as keys in all instances of Dictionaries. This is contrary to List,
which can accommodate duplicates, thus enabling some mistakes to go uncaught for
longer period of time.

The only instance we used List<T> for is for storing the total weighted degrees of all
the vertices in the ascending order. We chose a plain List here, instead of SortedList<TKey,
TValue> or SortedDictionary<TKey, TValue> for example because we didn’t want resorting
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of the structure to happen after every iteration of the inner for loop. It is our opinion that
sorting only once at the end of the inner for loop would yield better performance overall.

Fig. 4.1 Comparison of common data structures

4.2.2 Sorting algorithms

Because list of vertices is sorted in best case scenario 10 000 times and in worst case scenario
100 000 000 times. We believe this is a very important topic, when discussing performances.
Even in the case when there are not a lot of vertices, because of the loops we end up going
over them quite a lot, and the sorting algorithm as well as number of calls will have a
significant impact.

For start, we have to decide if we want everything to sort everything when every neighbour
is affected in the double for loop or sort only at every iteration of single loop. If we wanted
auto sorting property, we could use some of the always sorted data structures that have that
functionality out of box. But that would incur a penalty, because w would sort the collection
very often. Exactly for that reason we have opted to use a regular List for storing the vertices
we go over. By choosing this data structure we can sort only at the end of the outer for loop,
thus reducing performance overhead by constantly shuffling things around.

Regarding sorting in C#, the underlying implementation is as follows. Until a certain
number of elements in a list( 100), Selection sort will be used. This is because selection
sort has excellent constant parameters, and although very slow for large sets, for smaller one
it can hardly be beaten. For larger sets, sorting will revert to using Quick sort algorithm,
this is because on average it has n * log(n) run time. Although there are theoretically faster
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algorithms, that have the same speed as Quick sort even in worst case scenario, they usually
incur a penalty. This penalty is either higher constant factors or higher memory consumption.
By choosing Quick sort pivot element wisely, we can get excellent performance. So when
we compare it to, Merge sort for example, there is no need to take a serious hit in memory
for negligible performance difference.

Fig. 4.2 Comparison of common sorting algorithms

4.2.3 Potential for concurrent execution

Although it is very important to note the differences between multithreading and multipro-
cessing. In this subsection we will primarily take note about multithreading potential, but the
majority of the discussion can be applied to the multiprocessing as well. We will not go over
in much details over the differences here, but offer an illustration instead.

Let us first explain few very important concepts, namely thread starvation and thread
contention. Thread starvation occurs when a thread is unable to gain access to shared
resources or CPU time due to other threads monopolizing those resources. Thread contention
is a condition where one thread is waiting for a lock/object that is currently being held by
another thread. Therefore, this waiting thread cannot use that object until the other thread
has unlocked that particular object.

Due to the nature of the dataset and algorithm we believe that applying any serious
mutithreading would not be beneficial in a single dataset scenario. In order to accommodate
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Fig. 4.3 Difference between multiprocessing and multithreading

multithreading in a single dataset scenario we would have to use multithreading safe data
structures and/or locks. But due to the nature of the algorithm there wouldn’t be much room
to do work in parallel. The main part of work that could be divided is going through neighbors
for each vertex and recalculating the total weighted degree. But since the number of vertices
is in general not very large, it follows that neighbourhood would be even smaller. Thus any
performance benefits that could be made by using multiple threads would be negated by the
overhead thread creation, synchronization and taking care about data access would imply.

So for this reason we have opted not to introduce any multithreading in our implementa-
tion. Since we were focused on a single dataset, and there are no gains to be had by spawning
additional threads. We believe that would only reduce the performance of a single threaded
case. Where we do see significant possibility for improvement, is using multithreading to
process multiple datasets at the same time.

The increase in performance in this case would be linear compared to the single threaded
scenarios. Since the memory footprint is rather low (<500MB) for our C# implementation.
We see very large potential in parallel execution for different days. That way we would avoid
any thread starvation and thread contention. Also there would be no need for synchronization,
since each thread would be working on its dataset, it would process a whole day on its own.
We believe there is no upper limit as to when this approach would start to yield diminishing
returns, provided we have enough CPU resources and Memory.



Chapter 5

Conclusion

To summarize, we have given a brief overview on Graph Theory and have covered large
scale connectivity graphs in detail. In addition, certain data preparation and analytics was
performed over the dataset that was in scope. This was followed by a discussion about
k-core graph decomposition, where we presented and explained several algorithms both for
weighted and unweighted graphs. Afterwards, we presented a Python implementation as a
base scenario.

After giving an overview of C# and .Net we detailed the benchmarking system. All in
preparation for our optimization of k-core decomposition algorithm. For which we provided
optimized pseudo-code, relevant theory as well as a very fine-tuned implementation in C#
programming language. Finally, we compared performance results and touched on current
implementation specifics and potential for improvement.

We have achieved unexpected performance speedup of around 4 000 times between the
initial Python implementation and our optimized solution in C#. This enables us to continue
our work on similar and larger datasets, since with the new performance baseline we were
able to achieve, we can process and analyze the data in a more meaningful way. Even near
real-time processing or heavy parallelized execution are now possible.

With our optimized solution for K-core decomposition of weighted graphs in C#, we
can calculate cores for graphs representing large scale networks. Insight into core numbers
would give us more knowledge about complex networks that we are exploring.



References

[1] Barabási, A.-L. et al. (2016). Network science. Cambridge university press.

[2] Barlacchi, G., De Nadai, M., Larcher, R., Casella, A., Chitic, C., Torrisi, G., Antonelli,
F., Vespignani, A., Pentland, A., and Lepri, B. (2015). A multi-source dataset of urban
life in the city of milan and the province of trentino. Scientific data, 2(1):1–15.

[3] Batagelj, V. and Zaveršnik, M. (2011). Fast algorithms for determining (generalized) core
groups in social networks. Advances in Data Analysis and Classification, 5(2):129–145.

[4] Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. Computer networks and ISDN systems, 30(1-7):107–117.

[5] Csáji, B. C., Browet, A., Traag, V. A., Delvenne, J.-C., Huens, E., Van Dooren, P.,
Smoreda, Z., and Blondel, V. D. (2013). Exploring the mobility of mobile phone users.
Physica A: statistical mechanics and its applications, 392(6):1459–1473.

[6] Even, S. (2011). Graph algorithms. Cambridge University Press.

[7] Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry,
pages 35–41.

[8] Giatsidis, C., Thilikos, D. M., and Vazirgiannis, M. (2013). D-cores: measuring col-
laboration of directed graphs based on degeneracy. Knowledge and information systems,
35(2):311–343.

[9] Gonzalez, M. C., Hidalgo, C. A., and Barabasi, A.-L. (2008). Understanding individual
human mobility patterns. nature, 453(7196):779–782.

[10] Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J.,
and Varshavsky, A. (2011). Identifying important places in people’s lives from cellular
network data. In Pervasive Computing: 9th International Conference, Pervasive 2011,
San Francisco, USA, June 12-15, 2011. Proceedings 9, pages 133–151. Springer.

[11] Malliaros, F. D., Giatsidis, C., Papadopoulos, A. N., and Vazirgiannis, M. (2020). The
core decomposition of networks: Theory, algorithms and applications. The VLDB Journal,
29(1):61–92.
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Ključna dokumentacijska informacija

Redni broj:
RBR
Identifikacioni broj:
IBR
Tip dokumentacije: Monografska dokumentacija
TD
Tip zapisa: Tekstualni štampani materijal
TZ
Vrsta rada: Master rad
VR
Autor: Mihajlo Mulić
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Čuva se: Biblioteka Departmana za matematiku i informatiku,
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Članovi komisije:
KO
Predsednik: dr Nikola Obrenović, naučni saradnik,
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