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1. Subject of research 

The interdisciplinary field of data science aims to utilise ever-increasing quantities of data to draw 

insights and drive data-driven decision-making. It has the potential to revolutionise numerous 

sectors, including the healthcare industry. The field of data science is already being employed to 

analyse a range of patient data, including demographic information, basic health indicators, scans 

and other data points, with the aim of assessing the current state of disease or the likelihood of 

developing one. Furthermore, data science is employed at the macro level to combat epidemics 

and optimise the functioning of hospitals and entire healthcare systems. 

This thesis explores the potential of data science methods for predicting venous thrombosis in 

patients with acute myeloid leukaemia. Thrombosis is a significant cause of morbidity and 

mortality among cancer patients, particularly those with leukaemia. Therefore, effective 

thrombosis prevention is a crucial aspect of cancer management. However, preventive measures 

against thrombosis may carry inherent risks and complications. Consequently, the application of 

thrombosis prevention should be limited to patients with a reasonable risk of developing 

thrombosis. Therefore, thrombosis prevention is carefully limited to patients with a reasonable 

risk of developing thrombosis, ensuring precision and thoughtfulness in the research.  

In order to ascertain which patients are at risk, statistical and machine-learning algorithms will 

be employed to predict which patients with leukaemia will develop thrombosis. The data for this 

experiment was collected at the Clinic for Hematology at the University Clinical Center of Serbia. 

Researchers gathered data about individuals diagnosed with acute myeloid leukaemia (AML), 

including demographic information and various biomedical markers of interest. After a six-month 

follow-up period, they re-evaluated the patients to ascertain whether thrombosis had 

developed. This information about thrombosis represents the variable of interest, while the rest 

of the data is used to predict it retrospectively.  

However, not all information collected is useful, and some may even impair performance. 

Therefore, we will examine which attributes are significant and what role they play in prediction. 

The algorithms applied include logistic regression, K-nearest neighbours, naive Bayes, and neural 

networks. The primary objective of this study was to identify the optimal model for this task and 

to evaluate and compare its performance. 
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2. Introduction to Data Science 

The term "data science" is a relatively recent one, but it is already clear that it encompasses a 

great deal. As the name suggests, it is the science that studies how to extract knowledge from 

ever-larger quantities of data. It is a broad term that encompasses responsibilities of traditional 

roles such as statistician, data/business analyst, and database engineer, but also modern terms 

such as machine learning, cloud computing, big data, and artificial intelligence. The primary 

objectives of data science are to facilitate predictions, generate insights, inform data-driven 

decision-making, and develop artificial intelligence solutions. The foundation of data science is 

statistics, but the role of the statistician has evolved to encompass tasks that were previously the 

domain of other professionals. This shift is a consequence of the growing complexity of 

information technology, which has led to a need for a more diverse skill set in data-related work. 

While statistical expertise remains a crucial component, it was no longer sufficient for a 

statistician to possess only this knowledge. They must also demonstrate proficiency in areas such 

as programming, databases, economics, AI, and domain-specific fields.  

In order to extract knowledge from data, a series of steps need to be taken. The initial step is to 

identify the data that is relevant to the problem at hand and to collect it. The method used to 

collect the data depends on the specific problem. The collection of data may be conducted 

manually through the implementation of surveys, observations, and measurements, or it may be 

automated through the deployment of sensors, web scraping, or the harvesting of data from 

internet users. The majority of data collected via the Internet and the Internet of Things (IoT) is 

automatically gathered, resulting in a significant increase in the overall volume of data. However, 

this data is predominantly unstructured, necessitating additional processing. While its quantity 

is considerable, the quality of this data is not always optimal. Manual labelling is essential to 

guaranteeing the highest quality of data, which is arguably the most crucial aspect of data 

science. Despite all advances in technology, manual labelling is still prevalent and represents a 

significant cost factor.  

Secondly, the data must be transformed into a format that is suitable for analysis and provided 

with reliable infrastructure. This is particularly crucial when the data originates from disparate 

sources and formats. Combining, cleaning, and organising multiple sources into a single, 

consistent data set for storage, extract, transform, and load (ETL) methods are employed. The 

choice of storage depends on the type of data and its intended use. Storage types range from 

simple CSV files to SQL and document databases to data warehouses and data lakes. Once data 

has been collected, transformed, and loaded, the next step is analysis. Here, data scientists 

conduct an exploratory data analysis to examine patterns, ranges, and distributions of values 

within the data. Once a good view of the data has been obtained, the main part of the project is 

conducted, which is training a model.  

Upon completion of the analysis, it is necessary to act on the results obtained. This typically 

entails disseminating the findings in the form of academic papers, reports, or visuals to relevant 

parties, whether they are technical or non-technical individuals. In the case of a data science 

project whose objective is the creation of a machine learning model, it is necessary to deploy the 
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model within another software and to monitor it in order to guarantee the continuous generation 

of high-quality outputs. Despite the fact that a data scientist must be aware of all of these 

processes, he is not typically acting alone. The collection of data is frequently conducted by 

domain experts, such as doctors and agronomists. The responsibility of storing data falls upon 

the data engineers, while the deployment of a model is the domain of the machine learning 

engineers.  

 

2.1. Problems during model training 

When training a data science algorithm, the goal is to utilise available data to obtain a 

mathematical model that will be capable of predicting the outcomes of future data. The process 

of making predictions with data that the model has never previously encountered is referred to 

as 'generalisation'. The objective is not to achieve the best results on the data that has already 

been seen. A model that has a low training error (the error on the known data) and a high 

generalisation error is said to be overfitting. This results in suboptimal models. This occurs 

because the algorithm learns the available data too well, word for word, and is unable to adapt 

to new situations. The image of an overfitted model is shown below.  

Figure 2.1  The image shows the desired line - green - and the overfitted line - red [32]. 
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The opposite of overfitting is when a model is unable to identify patterns in data that have 

already been presented. This is referred to as underfitting, which is typified by elevated training 

and generalisation error. The primary cause of this phenomenon is the presence of an overly 

simplistic model or a deficit of sufficient parameters. Conversely, an excessively complex model 

or an abundance of attributes will result in overfitting. Therefore, it is of paramount importance 

to strike a balance between the model's complexity and the number of parameters, while also 

capturing the general trend of the data, in order to ensure the success of a data science project.  

The phenomenon of underfitting is relatively straightforward to identify. The discrepancy 

between the dataset that was used for training and the desired outcome is greater than 

anticipated. However, it is not always straightforward to ascertain whether overfitting is 

occurring. One method for identifying this is to split the data into two distinct sets: a training set 

and a testing set. The model is then fitted on the training set, and the testing set is reserved for 

validation purposes only. This allows us to assess the model's performance in a real-world 

scenario, providing insights into the expected outcomes when applying the model in practice.  

Nevertheless, if we were to repeatedly fit a model with different parameters and choose the final 

version based on the results on the testing set, the resulting data would be biased. The reason 

for this is that the model selected would likely have parameters specifically calibrated for that 

test set, which would produce overly optimistic results. This can be avoided by utilising an 

additional data set, referred to as a validation dataset. The validation dataset is employed for 

comparing the performance of different models that were fitted using a training set. 

Subsequently, the final model's performance is evaluated on a test set, thereby providing an 

unbiased assessment of its potential real-world performance.  

The 60/20/20 method is the most commonly used approach to data splitting. This method 

allocates 60% of the data for training, 20% for validation, and 20% for testing. This is merely a 

heuristic that is applicable in general. Alternative data partitioning strategies are also frequently 

employed and should be tailored to the specific characteristics of the available data. In instances 

where the dataset is particularly large, exceeding 100,000 rows, a 98/1/1 split may be a viable 

option. The crucial factor is to ensure the inclusion of a high-quality test set that is both extensive 

and reflective of the underlying data distribution. 

In cases where only a limited data set is available, cross-validation can be employed as an 

alternative approach that does not require the diversion of scarce data into a validation set. The 

cross-validation method involves the partitioning of the dataset into a specified number of 

subsets, or folds, referred to as 𝐾. At each stage of the process, one fold is set aside and the 

model is trained on the remaining 𝐾 − 1 folds. This process is repeated 𝐾 times, with the 

resulting values averaged to obtain the final estimate. Thus, there is no necessity to utilise a small 

validation set, which would inevitably yield biased outcomes. Furthermore, upon evaluating the 

performance of different models, it is possible to select the one that has demonstrated the most 

consistent success on average. Subsequently, with these parameters, the model can be retrained 

on the entire dataset. This approach avoids the loss of any data for validation, although the 

computational costs are higher, so this model is only applicable in cases where the dataset is 
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particularly small. 

 

 
Figure 2.2 Cross validation performed with 5 folds [17]. 

Finding optimal parameters is a trial and error process. Models are constructed using a variety of 

parameters and then evaluated on the validation set, with the optimal parameters retained. A 

number of systematic approaches have been developed for this process, with two of the most 

commonly used being grid search and random search. In grid search, a number of values are 

specified for different parameters, and the model then attempts to find the combination that 

produces the best results. In contrast, random search requires distributions for each parameter 

being fitted, and at each iteration, the algorithm randomly samples values for each parameter 

and trains the model. In this approach, the number of iterations is defined. 

2.2. Data Processing 

As data science models become increasingly sophisticated, simple models have not lost their 

usefulness. Conversely, they are essential in numerous problems. In his book Blink, Malcolm 

Gladwell provides an example of the Count hospital in Chicago. The issue was that a considerable 

number of patients were presenting themselves at the emergency room with complaints of chest 

pain. Gladwell described the situation as follows: "From the beginning, the question of how to 

deal with heart attacks was front and centre. About 30 people a day came into the ER were 

worried that they were having a heart attack. And those thirty used more than their share of 

beds and nurses and doctors and stayed around a lot longer than other patients." 

A change was required in the manner by which the hospital classified patients into urgent and 

non-urgent cases. A cardiologist named Lee Goldman proposed a straightforward criterion 

comprising just six parameters that would evaluate patients with chest pain and identify those 

at the highest risk of myocardial infarction. Goldman's criterion was largely derived from 

Bayesian logic and was evaluated over a two-year period, with the input of medical professionals. 

Goldman's rule demonstrated superior efficacy in two key aspects. It exhibited a 70% 
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improvement in correctly identifying patients who were not experiencing a myocardial infarction, 

while simultaneously demonstrating enhanced safety. The objective of a chest pain prediction 

model is to promptly direct patients with severe complications to the appropriate care units, 

namely the coronary and intermediate units. When left to their own devices, the doctors 

correctly identified the most serious patients between 75 and 89 percent of the time. In contrast, 

the algorithm correctly identified these patients in over 95 percent of cases. 

Gladwell's term "thin slicing" which means filtering factors that matter from overwhelming 

numbers that don't is similar to the concept called curse of dimensionality in data science. It is 

often suboptimal to attempt to utilise all available information. Rather, it is more beneficial to 

focus on attributes that, in conjunction with other attributes, make a significant contribution to 

prediction. In relation to the use of superfluous information, Gladwell states: “Extra information 

is more than useless; it’s harmful; it confuses the issues. What screws up doctors when they are 

trying to predict heart attacks is that they take too much information into account.” 

Strong mathematical evidence also supports the curse of dimensionality, demonstrating that as 

we transition from low to high-dimensional space, numerous issues emerge. As the number of 

parameters increases, the size of the parameter space grows exponentially, and a greater 

number of data points are required to populate it. In this high-dimensional space, every point lies 

on the edge, which renders distance metrics ineffective. Furthermore, Cover's theorem 

establishes that any partition of samples becomes linearly separable, leading to overfitting.  

To counter the curse of dimensionality, sound feature engineering selection is necessary. Feature 

engineering can be defined as the process of constructing an optimal subset of features. It is a 

more sophisticated approach than feature selection, which merely entails identifying a subset. 

Feature engineering involves the construction of new and informative features from existing 

ones. One example of this is the use of correlated measures of height and weight to create a 

more informative feature known as the Body Mass Index.  

Nevertheless, the selection of features represents a pivotal aspect of feature engineering. A 

variety of methodologies may be employed for this purpose, including: 

● Univariate statistics 

● Forward/backward feature selection 

● Dimensionality reduction 

● Algorithms with built-in feature selection 

● Recursive feature elimination  

There are numerous methodologies for the selection of parameters based on feature statistics. 

Running univariate linear regression and taking parameters with small p-values is a common way 

of selecting parameters. In addition to examining the relationship between predictors and 

targets, it is also important to consider the relationship between predictors themselves. The 

standard correlation coefficient is a straightforward approach that provides a broad overview. A 

more sophisticated method that offers a more detailed perspective is the variance inflation 

factor. This method predicts the values of one attribute based on the values of all the others. 



 

7 
 

Suppose the values for an attribute can be accurately predicted. In that case, it indicates that the 

attribute is an excess parameter and that there is multicollinearity, a detrimental phenomenon 

where attributes are strongly correlated with each other. 

The forward feature selection process is initiated with the training of an algorithm on a single 

parameter. The algorithm's performance is then evaluated, and if it meets the requisite 

standards, the parameter is retained. The process is then repeated with the addition of a second 

parameter, and so on until either the performance ceases to improve or the specified number of 

parameters has been reached. In contrast, the backward feature selection process begins with 

the complete dataset and eliminates features that, when excluded, do not negatively impact 

performance.  

The assumption underlying dimensionality reduction is that high-dimensional data can be 

represented by a lower-dimensional manifold. This is particularly the case when there is 

multicollinearity, since dimensionality reduction can both decorrelate data and reduce noise. The 

most commonly used dimensionality reduction algorithm is principal component analysis (PCA). 

This algorithm is based on singular value decomposition and has the goal of retaining axes that 

preserve the largest amount of linear variability. PCA allows the user to define the amount of 

variability that is to be retained or the number of features that are to be used to map the data.  

In the context of empirical research, data scientists are likely to encounter instances where a 

value is absent, or "null." While some computer scientists have challenged the grammatical 

correctness of this term, given that "null" denotes the absence of a value, we will utilise this 

terminology for the sake of brevity. The term "null" signifies the absence of information regarding 

a specific value. It is crucial to ascertain the reason behind this absence. It could be that the value 

in question does not exist, such as the age of the eldest child for individuals who do not have 

children. Alternatively, the value may exist but has not been documented, such as a person's age.  

In the event that the value is absent despite the knowledge that it is expected to be present, 

there may be a number of potential explanations for this phenomenon. Researchers have 

identified three distinct categories: 

● Missing completely at random: This refers to instances where there is no discernible 

pattern or rationale behind the absence of data.  To illustrate, some images lack an 

accompanying caption due to an oversight. 

● Missing at random:  parameters are deemed to be missing at random when the reason 

for their absence is related to the other parameters. At elevated temperatures, the 

sensors are unable to record specific data points, which results in the observed absence 

of these data points.  

● Missing not at random: the reason for the parameter's absence is its own value. For 

example, individuals with either very low or very high income levels are less likely to 

disclose this information.  

An understanding of the reasons for the absence of data enables more effective strategies to be 

employed in addressing the issue. But, there are limitations to what can be done. In instances 
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where the proportion of missing data in a column exceeds 5%, it is likely that the most 

appropriate course of action would be to exclude this column entirely. In instances where the 

number of null values is tolerable, one may employ a variety of techniques to fill the gaps. These 

include the use of rules, imputation methods based on statistics, or more complex statistical 

procedures. The application of rules is particularly useful when the reason for the absence of 

data is understood, and when the assumption of missing completely at random is valid. 

Imputation techniques, on the other hand, rely on the use of centrality measures, such as the 

mean, median, or mode, to fill the missing values.  

Once the missing values have been removed, the subsequent step is to ensure that the features 

are scaled in a consistent manner. In order to achieve an optimal solution, algorithms that rely 

on calculating distances in the metric space, such as K-Nearest Neighbours or K-Means, require 

this step. In the event that the features in question possess different scales, the variables 

exhibiting higher values will exert a disproportionate influence on the models. The rationale 

behind this phenomenon can be understood by considering the intuitive understanding that, 

from a human perspective, 1 kg is equivalent to 1000 grams. However, this is not the case for an 

algorithm, as the distance of 1 is associated with one feature, while the other is associated with 

1000, resulting in a significant discrepancy in influence. To circumvent this issue, it is essential to 

normalise or standardise all features, ensuring that they are within the range of 0 to 1 or adhere 

to a normal distribution with a mean of 0 and standard deviation of 1, respectively.  

2.3. Evaluating models performance 
 

One aspect that was not addressed in the previous chapter is the methodology for determining 

the optimal model and evaluating its performance. The optimal model is dependent on a 

multitude of factors, including the specific task at hand and the current state of the art. However, 

all models are evaluated using some form of performance indicators. The formulas used to assess 

model performance are referred to as metrics. There are a plethora of metrics employed for a 

vast array of tasks, including classification, regression, clustering, image segmentation, and 

machine translation. In this thesis, we will focus exclusively on metrics related to classification.  

The most straightforward metric for classification is accuracy. In essence, accuracy is the ratio of 

correct predictions to the total number of predictions. It is a useful metric for comparing different 

models, as it provides a general indication of their performance. However, it is important to 

exercise caution when interpreting accuracy alone, as it can be misleading if the dataset is not 

balanced, i.e. if it contains a disproportionate number of positive examples. To illustrate this, 

consider an algorithm trained to predict a disease that affects one in a hundred people. A model 

that states that no one has the disease would have 99% accuracy, despite being completely 

useless.  

In addition to not being able to work with unbalanced datasets the accuracy measure does not 

indicate the types of errors that are being made. In binary classification, there are four potential 

outcomes, two of which are correct and two of which are erroneous. An accurate outcome would 

be the prediction of the positive class for a positive example and the negative class for a negative 
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example. Mistakes, on the other hand, can be made in two ways. A negative example can be 

classified as positive, resulting in a false positive, and a positive example can be classified as 

negative, resulting in a false negative. This can be conceptualised as a judge making a decision in 

criminal court. The objective is to incarcerate a guilty individual and to release an innocent one. 

However, the judge could also incarcerate an innocent individual, resulting in a false positive, or 

refrain from sentencing a guilty person, resulting in a false negative.  

Similarly, a data scientist must make a decision that is analogous to that of a judge, namely, which 

option to avoid. As the decision in law is dependent upon the time and context, so too is it in 

data science projects. In the context of disease detection, it would be preferable to inform a 

healthy patient that they may have a disease and should undergo further testing, rather than 

informing a sick patient that they are healthy. Conversely, in the context of spam prediction, it 

would be more beneficial to allow spam into the main folder than to mark an important email as 

spam.  

The aforementioned metrics are typically represented in a tabular format, known as a confusion 

matrix, as illustrated in the accompanying image. The rows of the matrix correspond to the actual 

classes, whereas the columns represent the predicted classes. While alternative configurations 

of the confusion matrix are occasionally encountered in the literature, this particular 

implementation from the scikit-learn library is widely utilised due to its versatility in multi-class 

classification.  

Figure 2.3 The implementation of the confusion matrix in the Skit-learn library. The following 
acronyms are defined: TN (true negative), FP (false positive), FN (false negative), and TP (true 

positive) [23]. 

The confusion matrix also provides a foundation for deriving other metrics. Precision quantifies 

the proportion of positively predicted classes that are, in fact, positive. In scenarios such as spam 

detection or recommended systems, where it is crucial to ensure that recommended content is 

of real interest to consumers, high precision is a desirable outcome.  
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The recall measure represents the percentage of true positive predictions among all positive 

cases. In situations where false negatives would be particularly costly, a high recall is to be 

preferred. One example of such a circumstance is fraud detection, where it is of paramount 

importance to identify malicious actors and to avoid the imposition of significant expenses. 

Conversely, flagging regular transactions as potentially fraudulent will result in them undergoing 

additional inspections, which is a less costly process. The following formula represents the recall 

measure: 

 

Although there may be occasions when one is preferred over the other, it is almost always the 

case that both precision and recall should be within a reasonable range. Calculating the mean of 

the two values would not take this into account, since one value could be extremely high and the 

other extremely low, with the result being a mean that balances these out. In order to penalise 

models that have one extremely low value, we use harmonic means or F1 score. 

 

Finding the right balance between false positives and false negatives is accomplished through the 

modification of the probability threshold utilised for making predictions. In most cases, the 

threshold is set to 0.5, which means that instances whose output is higher than that are classified 

as positive. Modifying this threshold results in alterations to the algorithmic process. An increase 

in the threshold will enhance precision, as the algorithm will require greater certainty for positive 

predictions. Conversely, a decrease in the threshold will lower the threshold for positive 

prediction, resulting in an increase in positive examples and higher recall. 

A plot illustrating the impact of threshold alterations on a model is termed a receiver operating 

characteristic (ROC) curve. However, it is not plotted with precision and recall, but with analogous 

metrics of sensitivity and specificity. Sensitivity is simply another term for recall or true positive 

rate, while specificity is defined as follows: 

 

The ROC curve is illustrated in the following figure. The ROC curve has two axes. The horizontal 

axis is named the false positive rate, which is equal to 1 minus the specificity. The vertical axis is 

the true positive rate. The diagonal dotted line shows how a perfectly random model would act. 

The curve is obtained by varying the threshold and plotting the results. The further the curve is 

to the upper left corner, the better the overall performance of the algorithm. Thus, the area 

under the curve (AUC/C-score) is a logical measure of the algorithm's performance.  
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Figure 2.4 An example of the ROC curve. The orange line represents the performance of the 
logistic regression while the dotted line shows the performance of the random model [31].  

Once different values have been assigned to the metrics in question, it becomes necessary to 

ascertain whether the resulting outcomes are favourable or otherwise. Does a 95% accuracy rate 

represent a high or low value for this metric? The answer is contingent upon the specific task at 

hand. In the context of the recognition of written digits, a well-known task for which numerous 

successful algorithms have been developed, a level of accuracy of 95% would be considered 

relatively low. Conversely, in the context of the prediction of stock market movements, a model 

with an accuracy of even 51% would be considered revolutionary and would potentially bring 

significant financial rewards to its creator. The optimal result is determined by an evaluation of 

the current state of affairs, human performance and the state of the art solutions. 

The celebrated statistician John Turner once observed that: "All statistical models are wrong. But 

some of them are useful." If a model can be implemented in a system to enhance its functionality, 

it can be considered a useful model. A common objective of contemporary artificial intelligence 

models is to supplant human labour. In the development of models for tasks such as vision, 

language, logical reasoning, and so forth, where human performance is superior to that of 

machines, human-level performance serves as a valuable proxy for assessing tradeoffs of 

implementing an AI strategy. 
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Conversely, AI has been demonstrated to outperform humans in tasks that involve a multitude 

of variables, statistical reasoning, and scenarios where human bias may be a factor. These tasks 

encompass online advertising, content recommendation, transit time prediction, loan approval, 

and others. In such cases, it is prudent to utilise human performance as a benchmark rather than 

relying on existing state-of-the-art comparisons. 

Thus far, we have discussed only intrinsic metrics; however, there are also extrinsic ones. Intrinsic 

focuses on intermediary objectives, while extrinsic focuses on evaluating performance on the 

final objective. For example, consider a spam-classification system. The ML metric will be 

precision and recall, while the business metric will be “the amount of time users spent on a spam 

email.” Intrinsic evaluation will focus on measuring the system performance using precision and 

recall. Extrinsic evaluation will focus on measuring the time a user wasted because a spam email 

went to their inbox or a genuine email went to their spam folder [24]. 

Nevertheless, the performance of the model is not the sole consideration when developing 

machine learning models. It is also important for models to be able to provide an explanation for 

the rationale behind specific decisions. Such insight enables researchers to understand the root 

cause of the problem more profoundly, thereby facilitating the implementation of effective 

solutions. In the event that a model indicates that a patient is at elevated risk of developing a 

disease, it would be highly beneficial if the model were to provide an explanation, thereby 

enabling the physician to prescribe an appropriate course of treatment. Similarly, individuals who 

are affected by the model must also be informed of the rationale behind specific decisions. In the 

context of a loan application, for instance, if a bank declines to provide financing, the applicant 

must be informed of the reasons for this decision and the conditions under which the bank would 

be willing to approve the loan.  

A straightforward approach to determining the contribution of each parameter is to generate a 

partial dependence plot. These plots are constructed by taking a single row instance and 

repeatedly modifying one of its features while maintaining all others constant. Predictions are 

then made with the modified instance and stored. Finally, the predictions are plotted against 

different values of the modified parameter, resulting in a plot that illustrates how the prediction 

value changes as the parameter value changes. This provides valuable insight into the 

parameter's influence.  
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Figure 2.5 The graph illustrates changes in probability of a positive prediction as the ECOG_PS 

parameter changes 

This approach however, carries a significant risk of yielding results that do not align with the 

broader data distribution patterns. An approach offering a slight remedy to this problem are 

SHAP values. The concept of Shapley values is inspired by game theory, and their primary purpose 

is to determine the contribution of each factor in a model, in order to identify those with the 

greatest impact. These values are calculated iteratively, taking into account all possible 

combinations of the factors of interest, as well as their order. For example, if we want to assess 

the importance of the following variables: 1) age, 2) gender, and 3) tumour size, we will analyse 

how the prediction made by the ML model changes when each of these variables is added or 

removed in combination with the other two. This process is repeated until all possible 

combinations of the presence/absence of variables and their order are considered. At the end of 

each combination, we obtain the Shapley value for a given variable, and the average of these 

values, calculated from all possible combinations, represents the final Shapley value for the 

variable in question [33].  

2.4. Linear and Logistic Regression 
 

The statistical methods of linear and logistic regression are widely used and form the foundation 

for more complex algorithms. The former is employed for regression tasks, whereby a numeric 

value (such as the price of a house) is predicted. In contrast, the latter is used for classification, 

whereby a predefined class is assigned to each instance (such as whether a patient is in the high-

risk group for developing venous thrombosis). Both of these algorithms function by assigning a 

multiplier to each attribute, which is referred to as the weight. The linear regression formula, 

which also forms the basis of the logistic regression formula, is as follows: 
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Where: 

- 𝑦 is the dependent variable (the outcome we're trying to predict) 

-  is the y-intercept (the value of y when 𝑥 = 0 ) 

-  are the slopes of the regression line (the change in 𝑦 for a one-unit change in 𝑥) 

-  are independent variables (attributes) 

Moreover, the application of linear regression can be visually represented through the graphical 

illustration of a line that best fits the data set. The subsequent image presents an example of 

such a line. The blue dots represent data points, with the independent variable represented by 

the x-axis and the dependent variable represented by the y-axis. 

Figure 2.6 The representation of linear regression: the lines between the blue points and the 
regression line indicate the magnitude of the error for each point [23].  

The distinction between the two lies in the manner of representation of the output variable, . 

In logistic regression, this variable is compressed between 0 and 1, thereby indicating the 

probability of an instance belonging to the positive class. The act of squashing is performed using 

a sigmoid function, which is illustrated in the accompanying diagram. All negative values are 

mapped to a range between 0 and 0.5, which typically corresponds to the negative class. Values 

denoting the positive class are mapped to the range between 0.5 and 1.  
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Figure 2.7 The logistic curve i.e. sigmoid activation function [30].  

 

Linear regression is fit using least squares, and the quality of the fit is evaluated using RMSE and 

R-squared statistics. In logistic regression (unlike in linear regression), there is no closed-form 

solution, and the model must be fit using maximum likelihood estimation (MLE). Maximum 

likelihood estimation is a process that tries to find the model that is most likely to have produced 

the data we see. In the logistic regression equation, the response is not 0 or 1 but rather an 

estimate of the log odds that the response is 1. The MLE finds the solution such that the 

estimated log odds best describes the observed outcome. The mechanics of the algorithm involve 

a Quasi-Newton optimization that iterates between a scoring step (Fisher’s scoring), based on 

the current parameters, and an update to the parameters to improve the fit [18]. 

2.5. Naive Bayes 
 

The naive Bayes algorithm uses the probability of observing predictor values, given an outcome, 

to estimate what is really of interest: the probability of observing outcome 𝑌 =  𝑖 given a set of 

predictor values [18]. As the name suggests, the algorithm is based on the Bayes theorem, which 

gives probability that an event happens given that another event has already occurred.  

One particularly illuminating example of Bayes theorem is the "Steve the librarian" puzzle, which 

was first presented by Daniel Kahneman in his book Thinking, Fast and Slow [19].The problem 

can be summarised as follows: "Steve is very shy and withdrawn, invariably helpful but with very 

little interest in people or in the world of reality. A meek and tidy soul, he has a need for order 
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and structure, and a passion for detail.”  Is Steve more likely to be a librarian or a farmer? The 

majority of individuals tend to assume that Steve is a librarian, as the description is more closely 

aligned with the characteristics typically associated with a librarian than with those of a farmer. 

However, this assumption is inaccurate.  

What people fail to consider is a discrepancy in the number of male farmers and male librarians. 

In fact, there are at least 20 times more male farmers than there are male librarians. Even if all 

librarians were "meek and tidy souls" and the same were true of only one in fifteen farmers, 

there would still be more meek and tidy farmers than meek and tidy librarians. To illustrate this, 

we can take a representative sample of 200 farmers and 10 librarians (see figure below). For the 

purposes of this calculation, we can assume that the description fits 40% of librarians and 10% of 

farmers. When we perform the necessary calculations, we find that there are 4 librarians and 20 

farmers in the sample, which means that the probability that Steve is a librarian is only 16.7%.  

 

 

Figure 2.8 Left picture: Sample of 10 librarians and 200 samples; Right picture: Librarians and 
Farmers that fit description [20]. 

To put this into mathematical perspective we write the formula for Bayes theorem: 

 

 

- 𝑃(𝑌|𝑋) is the value we are trying to predict and it is called posterior probability.  

- 𝑃(𝑋|𝑌) is the likelihood or probability that 𝑋 occurred given 𝑌. This part is modelled from 

training data 

- 𝑃(𝑌)  is the prior probability of the event happening meaning what are the chances of 𝑌 =  𝑖 

if we don't know 𝑋 

- 𝑃(𝑋) is a marginal probability 

The marginal probability can be expanded using the law of total probability. In the case of a binary 

outcome, the formula can be written as follows. 
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The Steve example featured a single parameter, X, which served as the basis for the description. 

In the real world, however, we are likely to encounter a multitude of parameters, each of which 

must be taken into account when making predictions. When X has multiple parameters, the 

formula is written as follows: 

 

In order to fit the model, one must first take a sample where 𝑌 = 0. This sample is then divided 

by the length of the entire dataset in order to obtain 𝑃(𝑌 = 0). The sample must then be divided 

by the count of all data in order to obtain the number of examples in the sample that have values 

. Nevertheless, this approach becomes problematic when the number of 

parameters exceeds a few, as there are a multitude of combinations of  that lack 

matches in the training data. It is possible to envisage a model for the prediction of voting 

behaviour based on demographic variables. Even a sizable sample may not contain a single match 

for a new record, for example a male Hispanic with a high income from the US Mid‐west who 

voted in the last election, did not vote in the prior election, has three daughters and one son, and 

is divorced. This is despite the fact that the model is based on just eight variables, which is a 

relatively small number for most classification problems. 

In order to resolve this issue, it is necessary to make the assumption that the conditional 

probabilities are independent of one another. In other words, we assume that 𝑃(𝑋𝑗 |𝑌 =  𝑖)is 

independent of all other 𝑋𝑘for 𝑘 ≠  𝑗. This allows us to separate this part of the formula, 

𝑃(𝑋1, 𝑋2 . . . 𝑋𝑝|𝑌 = 𝑖), into parts that can be expressed as follows: 𝑃(𝑋1|𝑌 = 0) ⋅. . .⋅  𝑃(𝑋𝑝|𝑌 =

0).The formula for Naive Bayes is then as follows: 

 

The assumption that these parameters are independent is, however, unrealistic and for this 

reason, the algorithm is referred to as Naive Bayes. It should be noted that the formulas 

described thus far are only applicable to categorical data. In order for the algorithm to be 

effective when working with numeric attributes, it is necessary to either bin and convert the data 

into a categorical format or to assume that the attributes follow a normal distribution or some 

other distribution.  

2.6. Neural Networks  

In the past decades, the artificial neural network (neural networks for short) algorithm has taken 

the world by the storm. Besides being able to achieve state of the art performance on classical 

classification and regression tasks, neural networks also serve as the foundation for convolution 

and recurrent neural networks which are achieving remarkable results in image and text 
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processing, respectively. Furthermore, neural networks lie in the heart of transformers, models 

that have enabled a recent revolution in Generative AI, as evidenced by ChatGPT, LLaMA, and 

Grok, among other examples. The name of the algorithm is derived from the biological nervous 

system, as its functioning has been inspired by this model. 

Prior to an examination of artificial neurons, it is essential to establish a clear understanding of 

the concept of a biological neuron. A nerve cell represents the fundamental unit of structure and 

function within the nervous system. A neuronal cell is comprised of cytoplasm, which contains a 

nucleus and a multitude of complex components. Additionally, it comprises dendrites, which are 

short nerve endings on the neuron's body, and an axon, which is a long extension of the 

cytoplasm. A biological neuron receives electrical impulses from other neurons, which are 

transmitted via synapses. Synapses are structures situated between the dendrites of one neuron 

and the axonal terminal of another, facilitating communication between neurons. When a 

neuron receives a sufficient number of signals from other neurons, it becomes activated and 

transmits its signal to other neurons [23]. 

 
Figure 2.9 The Typical Structure of a Neuron [27] 

Biological neurons operate in a relatively straightforward manner, yet they are organised into 

extensive networks comprising billions of neurons, with each neuron linked to thousands of 

others. The architectural configuration of biological neural networks remains incompletely 

elucidated; nevertheless, the components that have been investigated indicate that neurons are 

arranged in successive layers, as illustrated in the figure below. This architectural model has 

prompted researchers to develop artificial neural networks. 
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Figure 2.10 A representation of the multiple layers that constitute a biological neural network, 

as illustrated by S. Ramon y Cajal in his study of cortical lamination [23] 

Artificial neural networks are composed of multiple layers. Each network begins with an input 

layer, which serves to introduce initial data into the network. This layer represents the initial 

stage of the network's operational process. The output layer represents the result calculated by 

the neural network. The hidden layers, situated between the input and output layers are where 

the training and computational processes occur. 

Figure 2.11 The architecture of the neural network is presented as follows: the input layer is 
depicted in green, the hidden layer in blue, and the output layer in yellow [23] 

 

A neural network is composed of a series of interconnected layers, each of which consists of 

multiple nodes, or neurons. A neuron in a neural network strives to emulate its biological 

counterpart through the utilisation of mathematical functions, but unlike the biological neuron, 
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which exhibits binary activity, the activity of an artificial neuron is represented by a decimal 

number usually situated between zero and one. Each neuron is connected to all the others in the 

previous layer through connections, known as weights, which indicate the extent to which the 

activation of one neuron depends on the activation of another. In technical terms, weights 

quantify the connection between two neurons. To calculate the activation of each, the matrix 

product of the weights and the corresponding neurons is computed, a bias term is added, and 

then a nonlinear function is applied. 

 
Figure 2.12 Image showing a computation of a value for a single neuron. [23] 

The addition of a nonlinear function introduces complexity to the model, which is advantageous 

for classification and regression problems. This is because the solution to the majority of real-

world problems cannot be expressed as simple addition and multiplication of numbers. 

Furthermore, the training of a neural network with more than one layer is not possible without 

a nonlinear function. This is because successive linear operations can be expressed as a single 

one. 

A nonlinear function that is frequently employed in neural networks is the sigmoid function. 

However, researchers have found that the ReLU activation function (Rectified Linear Unit) and 

its variations yield superior results. The ReLU activation function is differentiable and monotonic, 

and, in contrast to the majority of other activation functions, its derivative is also monotonic. The 

function converts all negative values to zero, thereby indicating that all insignificant values are 

equally insignificant. ReLU is currently the most widely used activation function, particularly in 

deep and convolutional neural networks. 
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Figure 2.13 ReLU activation function [23] 

 

Due to its property of outputting values between 0 and 1, the sigmoid function is used in the 

binary classification output layers to produce the probability of belonging to a specific class. Its 

formula is expressed as follows: 

 

The process by which a neural network computes the output based on the input data is referred 

to as forward propagation. This involves a series of matrix multiplications, followed by the 

addition of nonlinearity. The activation values in the initial layer are equal to the input data. They 

are then multiplied by the weights, and a bias is added. Subsequently, an activation function is 

applied, resulting in the activation values for the second layer. This process is repeated until the 

final layer, and it follows the following formulas:  
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Figure 2.14 The architecture of a neural network with activations [23]. 

Upon reaching the final layer of the process, the algorithm produces predictions for a given 

feature vector. These are then compared with the true value, and a loss function is computed. 

The specific loss function employed depends on the task at hand. The binary cross-entropy loss 

function, which is commonly used in binary classification tasks, measures the difference between 

two probability distributions: the true distribution (labels) and the predicted distribution (output 

from a model). Given the true labels, represented by 𝑦, which take on the values 0 or 1, and the 

predicted probabilities, represented by the vector of probabilities, denoted by the symbol 𝑦̂, with 

elements in the interval [0, 1], the binary cross-entropy loss is: 

 

The model is trained based on the loss function and the process known as backpropagation. 

Backpropagation is an iterative process that adjusts the weights of a neural network until the 

model reaches a global minimum or meets another pre-defined stopping criterion. The method 

calculates the contribution of each parameter to the error and adjusts the weights accordingly. 

The term 'backpropagation' is derived from the fact that the weight updates begin at the last 

hidden layer and move backward to the first hidden layer. The magnitude of the adjustment for 

a given weight is dependent on the weights present between it and the output. 

The chain rule forms the foundation for backpropagation. In the field of calculus, the chain rule 

is a mathematical formula that expresses the derivative of the composition of two differentiable 

functions, designated as 𝑓 and 𝑔, in terms of the derivatives of 𝑓and . When we have 𝑦 =  𝑓(𝑔) 

and 𝑢 = 𝑔(𝑥), the derivative of 𝑦 with respect to 𝑥 is: 

 

The same process is applied to neural networks, which can also be viewed as a composite 

function. The subsequent image demonstrates the calculation of derivatives, which, when 

calculated in higher dimensional space, are referred to as gradients. 
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Figure 2.15 A part of the neural network illustrating partial derivatives and backpropagation 
[23].  

 

Gradients are calculated because they show the direction of the biggest ascent/descent. Once 

the path with the greatest descent has been identified, the weights can be adjusted in accordance 

with the formula presented below: 

 

It is evident that prior to undertaking any adjustments to the weights with a view to enhancing 

the accuracy of the model, it is first necessary to have some initial weights to modify. The process 

of assigning weights prior to the onset of training is referred to as weight initialization. It is of 

paramount importance that this process is conducted correctly, as any errors may result in the 

algorithm failing to learn effectively. If all weights are initialised to zero, if the initialization is 

symmetric, or if there is inconsistent variance between layers, the training will not be optimal. 

The most effective method for initialization is the Xavier initialization, whereby the values for 

each weight are drawn from a uniform distribution bounded by the following values: 

 

where𝑛𝑖𝑛 is the number of input neurons to the layer, while 𝑛𝑜𝑢𝑡 denotes the number of output 

neurons from the layer. This initialization process serves to maintain the variance of the 

activations and gradients across layers, which in turn leads to more stable and efficient training. 

2.7. K-Nearest Neighbours 

The K-nearest neighbours algorithm is a supervised learning algorithm that can be utilised for 

both regression and classification purposes. It is an instance-based model, meaning that it learns 

training data by heart and, when predicting a new outcome, it compares the input point to the 

closest K points in the metric space.  Instance-based models differ from model-based ones in that 

the latter have several predetermined parameters, whereas the former do not. In the case of 
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linear regression, for example, which is a model-based algorithm, the slope of the line and the 

bias are learned, but the data on which it is trained are not stored.  

 
Figure 2.16 The image shows how classifying new examples works. It also shows that depending 

on parameter K different predictions are obtained [29]. 

In the event of regression, the algorithm calculates the mean value of the target values of the 

nearest points. In the case of classification, the algorithm identifies the most prevalent class 

among its neighbouring data points. In both cases, the algorithm has the option of weighting all 

neighbours equally or weighting them based on distance. The choice of space in which distances 

are measured also has a significant impact. Two of the most commonly employed distance 

metrics are the Euclidean distance or L2 norm and the Manhattan distance or L1 norm. The 

Euclidean distance assigns greater weight to instances that are distant along a single axis, in 

contrast to the Manhattan distance, which considers only the absolute distance along each axis. 

The most crucial hyperparameter is the number of neighbours. As illustrated in the above image, 

the classifier's behaviour varies depending on the number of neighbours. Therefore, it is essential 

to evaluate different values of K and identify the optimal one for the validation data. 

K-NN is frequently employed as a preprocessing step to estimate missing values, as it is capable 

of identifying the nearest rows that do not contain the value in question. It may be employed in 

recommendation engines and load approval in situations where there are no extensive datasets. 

For instance, one paper [22] illustrates how the use of KNN on credit data can assist banks in 

assessing the risk of a loan to an organisation or individual. Additionally, KNN has been utilised 

in the healthcare industry, enabling the prediction of the risk of heart attacks and prostate 

cancer. The algorithm operates by calculating the most probable gene expressions [21].  

The principal advantage of the K-Nearest Neighbours algorithm is that it is straightforward to 

implement and comprehend. In comparison to other machine learning algorithms, K-Nearest 

Neighbours has only two hyperparameters, and it is easily implemented in an online mode, 
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allowing for the straightforward addition of new data to the model without the need for 

retraining. The primary disadvantages of K-NN are its requirement for the storage of all data, 

which is impractical for larger datasets, and its susceptibility to the curse of dimensionality, 

whereby its distance metric loses value in higher dimensions. Additionally, K-NN is known to 

present challenges in the context of imbalanced datasets.  
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3. Data Science in Medicine  

Healthcare has a long history of using data analysis techniques to understand disease and 

develop cures. And to understand the current state of affairs, one needs to look at the history. In 

this chapter, we will briefly review some of the most notable moments in the development of 

data science in medicine. These stories help to explain the foundations of the field and where 

advanced methods have come from. At the end, we will explain how things stand today and how 

they were applied during the COVID-19 pandemic.  

One of the earliest instances of a controlled clinical trial (an example of A/B testing) was 

conducted by Scottish physician James Lind in 1747. He was aboard a British vessel that was 

carrying numerous sailors afflicted with scurvy. Lind proposed the hypothesis that the lack of 

citrus fruit may be the reason for the occurrence of scurvy, given that sailors on Mediterranean 

ships did not experience this condition. Lind therefore provided limes to half of his sailors, while 

the remaining half continued with their normal diet. In statistical terms, these groups are referred 

to as the 'treatment' and 'control' groups, respectively. Lind's hypothesis was confirmed, as the 

sailors who consumed limes exhibited improvement. However, the captain was unaware that 

scurvy is a consequence of vitamin C deficiency and that limes are a rich source of this vitamin. 

Nevertheless, British sailors were eventually compelled to consume citrus fruit on a regular basis.  

Another individual who contributed to the popularisation of the use of statistics in the field of 

medicine was Florence Nightingale. She was an attentive nurse during the Crimean War, during 

which she had the opportunity to observe the horrific effects of war first-hand. The most 

disturbing aspect of the situation was the deplorable living conditions of the soldiers, who were 

deprived of basic necessities such as fresh air and clean water. Nightingale observed that a 

greater number of deaths were occurring from preventable diseases than from deadly wounds, 

and she collected data in order to prove this hypothesis. Rather than sharing her observations in 

the conventional table format, Nightingale drew visualisations of the data in order to facilitate 

comprehension by a wider audience, as she was engaged in the campaign to promote sanitary 

reform. The efforts she had invested were successful, and parliament passed the British Public 

Health Act of 1875, which established requirements for well-built sewers and clean running 

water.  
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Figure 3.1 The surviving drafts of Nightingale's diagrams illustrate a discrepancy between the 
number of army deaths from preventable diseases (blue) and the number of hospital deaths 

from wounds (red) [7]. 

Nevertheless, statistical methods were not always readily accepted by the medical profession. 

One such case was the proposal by Ignaz Semmelweis that doctors should wash their hands 

before assisting with the delivery of a baby. Although this may appear to be self-evident to the 

modern reader, it was not so to the doctors of the time, who did not wash their hands. 

Semmelweis observed that poor hygiene was a significant factor in the mortality of women and 

made this observation by comparing the death rates of two hospitals: one with midwives 

exclusively attending to women in labour, and the other with medical students who also spent 

time in the autopsy rooms examining corpses. It is perhaps unsurprising that the hospital with 

the higher death rate was the one with medical students in attendance.  
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Figure 3.2 Monthly mortality rates 1841-1849 in the hospital Semmelweis led. That was 

gathered by the doctor but he did not put it into a visual form [28]. 

Semmelweis collated the relevant data and demonstrated that this was indeed the case. He 

introduced the mandatory practice of hand washing and subsequently documented the number 

of deaths that occurred with this procedure in place. The mortality rate fell from an average of 

10% to only 2%. Despite the evidence, doctors rejected Semmelweis' findings and even ridiculed 

him. They were reluctant to accept that they were responsible for the excess deaths. In 1849, he 

was forced to leave the Vienna hospital. He subsequently experienced a nervous breakdown and 

was admitted to a mental hospital by his peers. He was subjected to physical abuse and died 

shortly afterwards.  

Today, the application of AI is being explored across a range of levels, from molecular to 

population-level. The healthcare sector is at the forefront of utilising data science to drive 

innovation, enhance operational effectiveness, provide precision medicine solutions and 

optimise patient outcomes. The healthcare sector has a long tradition of utilising research and 

in-depth data analysis to generate new insights into disease progression, drug development and 

other areas. The application of advanced data science technologies has the potential to 

accelerate these processes, enhance their precision, and extend their scope to larger scales. The 

advent of Big Data and machine learning algorithms has enabled the rapid analysis of extensive 

DNA sequences. Models have been developed to predict the probability of an elderly patient 

with migraine experiencing a stroke, and convolutional neural networks have been employed to 

facilitate the inspection of radiology scans.  

In the aftermath of the global pandemic caused by the SARS-CoV-2 virus, the field of data science 

has experienced a surge in popularity. The significance of this technology is evident in its impact 

on a diverse range of individuals and groups, including researchers, healthcare professionals, 

policymakers, academics, decision-makers, and the general public. The technology was 

employed for a number of purposes, including: 

- The creation of accessible yet informative data visualisations and dashboards 

- The identification of the subsequent surge in cases of coronavirus 



 

29 
 

- The prediction of immunity to, and risk of infection from, the virus 

- The acceleration of the discovery of treatments 

- The assessment of the economic impact and facilitation of changes  

 
Figure 3.3 One illustrative example of a significant data visualisation employed during the global 

pandemic is the presentation of the total number of cases worldwide, with the exception of 
China. 

The healthcare sector has witnessed rapid growth in the utilisation of AI technology. 

Nevertheless, there remains untapped potential for AI to truly revolutionise the industry. It is 

important to note that despite concerns about job displacement, AI in healthcare should not be 

viewed as a threat to human workers. Instead, AI systems are designed to augment and support 

healthcare professionals, freeing up their time to focus on more complex and critical tasks. By 

automating routine and repetitive tasks, AI can alleviate the burden on healthcare professionals, 

allowing them to dedicate more attention to patient care and meaningful interactions. However, 

legal and ethical challenges must be addressed when embracing AI technology in medicine, 

alongside comprehensive public education to ensure widespread acceptance [26]. 
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4. Related work  

This master's thesis is largely based on the work of Mitrovic, Pantic, Bukumirc et al., entitled 

"Venous thromboembolism in patients with acute myeloid leukaemia: development of a 

predictive model". A retrospective cohort study was conducted on adult patients with newly 

diagnosed acute myeloid leukaemia. The data were gathered at the Clinic for Hematology at the 

University Clinical Center of Serbia between 2009 and 2021. The researchers employed univariate 

and multivariable logistic regression to estimate binary outcomes and identify potential 

predictors. They identified five predictors that were statistically significant: patient sex, prior 

history of thrombotic events, international normalised ratio (INR), Eastern Cooperative Oncology 

Group performance status (ECOG) and intensive therapy. The area under the curve (AUC) 

statistics of the final model was 0.68. 

As this paper was designed to identify the causes of thrombosis and was intended for a medical 

audience, the authors chose to avoid incorporating modern data science concepts. Firstly, 

parameters that were on vastly different scales were not subjected to preprocessing in order to 

ensure that they were within the same range. Secondly, the data was not divided into a training 

set and a test set; rather, the model was trained on the entire dataset, and the results were 

reported on the entire dataset. This may not be problematic when working with logistic 

regression, which is linear in nature. However, when using more complex non-linear models, it is 

advisable to use a test set as a guard against overfitting. Thirdly, an extensive parameter search 

was not performed, meaning that regularisation and related parameters were not tried.  
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5. Research methodology  

The objective of this thesis is to investigate the potential of statistical and machine learning 

models for predicting venous thrombosis in patients with acute myeloid leukaemia. Given that 

thrombosis is a significant contributor to morbidity and mortality among patients with cancer, 

particularly those with leukaemia, effective treatment strategies are of paramount importance. 

However, the use of thromboprophylaxis, or preventive measures to reduce the risk of 

thrombosis, is limited by a high prevalence of thrombocytopenia and the perceived high risk of 

bleeding, as well as the lack of evidence-based guidelines to assist clinicians. As a result, 

determining the risk factors for VTE in patients with acute leukemias will enable clinicians to risk-

stratify patients and individualise patient surveillance and preventive blood-thinning treatment.  

The data collection process included the following variables: demographic factors (age, sex), body 

mass index (BMI), smoking status, comorbidities (including previous thrombosis), concomitant 

therapy, ECOG PS, Hematopoietic Cell Transplantation-specific Comorbidity Index, and baseline 

laboratory findings (complete blood count, fibrinogen, prothrombin time [PT], International 

Normalized Ratio [INR], activated partial thromboplastin time [APTT]). Additionally, the following 

parameters were assessed: APTT, D-dimer, lactate dehydrogenase (LDH), leukemia-related 

parameters (cytogenetics, molecular genetics [FLT3, NPM1], flow cytometry), type (intensive, 

non-intensive, palliative therapy) and phase of leukemia-related therapy, the presence of a 

central venous line (CVL), Khorana and Al Ani scores, and concurrent coronavirus disease 2019 

(COVID-19) positivity. DIC was diagnosed in accordance with the International Society on 

Thrombosis and Haemostasis (ISTH) scoring system. All laboratory parameters, as well as 

comorbidities, concomitant therapy, and smoking status, were assessed on the day of diagnosis 

or the nearest day before, within a three-day period. 

 

Parameter All (n=626) 

Missing 

values (%) 

Patients 

with 

thrombosis 

(n=72) 

Patients 

without 

thrombosis 

(n=554) OR 95% CI p-value 

Age (years) 55.1±13.4 0 52.9±13.7 55.4±13.3 0.99 0.97–1.004 0.137 

Male sex 

(%) 348 (55.6) 0 49 (68.1) 299 (54.0) 1.82 1.08–2.07 0.025 

Smokers 

(%) 277 (46.8) 16 35 (51.5) 242 (46.2) 1.24 0.75–2.05 0.412 

BMI1 25.3±4.7 7.7 25.6±4.0 25.2±4.8 1.01 0.96–1.07 0.598 

Prior history 

of 

thrombotic 

events (%) 42 (6.8) 12.5 9 (12.7) 33 (6.9) 2.27 1.04–4.96 0.041 
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ECOG PS2 

(%) 0 102 (16.7) 13.3 17 (25.0) 85 (15.7) 0.71 0.53–0.94 0.017 

ECOG PS2 

(%) 1 256 (41.9)  30 (44.1) 226 (41.6)    

ECOG PS2 

(%) 2 182 (29.8)  17 (25.0) 165 (30.4)    

ECOG PS2 

(%) 3 48 (7.9)  3 (4.4) 45 (8.3)    

ECOG PS2 

(%) 4 23 (3.8)  1 (1.5) 22 (4.1)    

Comorbiditi

es Total 

number 1 (0–7) 1.9 1 (0–4) 1 (0–7) 0.85 0.67–1.08 0.193 

Diabetes 

(%) 102 (17.4) 17.4 10 (14.5) 92 (17.8) 0.78 0.39–1.59 0.498 

Hypertensio

n (%) 156 (25.0) 17.4 14 (20.3) 142 (27.5) 0.67 0.36–1.25 0.208 

Antiplatelet 

therapy (%) 33 (5.4) 1.9 5 (7.1) 28 (5.1) 0.71 0.26–1.89 0.488 

HCT CI3 

(%) 1 (0–9) 2.4 1 (0–4) 1 (0–9) 0.83 0.83?0.69 0.052 

Khorana 

score (%) 0 112 (17.9) 11.5 13 (18.1) 99 (17.9) 0.94 0.66–1.32 0.708 

Khorana 

score (%) 1 322 (51.4)  39 (54.2) 283 (51.1)    

Khorana 

score (%) 2 184 (29.4)  19 (26.4) 165 (29.8)    

Khorana 

score (%) 3 8 (1.3)  1 (1.4) 7 (1.3)    

Al Ani score 

(%) 0 317 (50.6) 0 30 (41.7) 287 (51.8) 1.26 0.90–1.78 0.185 

Al Ani score 

(%) 1 296 (47.3)  40 (55.6) 256 (46.2)    

Al Ani score 

(%) 2 0 (0.0)  0 (0.0) 0 (0.0)    
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Al Ani score 

(%) 3 8 (1.3)  2 (2.8) 6 (1.1)    

Al Ani score 

(%) 4 5 (0.8)  0 (0.0) 5 (0.9)    

COVID-19 

(%) 59 (9.4) 11.6 7 (9.7) 52 (9.4) 1.04 0.45–2.38 0.931 

CNS 

involvement 

(%) 54 (20.5)  11 (30.6) 43 (18.9) 1.89 0.87–4.14 0.11 

WBC 

(normal: 

3.6–

10×10^9/L) 

9.8 (0.4-

473.2) 0 

10.5 (0.7-

211.6) 

9.7 (0.4-

473.2) 0.998 

0.993–

1.002 0.321 

Platelet 

count 

(normal: 

150–

400×10^9/L

) 49 (1-726) 0 56 (1-220) 47 (1-726) 1.001 

0.998–

1.004 0.37 

Hemoglobin 

(normal: 

120–160 

g/L) 95.8±17.8 0 97.0±18.8 95.7±17.4 1.004 

0.991–

1.018 0.542 

LDH 

(normal, 

220–460 

U/L) 

458 (105–

8902) 9.4 

384 (180–

4150) 

465 (105–

8902) 1 0.999-1.000 0.17 

Fibrinogen 

(normal: 

2.2–5.5 g/L) 

5.4 (0.3–

56.0) 5.2 

5.6 (1.4–

8.5) 

5.3 (0.3–

56.0) 0.928 

0.821–

1.048 0.229 

INR 

(normal: 

0.8–1.3%) 1.22±0.19 5.2 1.18±0.17 1.23±0.20 0.21 0.05–0.95 0.043 

APTT 

(normal: 

25.1–36.5 

s) 29.2±5.6 5.2 28.4±4.2 29.3±57 0.96 0.91–1.02 0.198 

D dimer 

(normal: 0–

0.5 µg/L) 

2.5 (0.1–

158.0) 26.5 

2.1 (0.3-

100.8) 

2.5 (0.1–

158.0) 0.99 0.98–1.01 0.649 
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ISTH DIC 

score?5 (%) 131 (41.3) 26.5 12 (28.6) 119 (43.3) 0.52 0.26–1.07 0.075 

Blast 

peripheral 

blood (%) 16 (0–99)  15 (0–98) 17 (0–99) 0.99 0.98–1.003 0.182 

FAB (%) 0 32 (5.3) 3.4 3 (4.3) 29 (5.4) 0.99 0.90–1.10 0.881 

FAB (%) 1 69 (11.4)  12 (17.4) 57 (10.6)    

FAB (%) 2 150 (24.8)  19 (27.5) 131 (24.4)    

FAB (%) 3 2 (0.3)  0 (0.0) 2 (0.4)    

FAB (%) 4 172 (28.4)  16 (23.2) 156 (29.1)    

FAB (%) 5 99 (16.4)  7 (10.1) 92 (17.2)    

FAB (%) 6 2 (0.3)  0 (0.0) 2 (0.4)    

FAB (%) 7 1 (0.2)  0 (0.0) 1 (0.2)    

FAB (%) 9 78 (12.9)  12 (17.4) 66 (12.3)    

ELN 

classificatio

n (%) Good 66 (11.4)  8 (11.9) 55 (11.3) 0.88 0.58–1.33 0.529 

ELN 

classificatio

n (%) 

Intermediat

e 330 (59.5)  42 (62.7) 288 (59.0)    

ELN 

classificatio

n (%) High 162 (29.2)  17 (25.4) 145 (29.7)    

FLT3 ITD 

positivity 

(%) 63 (19.9) - 9 (20.9) 54 (19.7) 1.08 0.49–2.38 0.852 

NPM1 

positivity 

(%) 59 (24.4) - 11 (33.3) 48 (23.0) 1.68 0.76–3.70 0.201 

CD56 

positivity 

(%) 175 (33.1) 22.3 19 (29.7) 156 (33.5) 0.84 0.47–1.48 0.539 
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CD13 

positivity 

(%) 510 (93.1) 22.3 59 (90.8) 451 (93.4) 0.7 0.28–1.74 0.44 

CD34 

positivity 

(%) 382 (69.5) 22.3 42 (64.6) 340 (70.1) 0.78 0.45-1.34 0.368 

CD33 

positivity 

(%) 512 (93.1) 22.3 60 (90.9) 452 (93.4) 0.71 0.28–1.76 0.458 

CD117 

positivity 

(%) 482 (87.8) 22.3 55 (87.8) 427 (87.9) 0.95 0.43–2.09 0.899 

CD7 

positivity 

(%) 126 (23.8) 22.3 11 (17.5) 115 (24.6) 0.65 0.33–1.28 0.213 

CD15 

positivity 

(%) 178 (34.0) 22.3 21 (33.9) 157 (34.0) 0.99 0.57–1.74 0.986 

CD19 

positivity 

(%) 49 (9.5) 22.3 6 (9.8) 43 (9.5) 1.04 0.42–2.56 0.932 

CVL 

inserted (%) 519 (82.9) 11.5 68 (94.4) 451 (81.4) 3.88 1.38–10.89 0.01 

Therapy 

type - 

Intensive 

(%) 453 (72.4) 11.3 60 (83.3) 393 (70.9) 2.05 1.07–3.91 0.03 

Therapy 

type - Non-

intensive 

(%) 173 (27.6) - 12 (16.7) 161 (29.1)   

 

Table 5.1 The summarisation of the entire dataset 

 

A review of the collected data revealed a significant number of columns with missing information. 

In practice, it is not uncommon for some cases to be excluded from the data set due to the 

unavailability of information for various reasons. The conventional approach to dealing with 

missing data is to exclude any column in which more than 5% of the data is missing. The columns 

designated as 'CNS.inf.likvor', 'fit3_ITD', 'NPM1', 'CD56', 'CD13', 'CD34', 'CD33', 'CD117', 'CD7', 

and 'CD15' The variables 'CD19', 'D.dimer', 'Comorbidities', 'ISTH DIC score', 'COVID19', and 
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'Khorana.score' were excluded from further analysis due to the presence of an excess of null 

values. 

Prior to undertaking any additional preprocessing, it is essential to divide the data into training 

and test sets, as the latter must remain intact until the model has been validated. Otherwise, 

information about it would be leaked, resulting in biased validation. One example of data leakage 

is mean value imputation, whereby the mean is calculated on the entire dataset. Subsequently, 

when the data is partitioned, one could infer the mean values of features in the test set by 

calculating the mean value of features in the training set. The data split was 70/30, and the data 

was stratified so that there were equal proportions of positive cases in both the training and 

testing datasets.  

Afterwards, all features were scaled to a uniform range using the scikit-learn MinMaxScaler 

function. Scaling specifications were determined on the training dataset and subsequently 

applied to both the training and test sets. Further feature reduction was then conducted by 

removing those features that were dependent on other features. To assess this, Pearson's 

correlation coefficient and variance inflation factor were employed. The formula for Pearson's 

coefficient is: 

 

  - 𝑋𝑖 and 𝑌𝑖 are individual data points for variables 𝑋 and 𝑌. 

  - 𝑋 and 𝑌are the mean values of 𝑋 and 𝑌, respectively. 

  - 𝑟 ranges from -1 to 1: 

  - 𝑟 = 1 indicates a perfect positive linear correlation. 

  - 𝑟 = −1 indicates a perfect negative linear correlation. 

  - 𝑟 = 0 indicates no linear correlation 

The subsequent image illustrates the correlation between the remaining columns. It can be 

observed that there is a strong positive correlation between "Tip.terapije" (type of therapy) and 

CVK; therefore, CVK was excluded. 
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Figure 5.1 The image depicts a matrix of linear correlations, with each cell coloured according to 

the strength of the correlation between the corresponding row and column attributes. 

The Variance Inflation Factor (VIF) is a statistical measure employed in regression analysis to 

identify instances of multicollinearity among predictor variables. Multicollinearity arises when 

two or more predictors in a model exhibit a high degree of correlation, which can result in the 

generation of unreliable estimates of regression coefficients. The Variance Inflation Factor (VIF) 

is a statistical measure used to quantify the extent to which the variance of a regression 

coefficient is inflated due to collinearity with other predictor variables. It is calculated for each 

predictor variable by regressing it against all other predictor variables and determining the extent 

to which the variance of the coefficient is increased. A high VIF value indicates a high level of 

multicollinearity, which is typically defined as a VIF value greater than 10, suggesting problematic 

multicollinearity that may require further investigation or adjustment to the model. 

 

The following is a brief overview of the Variance Inflation Factor (VIF) values for each variable in 
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the dataset. 

 

Variable VIF 

Age 1.413224 

Sex  1.076852 

Smokers 1.048541 

BMI 1.108553 

Prior history of 

thrombotic 

events 1.476636 

ECOG_PS 1.324729 

HTA 1.160239 

DM 1.183053 

Antiplatelet 

therapy 1.266924 

HCT_CI 1.381181 

AL.ANI. new 1.613094 

Leukocytes 1.647233 

thrombocytes 1.41292 

Hemoglobin 1.080261 

LDH 1.307354 

Fibrinogen 1.052542 

INR 1.468524 

aPTT 1.076211 

Blast peripheral 

blood 1.298846 

FAB 1.0814 

ELN 1.027841 

Type of therapy 

 nominal 1.484999 

Table 5.2 VIF values for attributes  

The final stage of the preprocessing phase was the selection of features. This was achieved 

through the application of univariate logistic regression to each feature, with the objective of 

calculating their respective p-values. The p-value provides an indication of the probability of 

obtaining a result that is as extreme or more extreme than the observed result when a model 

that embodies the null hypothesis is employed. In other words, it offers insight into the likelihood 

that the observed result is a consequence of a change, rather than an intrinsic relationship. To 

calculate the p-value, it is first necessary to determine the standard error using the following 
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formula: 

 

Where: 

 

The standard error is then employed in conjunction with the estimated parameter to calculate 

the t-statistic. Based on the t-statistic and degrees of freedom, an appropriate t-distribution may 

be utilised to calculate the p-value. 

 

The results of the univariate logistic regression, applied to all parameters, are presented in the 

following table: 

 

Variable P-Value 

ECOG_PS 0.006578 

Sex 0.023644 

Type of therapy  0.026942 

Prior history of thrombotic events 0.03687 

HCT_CI 0.038144 

INR 0.042885 

Age 0.135908 

LDH 0.166287 

Blast peripheral blood 0.177491 

AL.ANI.new 0.183525 

aPTT 0.211367 

HTA 0.254229 

Fibrinogen 0.270046 

Leukocytes 0.322028 

Thrombocytes 0.365618 

Smoker 0.429092 

Antiplatelet therapy 0.500308 

Hemoglobin 0.541803 

DM 0.557673 

BMI 0.565671 
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ELN 0.605832 

FAB 
0.887249 

  

Table 5.3 P-values for attributes 

It can be observed that only six parameters have a p-value that is less than 0.05, which is the 

standard threshold. The aforementioned parameters are ECOG_PS, the patient's sex, the type of 

therapy, previous thrombosis, HCT_CI and INR.  Furthermore, forward and backward selection 

were conducted, which also demonstrated that utilising more than six attributes has a 

detrimental impact on performance. To illustrate, we employed Naive Bayes with a forward 

selection process and these six parameters as the basis. The process augmented the model with 

three additional parameters: 'LDH', 'Procentat.blasta.krv', 'aPTT'. However, the model with the 

augmented parameters exhibited inferior performance compared to the original model, with an 

AUC score of 72.24% compared to 73.49%. A similar pattern was observed with Logistic 

Regression and K-Nearest Neighbours.  

A further advantage of a reduced number of parameters is that the model is more 

comprehensible and simpler to utilise. Greater explicitness facilitates a more accurate 

understanding of the parameters that are responsible for positive diagnoses or positive 

predictions in general. Additionally, the reduction in parameters facilitates the development of a 

service that is more readily applicable in practice, as medical professionals would be required to 

collect less data.  
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6. Results and discussion 

The following algorithms were employed in the training process: logistic regression, naive Bayes, 

k-nearest neighbours, SVM, random forest and neural networks. The SVM exhibited severe 

underfitting, while the Random Forest demonstrated overfitting to an equivalent degree. 

Consequently, we ceased utilising these models. The remaining models were trained in three 

distinct ways: with the default parameters, with a grid search, and with a random search. Models 

that are capable of accepting weighted examples were trained with those. The reported results 

are based on the evaluation of the model on previously unseen test data.  

The following table presents the performance metrics for the various algorithms.  

 

Algorithms 

Logistic 

regression 

K-Nearest 

Neighbors MLP Naive Bayes 

Classical 

Logistc 

AUC score 0.734 0.581 0.707 0.716 0.699 

Accuracy 0.883 0.814 0.851 0.787 0.883 

Sensitivity 

score 0 0.09 0.136 0.273 0 

Specificity 

score 1 0.9096 0.946 0.855 1 

F1 score 0 0.1026 0.177 0.231 0 

Table 6.1  Metrics for all the algorithms used. 

In this study, the term "classical logistic regression" is used to refer to the logistic regression 

employed by Mitrovic et al. (2024). The researchers utilised the SPSS software, which employs 

the Newton-Raphson method without regularisation. This algorithm demonstrated superior 

performance in all models except k-NN, which exhibited a C score of 85.54% on the training set 

but only 58.1% on the test set. This suggests that the k-NN model may be prone to overfitting. 

The specificity and sensitivity scores for both the classical and logistic regression models are both 

1, indicating that the algorithm has predicted that no patients will develop thrombosis. This is a 

highly misleading result that could potentially cause significant harm. The results were obtained 

by classifying all instances with an output probability greater than 0.2 as positive. However, this 

threshold could be modified to establish an optimal balance between positive and negative 

predictions. The underlying power of the model, as measured by the AUC plot, is not subject to 

change. The subsequent image depicts the ROC curve: 
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Figure 6.1 Logistic Regression ROC Curve 

In this instance, it would be appropriate to select a threshold value that corresponds to one of 

the identified peaks, given that the values in question are Pareto-dominant in comparison to 

those that do not represent peaks. The subsequent plot illustrates the impact of varying the 

threshold on the metrics. 

 
Figure 6.2 Changes in metrics as threshold changes 

One of the reasons for this phenomenon is the presence of a considerable imbalance in the 

number of positive and negative examples, with nine times as many negative examples as 

positive ones. One potential solution is the utilisation of weighted logistic regression, which 
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assigns greater weight to the smaller subset and penalises the algorithm more severely when it 

makes errors on it. The table illustrates the outcomes of this approach. Both models exhibit a 

perfect sensitivity score and a low specificity score, indicating that the majority of instances are 

classified as positive and only a few as negative, which is the inverse of the previous outcome. 

 

Algorithms 

Classical 

Logistic 

regression with 

weights 

Logistic 

Regression with 

weights 

AUC score 0.705 0.713 

Accuracy 0.154 0.139 

Sensitivity 

score 1 1 

Specificity 

score 0.04 0.0241 

F1 score 0.2167 0.213 

Table 6.2 Metrics for weighted regressions 

The analysis of feature influence shows the following: 

- Men have higher risk of developing thrombosis  

- Lower ECOG_PS scores are associated with greater likelihood of developing thrombosis  

- Previous thrombosis, although rare, are strongest predictor of developing next 

thrombosis 

- Intensive therapy, which was often applied, is correlated with a higher probability of 

venous thrombosis  

- International normalised ratio (INR) and hematopoietic cell transplantation-specific 

comorbidity Index (HCT_CI) are lower in patients that are at higher risk of venous 

thrombosis 
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Figure 6.3  The summary plot of SHAP values 

Figure 6.4  The waterfall plot of SHAP values for one example 

In the end, logistic regression still proved to be the best-performing model, but unlike in previous 

work, it utilised an L2 penalty. This regularisation method helped to improve the model’s 

performance by preventing overfitting, making it more robust in handling the dataset. Following 

logistic regression, the plain Naive Bayes algorithm ranked second in terms of performance, 

outperforming the neural network. This result is not surprising given the nature of the dataset, 

which is relatively small and contains only a few informative features. In such cases, Naive Bayes 

can often excel due to its simplicity and efficiency, as it does not require large amounts of data 

to perform well. Neural networks, on the other hand, tend to require larger and more complex 

datasets to fully demonstrate their potential and deliver meaningful results. 

In light of the available evidence, it can be concluded that the application's performance has 

indeed been enhanced through the use of advanced data science methods, although the 

improvement is limited in scope and was ultimately achieved using relatively simple algorithms. 

The choice of logistic regression and Naive Bayes highlights the principle that, in many cases, 

sophisticated machine learning algorithms are not always necessary, especially when dealing 

with smaller datasets. This work confirms the practical wisdom that, when approaching a data 

science problem, the best strategy is to begin by training several models, starting from the simple 

ones and progress from there. This work also underscores a well-known tenet in data science: 

the performance of a model depends heavily on the size and quality of the dataset. 
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7. Conclusion  

 

Our research demonstrates how the utilisation of sophisticated data science methodologies can 

significantly enhance the efficacy of contemporary medical applications, thereby enabling more 

reliable and precise estimates. Many of the alterations introduced by these sophisticated data 

science techniques are subtle, and their use does not necessitate extensive technical expertise 

on the part of healthcare practitioners. For instance, automated algorithms can process large 

datasets, cleaning and structuring the data without manual intervention, thus enabling even 

those with limited technical skills to derive meaningful insights. Despite the seeming simplicity of 

these modifications, they can lead to substantial improvements in the accuracy and reliability of 

medical predictions, as well as in the efficiency with which healthcare services are delivered. 

Furthermore, established industry standards govern the presentation and interpretation of 

findings derived from data-driven methods. These standards must be carefully considered to 

ensure that results are not only scientifically sound but also transparent and interpretable by 

clinicians and other researchers. Adhering to these guidelines helps maintain the integrity of the 

research process, prevents the miscommunication of complex findings. 

Our current research highlights the importance of considering multi-parameter metrics that 

evaluate a model or system based on multiple parameters or factors. More than single metrics 

such as accuracy can provide a partial picture of model performance, especially when there are 

trade-offs between different aspects of outcome evaluation. We suggest that the multi-

parameter metric can incorporate different performance measures to provide more 

comprehensive results, the evaluation of which can support better prediction. 

However, it is important to note that statistical algorithms and models are not universally 

applicable to all datasets or medical conditions. Different types of data and different clinical 

questions may require customised approaches. Researchers are therefore advised to use a range 

of models during the training and validation process. This diverse approach allows them to 

identify those models that show the most promising initial results and the greatest potential for 

refinement and further development.  

In conclusion, the strategic application of data science methodologies in medical research and 

practice has the potential to revolutionise the field, providing more accurate, timely, and 

personalised insights into patient care. However, careful consideration must be given to model 

selection, validation, and the proper communication of results to ensure these advancements 

translate into real-world improvements in healthcare delivery. 
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