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Abstract

Graph coloring is one of the most widely appreciated and valuable aspects
within the field of graph theory. Graph coloring involves the allocation of
integers to the various vertices of a graph in such a way that no two adjacent
vertices receive the same integer value. This particular challenge frequently
emerges in scenarios involving scheduling and channel allocation. In the
context of a graph, a list coloring is an arrangement of integers assigned to
its vertices, but with an added constraint that these integers must originate
from predetermined lists of viable colors associated with each vertex.

In this thesis, we give an overview of some interesting results in the
list colorings in the past three decades. We introduce the concept of list
coloring by giving some examples of applications, then give brief overview
of basic terms and results in graph theory that will be used further on.
We continue with list colorings, characterization of 2-choosable graphs and
planar graphs, explaining the famous Five-Color theorem followed by the
Mirzakhani graph. We finish by mentioning list-edge-colorings and proving
Galvin’s lemma.
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Chapter 1

Introduction

In graph theory, list coloring is a variant of the traditional graph coloring
problem, where each vertex in a graph is assigned a color from a specific list
of available colors. Unlike standard graph coloring, where a universal set of
colors is available to all vertices, list coloring allows for flexibility by giving
each vertex its own list of permissible colors. The goal, however, remains
the same: to ensure that adjacent vertices have distinct colors.

The concept of list coloring was introduced by Vizing [22] in the 1970s
and independently by Erdős, Rubin, and Taylor [8], and it generalizes tra-
ditional graph coloring. It provides a deeper insight into the behavior of
graphs, particularly when constraints are placed on available colors at each
vertex. This extension is useful in real-world applications where certain
limitations or restrictions exist, such as scheduling problems, frequency as-
signments in wireless networks, or timetabling, where different entities might
have limited resources or preferences.

In traditional graph coloring, the same set of colors is available to all
vertices. However, list coloring accounts for real-life constraints where re-
sources (colors) available to one entity may not be available to another. This
makes list coloring a more nuanced and flexible model, applicable to diverse
scheduling and resource allocation problems.

In addition to its practical applications, list coloring has deep theoretical
importance in the study of graph algorithms and complexity, often intersect-
ing with problems in combinatorics, probability, and optimization.

The study of list coloring also intersects with various classical results in
graph theory, such as those concerning planar graphs, bipartite graphs, and
other special graph classes. For instance, certain theorems that hold in clas-
sical graph coloring, like the Four Color Theorem for planar graphs, have
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CHAPTER 1. INTRODUCTION 4

analogous or modified counterparts in the context of list coloring, though
with often higher complexity and technical challenges. The behavior of
graphs under list coloring constraints provides insight into their combinato-
rial structure, shedding light on how localized restrictions can impact global
properties.

Another significant aspect of list coloring is its inherent complexity. Un-
like classical graph coloring, which is already computationally hard, list
coloring adds another layer of difficulty due to the individualized nature
of the constraints. The problem remains NP-complete in general, making
it a challenging area for algorithmic graph theory. Researchers have ex-
plored various heuristic and approximate methods for finding list colorings
in practice, particularly in cases where exact solutions are computationally
infeasible. Despite the difficulty of the problem, list coloring provides a
powerful model for solving practical problems in areas such as scheduling,
network design, and resource allocation, where constraints vary across the
system.

In conclusion, list coloring represents a significant extension of graph col-
oring theory, introducing additional complexity and flexibility that better
captures many real-world scenarios. Its connections to other areas of mathe-
matics, its challenging computational aspects, and its relevance to practical
problems all contribute to its importance as a field of study in modern graph
theory. As research in this area continues, new results and techniques are
likely to further deepen our understanding of the interplay between local
constraints and global graph properties.
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1.1 Applications

List coloring is a variation of graph coloring, where each vertex of a
graph is assigned a list of colors instead of a single color. List coloring has
numerous applications in graph theory and computer science. It is used to
solve problems such as the scheduling of courses, assigning frequencies to
radio stations to avoid interference, and allocating resources in computer
networks. We mention some of its applications listed below.

Wireless Channel Assignment [17]: List coloring is used in wireless
communication systems to assign channels to devices to avoid interference.
Each device is assigned a list of available channels, and the goal is to as-
sign channels to devices in a way that neighboring devices have distinct
channels. List coloring algorithms can be employed to find efficient channel
assignments, ensuring minimal interference and maximizing network perfor-
mance.

Register Allocation [15]: List coloring plays a crucial role in com-
piler optimization, specifically in the register allocation phase. In compilers,
registers are limited resources used to store intermediate values during pro-
gram execution. List coloring is employed to allocate registers to variables,
ensuring that no two variables sharing the same scope are assigned the same
register. By using list coloring techniques, compilers can optimize register
usage and improve the overall performance of compiled programs.

Resource Allocation in Timetable Scheduling[2]: List coloring
can be applied to timetable scheduling problems, where a set of resources,
such as classrooms, is allocated to a set of activities, such as classes or exams.
Each resource is assigned a list of available time slots, and list coloring
algorithms can be used to assign time slots to activities, ensuring that no
conflicting activities are scheduled simultaneously in the same resource.

Frequency Assignment in Wireless Networks [19]: List coloring
is used in frequency assignment problems in wireless networks. In cellular
networks, different cells are allocated specific frequencies to enable commu-
nication. However, adjacent cells need to use different frequencies to avoid
interference. List coloring algorithms are utilized to allocate frequencies to
cells, ensuring that neighboring cells have distinct frequencies and minimiz-
ing signal interference.

Coloring Maps: List coloring techniques have applications in map
coloring problems. When coloring a map, the goal is to assign colors to
regions such that neighboring regions have distinct colors. List coloring
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algorithms can be employed to determine the minimum number of colors
required to color a given map, which is known as the chromatic number of the
map. This problem has practical applications in areas such as cartography
and geographic information systems.

Task Scheduling: List coloring can be used in task scheduling prob-
lems, where a set of tasks needs to be scheduled on a set of resources with
certain constraints. Each task is assigned a list of available time slots or re-
sources, and list coloring algorithms can be employed to find feasible sched-
ules that satisfy the given constraints. This has applications in project
management, job scheduling, and resource allocation in various domains.

Bioinformatics and Biological Networks [14]: In bioinformatics,
list colorings are used to analyze biological networks like protein interac-
tion networks and genetic interaction networks. List colorings help identify
patterns and relationships within complex biological data, aiding in disease
research and biomarker identification.

Sudoku [13]: List coloring can be applied to solve Sudoku puzzles. In
a Sudoku puzzle, a 9x9 grid is divided into nine 3x3 subgrids, and the goal
is to fill in the grid such that each row, column, and subgrid contains the
numbers 1 to 9 without repetition. List coloring can be used to assign a list
of possible numbers to each cell based on the existing numbers in the row,
column, and subgrid. The puzzle can then be solved by iteratively reducing
the lists until each cell contains a single number.

These are just a few examples of the applications of list coloring. The
technique finds use in a wide range of fields, including mathematics, com-
puter science, telecommunications, and logistics, among others.
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1.2 Mathematical preliminaries

1.2.1 Definitions of graphs

A graph G is an ordered pair (V (G), E(G)), where nonempty set V (E)
is a set of vertices and a possibly empty set E(G) of 2-element subsets
of V (E) is a set of edges. The vertex set of G is denoted V (G), the edge
set E(G), while the number of vertices and the number of edges we denote
by |V (G)| and |E(G)|, respectively. If {u, v}, or shorter just uv or vu, is
an edge of G, then vertices u and v are adjacent vertices. Two adjacent
vertices are called neighbors of each other. The set of neighbors of a vertex
v is called the open neighborhood of v or just the neighborhood of v
and is denoted by NG(v) or just N(v) if the graph G is understood. The
set N [v] = N(v)∪ v is called the closed neighborhood of v. If uv and vw
are distinct edges in G, then uv and vw are adjacent edges. The vertex u
and the edge uv are said to be incident with each other.

v1

v2 v3

v4 v5

P1

L1

L2

P2

G :

Figure 1.2.1: The graph G with loops and parallel edges

The number of vertices in a graph G is the order of G and the number
of edges is the size of G. A graph of order 1 is called a trivial graph. A
nontrivial graph therefore has two or more vertices. A graph of size 0 is
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called an empty graph or a null set. A nonempty graph then has one
or more edges. In any empty graph, no two vertices are adjacent. An edge
with identical ends is called a loop and an edge with distinct ends a link.
Two or more links with the same pair of ends are called parallel edges. A
graph is simple if it has no loops or parallel edges. The degree of a vertex
of a graph is the number of edges that are incident to the vertex, denoted
by d(v). The maximum degree of a graph G is denoted by ∆(G), and is
the maximum of G’s vertices’ degrees. The minimum degree of a graph
is denoted by δ(G) and is the minimum of G’s vertices’ degrees. A regular
graph is a graph where each vertex has the same number of neighbors, that
is, every vertex has the same degree, so we can speak of the degree of the
graph.

Example 1.2.1. In Figure 1.2.1, graph G has loops L1 and L2, and parallel
edges P1 and P2. 4

Example 1.2.2. Figure 1.2.2 shows a graphG with maximum degree ∆(G) =
3, at vertex v2, and minimum degree δ(G) = 1, at vertex v6. 4

v1 v2

v3v4

v5

v6

G :

Figure 1.2.2: A graph G

Example 1.2.3. In Figure 1.2.3 graph G is a regular graph which has a
degree 2.

4

v1 v2

v3v4

G :

Figure 1.2.3: The regular graph G
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A complete graph is a simple graph in which any two vertices are
connected by a unique edge. We denote it by Kn, where n is the number of
vertices in the graph. Kn is a special kind of regular graph where all vertices
have the maximum possible degree, n− 1.

Example 1.2.4. Graph K4, shown in Figure 1.2.4, is both regular and
complete with n = 4 and ∆(G) = 3. 4

v1 v2

v3v4

G :

Figure 1.2.4: The complete graph K4

A path is a simple graph whose vertices can be arranged in a linear
sequence in such a way that two vertices are adjacent if they are consecutive
in the sequence and are nonadjacent otherwise.

Example 1.2.5. An example of a path is a graph G3 showed in Figure
1.2.7.

4

A cycle graph or circular graph is a graph that consists of a single
cycle, or in other words, some number of vertices (at least 3, if the graph
is simple) connected in a closed chain. The cycle graph with n vertices is
denoted Cn = v1v2 . . . vnv1. The number of vertices in Cn equals the number
of edges, and every vertex has degree 2, that is, every vertex has exactly
two edges incident with it. A cycle on one vertex consists of a single vertex
with a loop and a cycle on two vertices consists of two vertices joined by a
pair of parallel edges. The length of a path or a cycle is the number of its
edges. An acyclic graph is one that contains no cycles.

Example 1.2.6. A cycle C4 is showed in Figure 1.2.3. 4

A planar graph is a graph that can be embedded in the plane, that
is, it can be drawn on the plane in such a way that its edges intersect only
at their endpoints. Such a drawing is also called an embedding of G in
the plane. In this case, the embedding is a planar embedding. A graph G
that is already drawn in the plane in this manner is a plane graph. A
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face of the graph is a region bounded by a set of edges and vertices in the
embedding. Note that in any embedding of a graph in the plane, the faces
are the same in terms of the graph, though they may be different regions
in the plane. The face with unbounded area is known as the unbounded
face, the outer face, or the infinite face and other faces are its inner
faces. A near-triangulation is a plane graph all of whose inner faces are
of degree three.

Example 1.2.7. A graph in the Figure 1.2.3 is planar, while the one in the
Figure 1.2.10 is not. 4

An interval graph is an undirected graph formed from a set of intervals
on the real line, with a vertex for each interval and an edge between vertices
whose intervals intersect. It is the intersection graph of the intervals. Each
vertex of the interval graph can be associated with an interval on the real
line in such a way that two vertices are adjacent if and only if the associated
intervals have a nonempty intersection. These intervals are said to form an
interval representation of the graph. We denote by I the property of being
an interval graph.

1.2.2 Graph isomorphism

A graph homomorphism f from a graph G = (V (G), E(G)) to a graph
H = (V (H), E(H)), f : V (G) → V (H), is a function from V (G) to V (H)
such that if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H), for all pairs of vertices
u, v ∈ V (G). An isomorphism of graphs G and H is a bijection between
the vertex sets of G and H f : V (G)→ V (H) such that any two vertices u
and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Example 1.2.8. Graphs G and H shown in Figure 1.2.5 are isomorphic
with isomorphism f , defined as f(vi) = ui, i = 1, 2, . . . , 6, despite their
different looking drawings.



CHAPTER 1. INTRODUCTION 11

v1 v2

v3 v4

v5 v6

v7 v8

G :

u1 u4

u6 u7

u2 u3

u5 u8

H :

Figure 1.2.5: An isomorphism f : V (G)→ V (H)

4

If graphs G and H are isomorphic, we denote it by G ∼= H.

Example 1.2.9. Let G be a graph, like one in Figure 1.2.6(a) and G′ a
graph like the one in Figure 1.2.6 (b). There exists mapping f : G → G′

such that if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(G′), for all u, v ∈ V (G).
Let us define that f(a) = x, f(b) = y, f(c) = z, f(d) = x, f(e) = z.

If (a, b) is an edge in G, then (f(a), f(b)) must be an edge in G′ since
f(a) = x, f(b) = y implies (f(a), f(b)) = (x, y) ∈ E(G′).

If (b, c) is an edge in G, then (f(b), f(c)) must be an edge in G′ since
f(b) = y, f(c) = z results in (f(b), f(c)) = (y, z) ∈ E(G′).

If (c, d) is an edge in G, then (f(c), f(d)) must be an edge in G′ since
f(c) = x, f(d) = x leads to (f(c), f(d)) = (z, x) ∈ E(G′).

For edges (d, e),(e, a) ∈ G similarly we get that (f(d), f(e)), (f(e), f(a)) ∈
G′, so, since all edges from G are preserved in graph G′, f is a homomor-
phism. 4
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x

yz

(a) (b)

G : G′ :

b

c

d

e

a

Figure 1.2.6: A homomorphism f : V (G)→ V (H)

1.2.3 Subgraphs

A graph H is a subgraph of a graph G = (V,E), if V (H) ⊆ V (G) and
E(H) ⊆ E(G), we denote it as H ⊆ G. If H ⊆ G, then G is a supergraph
of H. If V (H) = V (G) then H is a spanning subgraph of G. In other
words, a spanning subgraph is obtained by edge deletions only. If H is a
subgraphs of G and G 6= H, then H is a proper subgraph of G. There
are two natural ways of deriving subgraphs from G. If e ∈ E, |E(G)| = m,
we may obtain a graph on m − 1 edges by deleting e from G, but leaving
the vertices and the remaining edges intact. We denote the resulting graph
by G\e and call it an edge-deleted subgraph. Similarly, if v is a vertex
of G, |V (G)| = n, we may obtain a graph on n− 1 vertices by deleting the
vertex v from G, together with all the edges incident with v. The resulting
graph is denoted by G − v and called a vertex-deleted subgraph. More
generally, if V ′ = V (G′), V ′ ⊆ V , the difference between two graphs G
and G′, G−G′ is the remaining subgraph H of G after the subgraph G′ is
removed from G; subgraph H is the graph G with vertex set V \V ′.
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v0

v1 v2

v3v4

G :

v0

v1 v2

v3v4

G1 :

v1

v3v4

G2 :

v3v4
G3 :

v0

v1 v2

v3

G4 :

v0

v1 v2

v3v4

G5 :

Figure 1.2.7: Graphs and subgraphs

Example 1.2.10. In the Figure 1.2.7 we have graph G and its proper sub-
graphs G1, G2, G3, G4. Graph G is a subset of itself, but it is not a proper
subgraph of G. Graph G5 is not a subgraph of G since it contains an edge
v0v3 and this is not an edge in G. The graph G1 is a spanning subgraph
of G because V (G) = V (G1). An example of the edge-deleted subgraphs is
G1 = G\v0v1 and an example of a vertex-deleted subgraph is G4 = G− v4.
4

A subgraph H of G is called a core of G if there is a homomorphism
f : G → H, but no homomorphism f : G → H ′ for any proper subgraph
H ′ of H. A graph which is its own core will be called simply a core. Any
complete graph is a core. A cycle of odd length is a core.

1.2.4 Connectivity

A non-empty graph G = (V,E) is connected if any two of its vertices
are linked by a path in G. If U ⊆ V (G) and G(U) is connected, then U
is itself connected in G. A maximal connected subgraph of G is called a
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component of G. Component is always a non-empty graph, the empty
graph has no components.

Example 1.2.11. A graph with three connected components is shown in
Figure 1.2.8.

4

v0

v1

v2

v3v4

v5

v6

v7v8

v9

v10

v11

G :

Figure 1.2.8

If there is more than one connected component for a given graph, then
the union of connected components will give the set of all vertices of the given
graph. Connected component sets are pairwise disjoint. Recall that it means
if we take the intersection between two different connected component sets
then the intersection will be equal to an empty set or a null set. If A,B ⊆ V
and X ⊆ V ∪ E are such that every A − B path in G contains a vertex of
an edge form X, then it is said that X separates the sets A and B in G.
From this it follows that A∩B ⊆ X. If X separates two vertices for G−X
in G, then X is called a separating set in G. A vertex which separates
two other vertices of the same component is called a cutvertex and an edge
separating its ends is a bridge. Note that the bridges in a graph do not
lie on any cycle. Graph G is said to be k−connected, where k ∈ N, if
|G| > k and G − X is connected for every set X ⊆ V with |X| < k. In
other words, no two vertices are separated by fewer than k other vertices.
Every non-empty graph is 0-connected and the 1-connected graphs are the
non-trivial connected graphs. The greatest integer k such that graph G is
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k-connected is called the connectivity k(G) of G. Note that k(G) = 0 if
and only if G is disconnected or K1, and k(Kn) = n − 1, for all n ≥ 1. A
connected acyclic graph is called a tree.

Example 1.2.12. A graph with cutvertices v, x and y and bridge xy is
shown on Figure 1.2.9.

4

v x y

Figure 1.2.9: A graph with cutvertices and a bridge

1.2.5 Bipartite graphs

A graph G is bipartite is its vertex set can be partitioned into two
subsets, X and Y , so that every end has one end in X and another in Y ;
such a partition (X,Y ) is called a bipartition of the graph and X and Y are
called its parts.

Figure 1.2.10: A bipartite graph

We denote a bipartite graph G with bipartition (X,Y ) by G[X,Y ]. If
G[X,Y ] is simple and every vertex in X is joined to every vertex in Y , then
G is called a complete bipartite graph. We denote a complete bipartite
graph by Kn,m, where n = |X| and m = |Y |.
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Example 1.2.13. A complete bipartite graph K3,3 is shown in Figure
1.2.10.

A star is a complete bipartite graph G[X,Y ] with |X| = 1 or |Y | = 1.
We denote it by K1,n, when n is the number of edges of a graph.

Example 1.2.14. A star graph K1,7 is shown in Figure 1.2.11. 4

Figure 1.2.11: A star graph

1.2.6 Graph operations

Graph operations are operations which produce new graphs from initial
ones. They include both unary (one input) and binary (two input) opera-
tions.

One of the most common binary operations defined on graphs is the
union of graphs. The union G = G1 + G2 of G1 and G2 has vertex set
V (G) = V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2). The union
G + G of two disjoint copies of G is denoted by 2G. Indeed, if a graph G
consists of k (≥ 2) disjoint copies of a graph H, then we write G = kH.

v0

v1 v2

v3v4

v5

K4 +G3 :

Figure 1.2.12: The union of graphs
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Example 1.2.15. The union of graphs K4 and a path G3 from Figure 1.2.7
is shown on Figure 1.2.12.

4

The most familiar graph operation of a graph is the line graph. The line
graph L(G) of a graph G is the graph whose vertices can be put in one-to-
one correspondence with the edges of G in such a way that two vertices of
L(G) are adjacent if and only if the corresponding edges are adjacent in G.

Example 1.2.16. Figure 1.2.13 shows graph G and its line graph L(G).

v3

v1 v2

v4

G :

v3v1 v3v2

v3v4

L(G) :

Figure 1.2.13: A graph and its line graph

1.2.7 Power set and finite projective plane

For a set X, the power set of X, denoted by P(X), is the set of all
subsets of X.

Obviously, for any set X, we have that ∅ ∈ P(X) and X ∈ P(X).
Furthermore, if X is finite, then |P(X)| = 2|X|. A finite projective plane
is set system (X,P) such that X is a finite set, P power set of X and the
following three properties are satisfied:

• (P0) there exists a 4-element subset Q ⊆ X such that every P ∈ P
satisfies |P ∩Q| ≤ 2;

• (P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;

• (P2) for all distinct x1, x2 ∈ X, there exists a unique P ∈ P such that
x1, x2 ∈ P .
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If (X,P) is a finite projective plane, then members of X are called
points, and members of P are called lines. For a point x ∈ X and a
line P ∈ P such that x ∈ P , we say that the line P is incident with the
point x, or that P contains x, or that P passes through x.

1.2.8 Directed graphs

A directed graph or a digraph D is an ordered pair (V (D), A(D)),
where V = V (D) is a set of vertices and A = A(D) a set of arcs, together
with an incidence function ψ(D) that associates with each arc of D an
ordered pair of (not necessarily distinct) vertices of D.

If a is an arc and ψD(a) = (u, v), then a is said to join u to v. It is said
that u dominates v. The vertex u is the tail of a, and the vertex v its
head, they are the two ends of an arc a. Occasionally, the orientation of an
arc is irrelevant to the discussion. In such instances, we refer to the arc as
an edge of the directed graph. The number of arcs in D is denoted by a(D).
The vertices which dominate a vertex v are its in-neighbors, those which
are dominated by the vertex are its outneighbors. These sets are denoted
by N−D (v) and N+

D (v), respectively.
The number of inward directed graph edges from a given graph vertex in

a directed graph is called indegree and denoted by d−. Similarly, the num-
ber of outgoing edges from a vertex in a directed graph is called outderee
d+. The degree d(v) of a vertex v is defined by d(v) = d−(v) + d+(v).

v1 v2

v3v4

v5

v6

G :

Figure 1.2.14: The digraph G

With any digraph D, we can associate a graph G on the same set of
vertices simply by replacing each arc in D by an edge with the same ends.
The new graph is the underlying graph of D, we denote it by G(D). Any
graph G can be regarded as a digraph, by replacing each of its edges by
two oppositely oriented arcs with the same ends. This digraph is called the
associated digraph of G, denoted D(G). We can also obtain a digraph D
from a graph G by replacing each edge by just one of the two possible arcs
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with the same ends. Such a digraph is then called an orientation of G. The

orientation of G can be denoted by the symbol
−→
G to specify an orientation

of G (even though a graph generally has many orientations). An orientation
of a simple graph is referred to as an oriented graph. One particularly
interesting instance is an orientation of a complete graph. Such an oriented
graph is called a tournament, because it can be viewed as representing the
results of a round-robin tournament, one in which each team plays every
other team (and there are no ties).

Example 1.2.17. Figure 1.2.14 shows an orientation of a graph G from
Example 1.2.2.

4

A stable set in a digraph is a stable set in its underlying graph, that
is, a set of pairwise nonadjacent vertices. If S is a maximal stable set in a
graph G, then every vertex of G − S is adjacent to some vertex of S. In
the case of digraphs, it is natural to replace the notion of adjacency by the
directed notion of dominance. This results in the concept of a kernel. A
kernel in a digraph D is a stable set S of D such that each vertex of D−S
dominates some vertex of S.

1.2.9 Vertex colorings

A vertex coloring of a graph G refers to assigning colors to the vertices
of G such that each vertex receives one color. A proper vertex coloring
of a graph G is a function c : V (G)→ N such that for all u, v ∈ V (G), c(u) 6=
c(v) if uv ∈ E(G). In proper vertex coloring no two adjacent vertices are
assigned the same color. A k-vertex-coloring of a graph, or simply a k-
coloring, is an assignment of k colors to its vertices. In a k-coloring, we
may then assume that it is the colors 1, 2, . . . , k that are being used. A graph
is k-colorable if it has a proper k-coloring. The chromatic number of
G, χ(G), is defined as the least positive integer k such that G has a proper
k-coloring for all v ∈ V (G). If χ(G) = k, then there exists a k-coloring of
G, but not a (k − 1)-coloring of G. A graph is k-colorable if and only if
χ(G) ≤ k. Clearly, every graph of order n is n-colorable. For every graph G
of order n, it holds that 1 ≤ χ(G) ≤ n. Surely, χ(Kn) = n. If graph G is of
order n and is not complete, then assigning the color 1 to two nonadjacent
vertices of G and distinct colors to the remaining n−2 vertices of G gives us
an (n−1)-coloring of G. A graph G of order n has chromatic number n if and
only if G is complete. For a nonempty graph G to have chromatic number 2,
there must be some partition of V (G) into two independent subsets V1, the
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vertices of G colored 1, and V2, the vertices of G colored 2. Since every edge
of G must join a vertex of V1 and a vertex of V2, the graph G is bipartite.

Theorem 1.2.1. A nonempty graph G has chromatic number 2 if and only
if G is bipartite.

As a consequence of Theorem 1.2.1, we have that the chromatic number
of a graph G is at least 3 if and only if G has an odd cycle.

Heuristic 1.2.1. The Greedy coloring Heuristic:
Input: a graph G
Output: a coloring of G
1. Arrange the vertices of G in a linear order: v1, v2, . . . , vn.
2. Color the vertices one by one in this order, assigning to vi the
smallest positive integer not yet assigned to one of its already-colored
neighbors.

Using the Greedy coloring algorithm it can be easily shown that for every
graph G it holds that χ(G) ≤ 1 + ∆(G), that is, the number of colors used
by the greedy heuristic is never greater than ∆ + 1, regardless of the order
in which the vertices are presented. When a vertex v is about to be colored,
the number of its neighbors already colored is clearly no greater than its
degree d(v), and this is no greater than the maximum degree, ∆. Thus one
of the colors 1, 2, . . . ,∆ will certainly be available for v. We conclude that,
for any graph G, χ(G) ≤ ∆(G) + 1.

Theorem 1.2.2. If H is a subgraph of a graph G, then χ(H) ≤ χ(G).

A clique is a subset of vertices of an undirected graph such that every
two distinct vertices in the clique are adjacent. That is, a clique of a graph
G is an induced subgraph of G that is complete. A maximal clique is a
clique that cannot be extended by including one more adjacent vertex, that
is, a clique which does not exist exclusively within the vertex set of a larger
clique. A maximum clique of a graph G is a clique, such that there is no
clique with more vertices.

Definition 1.2.1. The clique number, ω(G), of a graph G is the number of
vertices in a maximum clique in G.

Any clique of size w(G) in G requires at least w(G) different colors to
color its vertices properly. Therefore, the chromatic number must be at least
as large as the size of the largest clique, χ(G) ≥ ω(G). The following result
is then an immediate consequence of Theorem 1.2.2.

Corollary 1.2.1. For every graph G, χ(G) ≥ ω(G).
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1.2.10 Edge colorings

An edge coloring of a graph G is an assignment of colors to the edges of
G, with each edge receiving one color. If adjacent edges are given different
colors, the edge coloring is called proper edge coloring. Unless other-
wise specified, any reference to edge coloring in this discussion will imply a
proper edge coloring. Since a proper edge coloring of a nonempty graph G is
equivalent to a proper vertex coloring of its line graph L(G), studying edge
colorings is essentially the same as studying vertex colorings of line graphs.
However, because investigating vertex colorings of line graphs offers no clear
advantage over directly examining edge colorings, we will focus exclusively
on edge colorings in our study. An edge coloring that uses colors from a
set of k colors is a k-edge coloring. A k-edge coloring of a graph G can
be described as a function c : E(G) → {1, 2, . . . , k} such that for every two
adjacent edges e and f in G, it holds that c(e) 6= c(f). A graph G is k-edge
colorable if there exists a k-edge coloring of G. As in the case of vertex
colorings, we are often interested in edge colorings using a minimum number
of colors. The chromatic index or edge chromatic number χ′(G) of a
graph G is the minimum positive integer k for which G is k-edge colorable.
For every nonempty graph G it holds that χ′(G) = χ(L(G)). If a graph G
is k-edge colorable for some positive integer k, then χ′(G) ≤ k. A graph G
is said to belong to or is of Class one if χ′(G) = ∆(G) and is of Class two
if χ′(G) = 1 + ∆(G).

Theorem 1.2.3 (König’s Theorem). Every nonempty bipartite graph is of
Class one.

Although ∆(G) is an obvious lower bound for the chromatic index of a
nonempty graph G, there are some examples that demonstrate that χ′(G)
can be greater than ∆(G). In 1964, the Russian graph theorist Vadim G.
Vizing [21] established an important upper bound for the chromatic index
of a graph. Vizing’s theorem is considered a major result in the study of
edge colorings. It was independently rediscovered by Ram Prakash Gupta
in 1966 [11].

Theorem 1.2.4 (Vizing’s theorem). For every nonempty graph G,

χ′(G) ≤ 1 + ∆(G).
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List colorings

Over the last few decades, there has been a rising curiosity surrounding
the colorings of graphs, wherein each vertex’s color is to be picked from a
designated list of permissible colors.

Definition 2.0.1. Let G be a graph and let L be a function which assigns
to each vertex v ∈ V (G) a list L(v), a set of positive integers. A proper
coloring c : V (G) → N such that c(v) ∈ L(v) for all v ∈ V is called a list
coloring of G with respect to L or an L − coloring. In that case, we say
that G is L− colorable or L− choosable.

A list coloring is also referred to as a choicefunction.

Definition 2.0.2. Let G be a graph, k a positive integer and L a function
such that |L(v)| = k for all v ∈ V (G). If the graph G has a proper list
coloring, then G is k-choosable or k-list colorable and χL(G), the choice
number or list chromatic number, is defined as the minimum k such that
G has a proper list coloring for all lists assigned to the vertices of G.

Note that k-choosable implies k-colorable, but not on the contrary as
we will see in some future examples. A k-coloring is a special case of k-
list-coloring, that is, if for all v ∈ V (G), a list L(v) = {1, 2, . . . , k}, then an
L-coloring is simply a k-coloring. For example, if G is a bipartite graph and
L(v) = {1, 2} for all vertices v ∈ V , then G has the L-coloring which assigns
color 1 to all vertices in one part and color 2 to all vertices in the other part
of G. Every graph is clearly n-list colorable.

22
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v1 v2

v3v4

C4 :

Figure 2.0.1: The graph C4 is 2-list-colorable

Suppose thatG is a graph with ∆(G) = ∆. If we let L(v) = {1, 2, . . . ,∆, 1+
∆} for each vertex v of G, then for these color lists there is a list coloring
of G. Indeed, if V (G) = v1, v2, . . . , vn and L = {L(vi) : 1 ≤ i ≤ n} is a
collection of color lists for G where each set L(vi) consists of any 1 + ∆
colors, then a greedy coloring of G produces a proper coloring and so G
is L-choosable. Therefore, χL(G) ≤ 1 + ∆(G). Recall that for graph G
the list chromatic number is the minimum positive integer k such that G is
k-choosable, therefore it holds that chromatic number is smaller or equal to
list chromatic number, χ(G) ≤ χL(G). Summarizing these observations, we
have the next theorem:

Theorem 2.0.1. For every graph G,

χ(G) ≤ χL(G) ≤ 1 + ∆(G).

Let us now consider some examples.

Example 2.0.1. For graph C4 it is χ(C4) = 2 and χL(C4) ≥ 2. Suppose
that for cycle C4, shown in Figure 2.0.1, we are given any four color lists
L(vi), 1 ≤ i ≤ 4, such that |L(vi)| = 2. Let L(v1) = {a, b}. We consider
three cases depending on whether color a is in lists L(v2) and L(v4).

• Case 1. The color a is in both lists, a ∈ L(v2)∩L(v4). We assign color
b to v1 and color a to v2 and v4. Then, we will have at least one color
available in L(v3) that is different from color a and we can assign that
color to the vertex v3. This way we get a list coloring of C4 for the
given collection of lists.

• Case 2. The color a is in exactly one of the lists L(v2) and L(v4).
Let, without loss of generality, a ∈ L(v2) \ L(v4). We consider cases
depending of whether intersection of L(v2) and L(v4) is empty or not.
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If there exists some color x ∈ L(v2)∩L(v4), then assign v2 and v4 that
color x and assign v1 color a. There exists at least one color in L(v3)
different from x and assign v3 that color. For this collection of lists we
showed that there is a list coloring of C4.

If there does not exist some color belonging to both L(v2) and L(v4),
we consider subcases whether color a is in list L(v3) or not. If a ∈
L(v3), then assign color a to both v1 and v3. There exists some other
color available for vertices v2 and v4. If a /∈ L(v3), then assign v1
the color a, assign v2 the color y ∈ L(v2)\{a}, assign v3 any color
z ∈ L(v3)\{y} and assign v4 any color in L(v4) that is different from
color z to obtain a list coloring of cycle C4.

• Case 3. The color a is not in any of these two lists, a /∈ L(v2)∪L(v4).
This means that there is an available color from L(v2) and L(v4) to
assign to v2 and v4, respectively, and we found the list coloring of cycle
C4 in the last case too.

4

We will show that for every even integer n ≥ 4 it holds that χL(Cn) = 2.
First, let us show that χL(T ) = 2 for every nontrivial tree T . This will
follow as a corollary of the theorem given below.

Theorem 2.0.2. Every tree is 2-choosable. Furthermore, for every tree T ,
for a vertex u of T and for a collection L = {L(v) : v ∈ V (T )}, where each
L(u) is a color list of size 2 and a ∈ L(u), there exists an L-list-coloring of
T such that u is assigned color a.

Proof. We will provide proof it by induction on number of vertices of tree
T .

For a tree of order 1 or 2 the result is obvious. Assume that the statement
holds for all trees of order k, k ≥ 2. We will now prove it for the tree T of
order k + 1. Let

L = {L(v) : v ∈ V (T )}

be a collection of color lists of size 2. Let u be a vertex of G and suppose
that it is colored a that is a ∈ L(u). Let x be a leaf of tree T such that
x 6= u and let

L′ = {L(v) : v ∈ V (T − x)}.

Let y be a neighbor of x in T . By the induction hypothesis, since tree
T − x is of order k, there exists an L′-list coloring c′ of that tree in which u
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is colored a. Let color b ∈ L(x) such that b 6= c′(y). If we define coloring c
by

c(v) =

{
b if v = x

c′(v) if v 6= x

then c is an L-list coloring of tree T in which vertex u is colored a. �

Corollary 2.0.1. For every nontrivial tree T , χL(T ) = 2.

We have a similar proof for showing that even cycles are also 2-list-
colorable.

Theorem 2.0.3. Every even cycle is 2-choosable.

Proof. We will provide proof by induction on number of vertices of even
cycle C.

By example ?? it is already proved that C4 is 2-choosable. Let now Cn be
an n-cycle, where n is even number, n ≥ 6. Suppose that Cn = v1v2 . . . vnv1.

Let
L = {L(vi) : 1 ≤ i ≤ n}

be a collection of color lists of size 2 for vertices vi ∈ V (G). We will show
that even cycle Cn is L-list-colorable. Consider two cases.

• Case 1. The color lists in L are all the same, let us say L(vi) = {1, 2}
for 1 ≤ i ≤ n. If we assign e.g. color 1 to vi for odd i and the color 2
to vi for even i, then Cn is L-list-colorable.

• Case 2. The color lists in L are not all the same. There are some
adjacent vertices vi, vi+1 ∈ V (G) such that it holds L(vi) 6= L(vi+1).
Therefore, there exists some color a ∈ L(vi+1) \ L(vi). The graph
Cn − vi is a path of length n− 1. Let

L′ = {L(v) : v ∈ V (Cn − vi)}.

By Theorem 2.0.2 there exists an L′-list-coloring c′ of Cn−vi in which
c′(vi+1) = a. Let b ∈ L(vi) such that b 6= c′(vi−1). If we define the
coloring c as

c(v) =

{
b if v = vi

c′(v) if v 6= vi

then c is an L-list-coloring of Cn.
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�

Corollary 2.0.2. For every even integer n ≥ 4, χL(Cn) = 2.

Since the chromatic number of every odd cycle is 3, the list chromatic
number of every odd cycle must be at least 3. From Theorem 2.0.1 it follows
that the upper bound of the list chromatic number of every odd cycle is
1 + ∆ = 3. Combining this with previous conclusion we get that every odd
cycle is 3-choosable.

We have shown that all nontrivial trees and even cycles are 2-choosable.
Both of these are classes of bipartite graphs. But not every bipartite graph
is 2-choosable. Let us demonstrate this by giving a counter example.

v1 v2 v3

v4 v5 v6

(a)

v1 v2 v3

v4 v5 v6

(b)

{1, 2} {1, 3} {2, 3}

{1, 2} {1, 3} {2, 3}

Figure 2.0.2: The graph K3,3 is 3-choosable

Example 2.0.2. Consider χL(K3,3), where K3,3 is shown in Figure 2.0.2
(a). By Theorem 2.0.1, χL(K3,3) ≤ 1 + ∆(K3,3) = 4. Actually, a stronger
statement holds, that χL(K3,3) ≤ 3, as will be showed next.

Let there be given lists of size 3, L(vi), 1 ≤ i ≤ 6. We consider two cases.

• Case 1. Some color occurs in two or more of the lists L(v1), L(v2), L(v3)
or in two or more of the other three lists L(v4), L(v5), L(v6). Without
loss of generality, let us assume color a occurs in both L(v1) and L(v2).
Then assign vertices v1 and v2 the color a and assign v3 any color in
list L(v3). Then, there is an available color in L(vi) for vi(4 ≤ i ≤ 6).
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• Case 2. The lists L(v1), L(v2), L(v3) are pairwise disjoint as are the
lists L(v4), L(v5), L(v6). Let a1 ∈ L(v1) and a2 ∈ L(v2). We have two
subcases.

– Subcase 2.1. Both a1 and a2 are in none of the lists L(v4), L(v5), L(v6),
then let a3 be any color in L(v3). Then there is an available color
for each of the vertices v4, v5, v6 to obtain a proper coloring of
K3,3.

– Subcase 2.2. Exactly one of the lists L(v4), L(v5), L(v6) contains
both a1 and a2, then select a color a3 ∈ L(v3) so that none of
L(v4), L(v5), L(v6) contains all of a1, a2, a3. By assigning v3 the
color a3, we see that there is an available color for each of v4, v5
and v6.

Therefore, we have proved that χL(K3,3) ≤ 3. Actually, it can be shown
that equality holds i.e, χL(K3,3) = 3.

Consider the sets L(vi), 1 ≤ i ≤ 6, shown in Figure 2.0.2 (b). Assume,
without loss of generality, that v1 is colored 1. Then v4 must be colored 2
and v5 must be colored 3. Whichever color is chosen for v3 is the same color
as that of either v4 or v5. This produces a contradiction. Hence, K3,3 is not
2-choosable and so we get that χL(K3,3) = 3. 4

1

2 3

4 5

6

7

a
b

c

d

e

f

g

Figure 2.0.3: The Fano plane

Example 2.0.3. Let X = {1, 2, 3, 4, 5, 6, 7} and P = {a, b, c, d, e, f, g},
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where

• a = {1, 2, 4},

• d = {4, 5, 7},

• g = {7, 1, 3},

• b = {2, 3, 5},

• e = {5, 6, 1},

• c = {3, 4, 6},

• f = {6, 7, 2}.

Then (X,P) is a finite projective plane, called Fano plane (see Figure
2.0.3).

Note that in Figure 2.0.3, the Fano plane is represented by seven lines,
where six are line segments and one is circle. However, formally, each of
these lines is simply a set of three points. Drawings such this one in Figure
2.0.3 can sometimes be useful for guiding our intuition. Nonetheless, formal
proofs should never rely on such pictures; instead, they should rely solely on
the definition of a finite projective plane or on results proven about them.

Example 2.0.4. Complete graph K7,7 showed in the Figure 2.0.4, using
Fano plane for coming up with the combination of colors, is not 3-choosable.

v1 v2 v3 v4 v5 v6 v7

u1 u2 u3 u4 u5 u6 u7

{1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 7} {5, 6, 1} {6, 7, 2} {7, 1, 3}

{1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 7} {5, 6, 1} {6, 7, 2} {7, 1, 3}

Figure 2.0.4: The graph K7,7 is not 3-choosable

The graph G = K3,3 in Figure 2.0.2 shows that it is possible for χL(G) >
χ(G). In fact, χL(G) can be considerably larger than χ(G) as will be proven
in the theorem below.

Theorem 2.0.4. If r and k are positive integers such that r ≥
(
2k−1
k

)
, then

χL(Kr,r) ≥ k + 1.
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Proof. Assume on the contrary, that χL(Kr,r) ≤ k. Then, Kr,r is k-choosable.
Let U and W be partitive sets of Kr,r, such that U = {u1, u2, . . . , ur}

and W = {w1, w2, . . . , wr}.
Let S = {1, 2, . . . , 2k − 1}. There are

(
2k−1
k

)
distinct k-element subsets

of S. Assign these color lists to
(
2k−1
k

)
vertices of U and to

(
2k−1
k

)
vertices

of W . The rest of the vertices of both U and W are assigned any of the
k-element subset of S. For i = 1, 2, . . . , r choose a color ai ∈ L(ui) and let
T = {ai : 1 ≤ i ≤ r}. Consider two cases depending on the size of T .

• Case 1. |T | ≤ k−1. Then there exists a k-element subset S′ of S such
that it is disjoint from T . Since L(uj) = S′ for some j, 1 ≤ j ≤ r, this
is a contradiction.

• Case 2. |T | ≥ k. Therefore, there exists a k-element subset T ′ of T .
Accordingly, L(wj) = T ′ for some j, 1 ≤ j ≤ r. Whichever color from
L(wj) is assigned to wj , this color has already been assigned to some
vertex ui. We get that ui and wj have been assigned the same color
and since uiwj is an edge in Kr,r this is a contradiction.

�

For positive integers r and k, such that r ≥
(
2k−1
k

)
, Theorem 2.0.4 ensures

a lower bound on χL(Kr,r) for r sufficiently large with respect to k. There
is also an upper bound for the χL(Kr,r) for all r ≥ 3, discovered by Noga
Alon in 1992 given in the following theorem.

Theorem 2.0.5. For every integer r ≥ 3,

χL(Kr,r) ≤ d2 log2 re.

Bounds on the list chromatic number of certain graphs can be found by
means of kernels too. Even though the kernel is a notion which concerns
directed graphs and the list chromatic number concerns undirected graphs,
the following theorem gives a link between kernels and list colorings.

Theorem 2.0.6. Let G be a graph and let D be an orientation of G each
of whose induced subdigraphs has a kernel. Let L(v) be an arbitrary list of
at least d+D(v) + 1 colors, v ∈ V (G). Then G has an L-coloring.

Proof. By induction on n.
For n = 1 the statement is obvious. Assume the statement holds for n

and we will show it for n+ 1.
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Let V1 be the set of vertices of D whose lists include color 1. Without
loss of generality, assume V1 6= ∅ by renaming colors if it is necessary. By
assumption, D[V1] has a kernel S1. Color vertices of the kernel S1 with color
1. Let G′ := G− S1, D′ := D− S1 and L′(v) := L(v)\{1}. For any vertex v
of D′ whose list did not contain color 1,

|L′(v)| = |L(v)| ≥ d+D(v) + 1 ≥ d+D′(v) + 1

and for any vertex v of D′ whose list contains color 1,

|L′(v)| ≥ |L(v)| − 1 ≥ d+D(v) ≥ d+D′ + 1. (2.1)

In D the vertex v dominates some vertex of the kernel S1, so its outdegree
in D′ is smaller than in D, hence the inequality (2.1) holds. By induction
G′ has an L′-coloring. When combined with the coloring of kernel S1, we
get an L-coloring of graph G.

�

To illustrate Theorem 2.0.6, consider the case where D is an acyclic
orientation of G. Since every acyclic digraph has a kernel, D satisfies the
hypothesis of the theorem. Clearly, d+D(v) ≤ ∆+(D) ≤ ∆(G). Hence, The-
orem 2.0.6 shows that G has a list coloring whenever each list is comprised
of ∆ + 1 colors.

A similar approach can be applied to list colorings of interval graphs.
Woodall in 2001 showed that every interval graph G has an acyclic orienta-
tion D with ∆+ ≤ ω − 1.

Corollary 2.0.3. Every interval graph G has list chromatic number ω.

The following theorem shows that, in terms of its relationship to other
graph invariants, the choice number differs fundamentally from the chro-
matic number. As mentioned before, there are 2-chromatic graphs of ar-
bitrarily large minimum degree, e.g. the graph Kn,n. The choice number,
however, will be forced to up by large values of invariants.

Theorem 2.0.7 (Alon [6]). There exists a function f : N → N such that,
for any integer k, all graphs G with an average degree d(G) ≥ f(k) satisfy
χ(G) ≥ k.
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2.1 2-Choosable Graphs

Within this section, we provide a characterization of all 2-choosable
graphs, as outlined in [1], originally from [8]. Before delving into that,
however, it is necessary to establish a few definitions. Recall that graph G
is k-choosable if there is a list of length k on each vertex and from any such
set of lists the graph G may be properly colored.

u

s

v

r w3

w2

w4

Figure 2.1.1: The graph θ2,2,4

Let us define a θa,b,c graph to be a graph with two distinct vertices, u
and v, with three vertex-disjoint paths between them having lengths a, b,
and c, respectively. A graph θa,b,c is identified by the lengths of these three
paths. See Figure 2.1.1 for an example of graph θ2,2,4, where these three
paths between vertices u and v are of lengths 2, 2 and 4, respectively.

Proposition 2.1.1. If a core of a graph G if 2-choosable, then graph G is
2-choosable.

Proof. Recall that the core of a graph G is actually graph G with all vertices
of degree one recursively removed. These vertices of degree one may always
be colored from lists of length two, since they only have one neighbor to
conflict with a coloring, leaving at least one color available for each of these
vertices. Therefore, if a core of G is 2-choosable, we can color the removed
vertices with available colors from lists of length 2 and we get the proper
coloring of graph G. �

We will now prove the main theorem of the section.
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Theorem 2.1.1 (Rubin, [8]). A graph G is 2-choosable if and only if the
core of G is K1, an even cycle or of the form θ2,2,2k, where k is a positive
integer.

Proof. Sufficiency
Assume, first, that the core of graph G is either K1, an even cycle or of

the form θ2,2,2k. We will prove that the core of G is 2-choosable. Then, by
Proposition 2.1.1 it follows that G is 2-choosable.

If G is K1, since K1 has only one vertex, it is obviously 2-choosable. In
the second case, a graph formed from K2 with a parallel edge is clearly 2-
choosable, so we will assume that core of G is either an even cycle of length
at least 4 or a graph of form θ2,2,2k.

Even cycles are subgraphs of θ2,2,2k graphs, so we will prove the statement
for graphs of form θ2,2,2k and it will follow for even cycles or we can just
recall Theorem 2.0.3 where we already proved 2-choosability of even cycles.

Let us label vertices in the θ2,2,2k as in Figure 2.1.1. On the two paths of
length two, between u and v, let us denote vertices by r and s, and denote
the vertices on the path of length 2k with wi, 1 ≤ i ≤ 2k + 1. Vertices u
and v correspond with w1 and w2k+1 respectively.

We consider two cases, depending on if all lists on wi, 1 ≤ i ≤ 2k + 1,
are the same or not.

• Case 1. The lists are all the same. Let L(wi) = {a, b}. Then choose,
without loss of generality, color a for odd vertices and color b for even.
Note that both u = w1 and v = w2k+1 will be colored a, and that both
lists for r and s must contain a color different from a and we can color
r and s as well to get a proper coloring of θ2,2,2k.

• Case 2. The lists are not the same. Then there exist some j such that
wjwj+1 is an edge in G and L(wj) 6= L(wj+1). For wj choose a color
aj that is in L(wj), but not in L(wj+1). For wj−1 choose a color aj−1
that is in L(wj−1), but is different from color aj . We continue this
process in recursion until we have colored u = w1 with color a1.

For vertex v = w2k+1 suppose that the list of colors is given by L(v) =
{r1, s1}.
If L(r) 6= {a1, r1} or L(s) 6= {a1, s1}, then we can choose colors for r,
s and w2k+1 and just continue the coloring from w2k+1 back to wj+1.

If L(r) = {a1, r1} and L(s) = {a1, s1}, then we are forced to choose
color r1 for r and s1 for s, so we cannot color w2k+1, as shown in Figure
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2.1.2. We will then return to the vertex wj+1 to begin again. For wj+1

we now choose color aj+1 that is in L(wj+1), but not in L(wj+2).

We continue this process for vertex wj+2 by choosing color aj+2 that
is in L(wj+2), but is different from aj+1 and similarly for the rest
of the vertices till we get to w2k+1. Since L(w2k+1) = {r1, s1} and
L(r) = {a1, r1} we get that a1 6= r1. Hence, we choose one of r1 or s1
for vertex w2k+1 and color a1 for both vertices r and s. Then, a color
different from a1 is left in L(w1) and we can continue the coloring.

We have showed that graphs of form θ2,2,2k are 2-choosable and so are
even cycles of order ≥ 4.

{a1, a2}

{a1, s1}

{r1, s1}

{a1, r1} wj+1

wj

w2

w2k

Figure 2.1.2: Not all wi have the same lists

Necessity
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Assume now that G is 2-choosable. We will show that the core of G
must be K1, an even cycle or θ2,2,2k.

Suppose on the contrary, that G is a 2-choosable graph whose core is
not K1, an even cycle or θ2,2,2k. Since vertices with degree one are always
2-choosable, we will assume that they have been removed from G and will
just look at the core of G.

If G does not contain a cycle, then the core of G is K1 which is impossible
by assumption, hence G contains a cycle and let us denote it by C ′. If C ′

is an odd cycle, then χ(C ′) = 3. Since χL(G) ≥ χ(G) and we have assumed
that χ(G) = 2 it follows that G cannot contain an odd cycle. We have also
assumed that G is not an even cycle, so if C is the shortest cycle in G, then
there exists an edge that is in G and not in C. Since the degree of G is 2, this
edge lies on another cycle or on a path connecting cycles. If C∗ is another
cycle in G, then, since G is a connected graph, C and C∗ are connected by
a path or they share a vertices.

Assume first that C and C∗ share at most one vertex. We then remove
vertex x from G and merge the vertices that were adjacent to x, also remove
any parallel edges, that are produced by the process of vertex reduction,
since parallel edges do not affect vertex coloring. We repeat this process
of vertex reduction until we are left with either one of Figure 2.1.3(a) or
2.1.3(b).

Note that neither one of graphs on Figures 2.1.3(a) or 2.1.3(b). is not
2-choosable with the given lists.

Recall that the union of graphs G1 and G2 is a graph G = G1 + G2

which has vertex set V (G) = V (G1) ∪ V (G2) and edge set E(G) = E(G1)
∪ E(G2).
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{1, 3}

{1, 2}

{2, 3} {1, 2} {1, 2}

{1, 3}

{2, 3}

{1, 2}

(a) C and C* share no vertices

{1, 3}

{1, 2}

{2, 3} {1, 2}

{1, 3}

{2, 3}

{1, 2}

(b) C and C* share 1 vertex

Figure 2.1.3: Cycles joined by at most 1 vertex

Assume now that C and C∗ share at least two vertices. This means that
there exists an edge-disjoint path from C that is connecting two distinct
vertices in C. Denote by P the shortest such path. C ∪ P can be of the
form θ2,2,2k or not.

If C ∪ P is not of the form θ2,2,2k, then it must be θa,b,c, a 6= 2, b 6= 2.
We can reduce C ∪ P to graph in the Figure 2.1.4. Note that this graph is
also not 2-choosable with the given list.
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{1, 2}

{1, 2}

{2, 3}

{1, 3}

{1, 3}

{2, 3}

Figure 2.1.4: A θa,b,c graph with a, b 6= 2

If C ∪P is of the form θ2,2,2k and since C is the shortest cycle in G, then
C is a 4-cycle. Let us label the vertices in C as in the Figure 2.1.5. Since
we have assumed that G is not of form θ2,2,2k, then we must have another
shortest path P ∗ such that P ∗ is edge-disjoint from C ∪P and connects two
distinct vertices in C ∪ P . We have six possible cases now:

c1

c2 c3

c4

Figure 2.1.5: C ∪ P

• Case 1. The endpoints of P ∗ are interior vertices of P . Then, we get
two edge-disjoint cycles which are connected with a path and we can
reduce them to Figure 2.1.3(a).

• Case 2. One endpoint of P ∗ is c1 and the other one is an interior vertex
of P . Then, we have two edge-disjoint cycles which share a vertex and
we can reduce them to Figure 2.1.3(b).

• Case 3. One endpoint of P ∗ is c3 and the other one is an interior
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vertex u of P . Then, the edge c1c3, and paths c1c2c4c3 and the one
from c1 to u through P joined with a path from u to c3 through P ∗

forms a θa,b,c graph with a 6= 2 and b 6= 2. Then, we can reduce this
graph to Figure 2.1.4.

• Case 4. One endpoint of P ∗ is c1 and the other one is c3. Then, we
get the same case as previous, Case 3, since we have that P ∗ and the
paths c1c2c4c3 and c1c3 give us a θa,b,c graph with a 6= 2 and b 6= 2.

Figure 2.1.6: A θ graph with an extra 2-path

• Case 5. The endpoints of P ∗ are c1 and c4. If P has length two,
then we get a graph which is of form shown in Figure 2.1.6. Then, we
can reduce this graph to Figure 2.1.7 which is not 2-choosable. If the
length of P is greater than two, then the length of P ∗ is also greater
than two. Then, the edge c1c3 and the paths P ∗ and c1c2c4c3 form a
θa,b,c graph such that a 6= 2 and b 6= 2 as we have had before in Cases
3 and 4.

• Case 6. The endpoints of P ∗ are c2 and c3. Then, we remove the edge
c1c3. Note that the edge c2c4, P

∗ and the path from c2 to c4 through
the edge c2c1 and P form a graph θa,b,c such that a 6= 2 and b 6= 2.

We will now prove that if G′ is a reduction of G obtained by our method
mentioned above and G′ is not 2-choosable, then G is not 2-choosable.

Let G′ be obtained by deleting vertex x from graph G. Undo the reduc-
tion by unmerging the vertices of G which were adjacent to x and adding
x back into the graph. To all of these vertices assign the same list, {a,b},
that was on the merged vertex in G′. If we choose color a for x, then we
must choose b for every vertex adjacent to x. Then, if this choice would have
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created a proper coloring of G it would have also created a proper coloring
of G′, which is a contradiction.

Hence, graph G is not 2-choosable, our reductions in Figures 2.1.3(a),
2.1.3(b) 2.1.4 and 2.1.7 show that the only graphs which are 2-choosable
have cores that are either K1, even cycles or of form θ2,2,2k.

{1, 2}

{3, 4}

{2, 3} {1, 4} {1, 3} {2, 4}

Figure 2.1.7: Reduction of a θ graph with an extra 2-path

�
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2.2 Planar Graphs

2.2.1 The Five-Color Theorem

From an empirical standpoint, another phenomenon underscores the dis-
tinct nature of choice numbers in comparison to chromatic numbers: even
when known bounds for the chromatic number can be applied to the choice
number, the methodologies used in their proofs often diverge.

A notable illustration of this lies in the list version of the five-color the-
orem: the conjecture that any planar graph is 5-choosable, given by Vadim
Vizing in 1976 and Paul Erdös, Arthur L. Rubin and Herbert Taylor in 1980.
This conjecture persisted for nearly two decades until Carsten Thomassen,
in 1994, formulated a very straightforward induction proof. Notably, this
proof operates independently of the five-color theorem, resulting in a fun-
damentally disparate demonstration of its validity.

Recall that a near-triangulation is a plane graph all of whose inner faces
are of degree three.

Theorem 2.2.1 (Thomassen [20]). Let G be a near-triangulation whose
outer face is bounded by a cycle C, and let x and y be two consecutive
vertices of C. Suppose that L : V → 2N is an assignment of lists of colors
to the vertices of G such that:

1. |L(x)| = |L(y)| = 1, where L(x) 6= L(y),

2. |L(v)| ≥ 3, for all v ∈ V (C)\{x, y},

3. |L(v)| ≥ 5, for all v ∈ V (G)\V (C).

Then, G is L-colorable.

Proof. By induction on number of vertices |V (G)|.
If |V (G)| = 3, then G = C and the statement is certainly true. Let us

assume that |V (G)| ≥ 3. Denote by z and x′ immediate predecessors of x
on cycle C, respectively. We will consider two cases depending on if x′ has
only z and x as neighbors on C or not.
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x′

x

y

y′

z

(a)

C

G2 G1

x′

x

y

y′

z

(b)

C

G′

P

Figure 2.2.1

• Case 1. Assume x′ has a neighbor on C other than x and z and denote
it y′ (see Figure 2.2.1 (a)). Let C1 = x′Cy′x′ and C2 = x′y′Cx′. C1

and C2 are two cycles on G and note that G is the union of near-
triangulation G1 consisting of cycle C1 together with its interior and
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the near-triangulation of G2 consisting of cycle C2 together with its
interior. Let

L1(v) = {L(v) : v ∈ V (G1)},

By induction hypothesis G1 has an L1-coloring c1. Let L2 be the
function defined on V (G2) such that

L2(x
′) = {c1(x′)}, L2(y

′) = {c1(y′)}

and
L2(v) = {L(v) for v ∈ V (G2)\{x′, y′}.

By induction hypothesis G2 has an L2-coloring c2. By the definition
of L2, we have that c1(x

′) = c2(x
′) and c1(y

′) = c2(y
′), remember that

x′, y′ ∈ G1 ∩G2. Therefore, the function c defined by

c(v) =

{
c1(v), v ∈ V (G1)

c2(v), v ∈ V (G2)\V (G1)

is an L-coloring of G.

• Case 2. Assume x′ has a neighbor on path xPz internally disjoint
from C, as shown in Figure 2.2.1 (b). Let G′ = G − x′, note that
G′ is a near-triangulation whose outer face is bounded by the cycle
C ′ := xCzP−1x. Let α, β ∈ L(x′)\L(x) such that α 6= β. Let L′ be a
function on V (G′) defined by

L′(v) = L(v)\{α, β} for v ∈ V (P )\{x, z}

and
L′(v) = L(v)

for all other vertices v of G′.

By induction hypothesis, there exists an L′-coloring c′ of G′. We have
that either α 6= c′(z) or β 6= c′(z). Let us assume, without loss of
generality, that α 6= c′(z). If we extend the coloring c′ by assigning
color α to the vertex x′, then we get an L-coloring c of graph G.

�

An immediate consequence of a Theorem 2.2.1 is the following strength-
ening of the Five-Color Theorem.
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Corollary 2.2.1. Every planar graph is 5-choosable.

This stands as one of the more enlightening demonstrations of the Five-
Color Theorem. Unfortunately, there is no equivalent list coloring analogue
corresponding to the Four-Color Theorem that is currently known. In fact,
Voigt’s work in [24] unveiled examples of planar graphs which are not 4-list-
colorable

Nevertheless, there remains the possibility that a suitable list coloring
version of the Four-Color Theorem could present a more transparent and
shorter proof of that theorem as well. (For instance, Kündgen and Rama-
murthi in [16] have proposed the idea that every planar graph admits a list
coloring when the available colors are grouped in pairs, and each list consists
of two of these pairs.)

Voigt, in [23], also provided examples of triangle-free planar graphs that
are not 3-list-colorable. These instances show the absence of an intuitive list
coloring extension for the following ’three-color theorem’ originally formu-
lated by Grötzsch in [10].

Theorem 2.2.2 (Grötzsch’s Theorem). Every triangle-free planar graph is
3-colorable.

v1

v2 v3

v4

v5

u1

u2 u3

u4

u5

w

Figure 2.2.2: The Grötzsch graph: a 4-critical graph

However, an interesting discovery emerges: any planar graph with a
girth of five is 3-list colorable. Thomassen established this outcome in 1994
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through reasoning that is close to, yet more intricate than, the arguments
he utilized to establish Theorem 2.2.1. This can arguably be seen as an
extension of Grötzsch’s Theorem in the field of list coloring, given that the
latter can be relatively easily reduced to planar graphs with a girth of five.

Grötzsch’s Theorem can also be demonstrated using a methodology quite
similar to that of the Four-Color Theorem, although with notably simpler
reasoning. The 4-chromatic Grötzsch graph (shown in Figure 2.2.2) shows
that the scope of Grötzsch’s Theorem does not cover non-planar graphs.
Indeed, Grötzsch constructed this graph in [10] specifically for this purpose.

2.2.2 The Mirzakhani Graph

In 1993, Margit Voigt provided an example of a planar graph containing
238 vertices that is not 4-choosable. Subsequently, in 1996, Maryam Mirza-
khani presented an even simpler example, specifically a planar graph with
63 vertices that is not 4-choosable. In the year 2014, Mirzakhani received
the Fields Medal, a prestigious acknowledgment bestowed upon mathemati-
cians under 40 years of age, often compared to the mathematical equivalent
of a Nobel Prize. Notably, Mirzakhani was the first woman to attain this
honor. Let us now describe the Mirzakhani graph, explaining its properties,
and confirming its incapacity for being 4-choosable.

Let H be a planar graph of order 17 shown in the Figure 2.2.3 (a). For
each vertex v ∈ V (H), a list L(v) ⊆ {1, 2, 3, 4}, is assigned as in Figure 2.2.3
(b), note that |L(v)| ∈ {3, 4}. Actually, if dH(v) = 4, then L(v) = {1, 2, 3, 4}
and if dH(v) 6= 4, then we have that |L(v)| = 3. Let

L = {L(v) : v ∈ V (H)}.

we will prove that H is not L-choosable in the following theorem.

Theorem 2.2.3. The planar graph shown in Figure 2.2.3 (a), with the set
of colors, L, as in Figure 2.2.3 (b), is nor L-choosable.

Proof. Assume to the contrary, that H is L-choosable.
Then, there exists a 4-coloring c of graph H, c(v) ∈ L(v), v ∈ V (H). In

graph H every vertex that has a degree 4 is adjacent to vertices assigned
either two or three distinct colors, so it follows that two nonadjacent vertices,
of those 4 neighbors of vertices of degree 4, are assigned the same color. We
will prove that c(x) = 1 or c(w) = 2.
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H:

(a)

s1 s2

s3

z

u3

t3r3

xw

v y

u1u2

t2

t1

r1

r2

(b)

124 123

1234

1234

1234

12341234

134234

123 124

234134

234

123

134

124

Figure 2.2.3: A planar graph of order 17

Assume to the contrary, that c(x) 6= 1 and c(w) 6= 2. Then c(x), c(w) ∈
{3.4}. Let us first consider the case if c(x) = 3 and c(w) = 4. Then we have
that whether c(s1) = 3 or c(s2) = 4. Since 3 /∈ L(s1) and 4 /∈ L(s2), this
case is not possible. Suppose now that it is c(x) = 4 and c(w) = 3. Then,
it will have to be that either c(v) = 4 or c(y) = 3. Here, we have similar
scenario as before, since 4 /∈ L(v) and 3 /∈ L(y), therefore this case is not
possible either. Hence, we get that one of the following cases is possible, it
is c(x) = 1 or c(w) = 2.

• Case 1. Let us assume first that c(x) = 1. Then the color of the
vertices t1, t2 and y cannot be 1 and it follows that c(t1) = c(y) = 2.
Since the color of the vertices u1, u2 and v cannot be 2, it follows that
c(u1) = c(v) = 3. Hence, none of the vertices r1, r2 and w cannot
be colored 3, so we get that c(r1) = c(w) = 4. Now, we get that all
4 neighbors of z take distinct colors from set {1, 2, 3, 4}, i.e c(x) =
1, c(y) = 2, c(v) = 3, c(w) = 4, which is not possible, so c(x) cannot
be colored 1.

• Case 2. Let us now assume that c(w) = 2. By proceeding similarly
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as in the first case, we get that c(r2) = c(v) = 1. It follows that
c(u2) = c(y) = 4. Then we get that c(t2) = c(x) = 3. Once again
we get that all 4 neighbors of z have all 4 colors, i.e c(v) = 1, c(w) =
2, c(x) = 3, c(y) = 4 which is not possible, so c(w) cannot be colored
2.

Hence, the graph H is not L-choosable for the given set L of color lists
described in Figure 2.2.3 (b).

�

Following the description of the Mirzakhani graph, let H1, H2, H3 and
H4 be four copies of of the graph H shown in Figure 2.2.3 (a). Replace by
5 the color i, for 1 ≤ i ≤ 4, in the color list of every vertex of Hi in Figure
2.2.3 (b) and add color i to the color list of each vertex which does not have
degree 4. The obtained graphs Hi,1 ≤ i ≤ 4, are shown in Figure 2.2.4.
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H1:

1245 1235

2345

2345

2345

23452345

13451234

1235 1245

12341345

1234

1235

1345

1245

y5 x5

x4y4

H2:

1245 1235

1345

1345

1345

13451345

12342345

1235 1245

23451234

2345

1235

1234

1245
x2

y2

x3

y3

H3:

1234 1235

1245

1245

1245

12451245

13452345

1235 1234

23451345

2345

1235

1345

1234
x4

y4

x3

y3

H4:

1245 1234

1235

1235

1235

12351235

13452345

1234 1245

23451345

2345

1234

1345

1245

x2 y2

y1x1

Figure 2.2.4: The graphs Hi, 1 ≤ i ≤ 4
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The Mirzakhani graph G is a planar graph of order 63 constructed in
the following way: from the previously defined graphs Hi, 1 ≤ i ≤ 4, in the
Figure 2.2.4, by identifying two vertices labeled xi and two vertices labeled
yi, 2 ≤ i ≤ 4, and adding a new vertex, p, such that L′(p) = {1, 2, 3, 4} and
then joining p to each vertex of each copy of Hi of H whose degree is not
equal 4. The Mirzakhani graph with the resulting color lists for each vertex
is now shown in Figure 2.2.5. Let

L′ = {L′(v) : v ∈ V (G)}.

We will show that the graph G is not L′-choosable.

Theorem 2.2.4. The Mirzakhani graph is not 4-choosable.

Proof. Let L′(v) be the color list for each vertex v ∈ V (G) shown in Figure
2.2.5 and let

L′ = {L′(v) : v ∈ V (G)}.

we will prove that the graph G is not L′-choosable.
Assume on the contrary, that graph G is L′-choosable.
Then, there exists a coloring c′ such that c′(v) ∈ L′(v), v ∈ V (G). Since

we have that the graph H of Figure 2.2.3(a) is not L-choosable for the set
L in Figure 2.2.3(b), the only for G to be L′-choosable is that c′(vi) = i, for
some vertex vi ∈ V (Hi), 1 ≤ i ≤ 4.

Then, no matter which color is the coloring c′(p), we will get that the
vertex p is adjacent to a vertex in G which has the same color as p, which
is not possible. Therefore, we get that graph G is not L′-choosable and
since |L′(v)| = 4, v ∈ V (G), it follows that the Mirzakhani graph G is not
4-choosable.
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H4:

H2:

H3:

H1:

p

1234

1345 2345

1235

1235

1235

12351235

12451234

2345 1345

12341245

1234

2345

1245

1345

1345

1345

1345

13451345

12352345

1234 1245

23451235

2345

1234

1235

1245

1245

1245

1245

12451245

12341345

2345 1235

13451234

1345

2345

1234

1235

2345

2345

2345

23452345

12351245

1345 1234

12451235

1245

1345

1235

1234

x1 y1

y2x2

y3x3

y4x4

y5x5

Figure 2.2.5: The Mirzakhani graph:
A non-4-choosable planar graph of order 63

�

From the fact that for the Mirzakhani graph G it holds that χ(G) = 3,
it follows that a 3-colorable planar graph doesn’t imply 4-choosability.
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2.3 List-edge colorings

The concepts given in Section 2 regarding list colorings have obvious
analogues when it comes to edge coloring as we will see in this section.
Let L(e) be a list or set of colors for every edge e of a nonempty graph G.
Furthermore, let L = {L(e) : e ∈ E(G)}. We say that the graph G is L-edge
choosable or L-list edge choosable is there exists a proper edge coloring
c of G such that c(e) ∈ L(e) for every edge e of G. A graph G is k-edge-
choosable or k -list edge colorable if for every set L = {L(e) : e ∈ E(G)},
where |L(e) ≥ k| for each edge e of G and k is a positive integer, the graph
G is L-edge choosable. The list chromatic index χ′L(G) is the minimum
positive integer k for which G is k-edge choosable. As noted earlier, for
any given graph G, it is evident that χL(G) is greater than or equal to the
chromatic number χ(G), χL(G) ≥ χ(G). Similarly, χ′l(G) is greater than or
equal to the chromatic number χ′(G),

χ′l(G) ≥ χ′(G).

While the former inequality is strict for certain graphs like K3,3, there
exists a conjecture that the latter inequality is universally satisfied with
equality. The following conjecture, independently proposed by Vadim Viz-
ing, Ram Prakash Gupta, and Michael Albertson and Karen Collins [12],
was first published in a 1985 paper by Béla Bollobás and Andrew J. Harris
[3].

Conjecture 2.3.1 (The List Edge Coloring Conjecture). For every loopless
graph G it holds that

χ′l(G) = χ′(G).

In [7] Jeffrey Howard Dinitz had already conjectured that

χ′l(G) = χ′(G),

when G is a regular complete bipartite graph. Given that the list chromatic
index of a graph is equal to the list chromatic number of its line graph, the
Conjecture 2.3.1 can be restated as χ′l(L(G)) = χ′(L(G)).

By Theorem 1.2.3, it is known that χ′(Kr,r) = r.

Conjecture 2.3.2 (Dinitz’s Conjecture). For every positive integer r,

χ′L(Kr,r) = r.
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Conjecture 2.3.1 emerged through the independent contributions of sev-
eral authors, including V. G. Vizing, R. P. Gupta, as well as M. O. Albertson
and K. L. Collins. It made its first appearance in an article authored by
Bollobás and Harris in [3], and one can find a succinct historical overview in
Häggkvist and Chetwynd in [12]. Fred Galvin, in [9], not only confirmed the
validity Conjecture 2.3.2, but also demonstrated that the List Edge Coloring
Conjecture, 2.3.1, holds for all bipartite graphs, extending to encompass all
bipartite multigraphs as well. Given that coloring a graph’s edges amounts
to coloring its vertex set of its line graph, the key step of the proof involves
establishing that line graphs of bipartite graphs can be directed in a manner
that:

(i) maintains a reasonably limited maximum outdegree and
(ii) guarantees the existence of a kernel for every induced subgraph.

2.3.1 Galvin’s Lemma

The approach we present to prove this result is built upon the ground-
work laid by Tomaž Slivnik, which, in turn, derives from Galvin’s original
proof. To begin, we invoke a lemma proved by Slivnik.

First, we introduce some notation. Let G be a nonempty bipartite graph,
with partitioned sets U and W . For each edge e of G, let ue denote the vertex
of U incident with e, and let we denote the corresponding vertex in set W
incident with e. When dealing with adjoining edges e and f , it follows that
ue equals uf or we equals wf , but not both. A matching in a graph is a
set of pairwise nonadjacent links.

Definition 2.3.1. Let A be a set of edges of graph G, M ⊆ A be a matching
and c : E(G) → N be an edge coloring of G. If for every edge e ∈ A −M ,
there is an edge f ∈M such that either:

(i) uf = ue and c(f) > c(e)
(ii) wf = we and c(f) < c(e),

then matching M is said to be optimal (in A).

Definition 2.3.2. An edge e ∈ A is U -maximum if there is no edge f ∈ A
such that ue = uf and c(f) > c(e), while edge e ∈ A is W -maximum if
there is no edge f ∈ A such that we = wf and c(f) > c(e). An edge e ∈ A
is c-maximum if it is both U -maximum and W -maximum. Hence, an edge
e ∈ A is c-maximum if c(f) < c(e) for every edge f adjacent to e.

Lemma 2.3.1. Let G[U,W ] be a nonempty bipartite graph and let function
c : E(G) → N be an edge-coloring of G. For all e ∈ E(G), let σG(e) be



CHAPTER 2. LIST COLORINGS 51

defined as

σG(e) = 1 + |{f ∈ E(G) : uf = fe and c(f) > c(e)}|

+ |{f ∈ E(G) : wf = we and c(f) < c(e)}|

and let L(e) be a set of σG(e) colors. If

L = {L(e) : e ∈ E(G)},

then G is L-edge-choosable.

Proof. By induction on number of edges |E(G)|.
If |E(G)| = 1 the statement is certainly true. Assume the statement of

the theorem is true for all nonempty bipartite graphs of size less than m,
m ≥ 2, and let G be a nonempty bipartite graph of size m. Let function c
be an edge-coloring defined on G and the numbers σG(e), the set L(e) and
the set L are defined in the statement of the theorem.

We will firstly show that for every set of edges A ⊆ E(G), there exists
an optimal matching M ⊆ A. By induction on the size of A. Note that if A
is a matching itself, then M = A is obviously optimal.

If |A| = 1 then M = A is optimal and the basis induction step is true.
Now, let us assume that for each set A′ ⊆ E(G), such that |A′| = k − 1,

where 1 < k ≤ m, there exists an optimal matching M ′ in A′. Let A be a
set of edges of G such that |A| = k. we will show that there is an optimal
matching M ⊆ A considering two cases.

• Case 1. Every U -maximum edge in A is also W -maximum edge in A.

Let
M = {e ∈ A : e is c-maximum}.

we will prove that M is optimal.

No two edges of M can be adjacent, so we get that M is a matching.
Let e ∈ A\M . Since e /∈M , e is not c-maximum, therefore e is not U -
maximum. So, there exists an edge f ∈ A such that c(f) is maximum
and ue = uf . This implies that f is U -maximum and therefore W -
maximum, because of assumption, so we get that f is c-maximum,
that is, f ∈ M and c(f) > c(e). So, in this case we get that M is
optimal.

• Case 2. There exists an edge g ∈ A that is U -maximum, but not
W -maximum. Since g is not W -maximum, there exists an edge h ∈ A
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such that wh = wg and c(h) > c(g). Note that |A \ {h}| = k − 1. By
induction hypothesis, there exists an optimal matching M ∈ A \ {h}.
Therefore, for every edge e from set (A \ {h}) \M = A \ (M ∪ {h})
there exists an edge f ∈M such that either:

(1) uf = uh and c(f) > c(e) or (2) we = wf and c(f) < c(e).

To show that M ∈ A is optimal we first establish the existence of an
edge f ∈ A such that either one of these two cases holds:

(1) uf = uh and c(f) > c(h) or (2) wf = wh and c(f) < c(h).

Consider two subcases depending on whether edge g is from M or not.

– Subcase 2.1. g /∈ M . Then g ∈ A \ (M ∪ {h}). By induction
hypothesis, there exists an edge f ∈ M for which one of the
following cases is true (1) ug = uf and c(f) > c(g) or (2) wg = wf

and c(f) < c(g). Since edge g is U -maximum case (1) cannot
happen, so case (2) must hold. Therefore, we get that c(f) <
c(g) < c(h) and M is optimal.

– Subcase 2.2. g ∈M . Then, g = f and M is optimal.

Hence, M is optimal in either subcase and, therefore, for every
set A of edges of G, there exist an optimal matching M ⊆ A.

We can show now that there is an L-list-edge coloring of graph G. Select
an color a ∈

⋃
e∈E(G) L(e) and let

A = {e ∈ E(G) : a ∈ L(G)}.

Let G′ = G−M , where M is an optimal matching in A. For each edge
e ∈ E(G′), let L′(e) = L(e) \ {a}. If e ∈ E(G) \ A, then a /∈ L(e) and we
have that

|L′(e)| = |L(e)| = σG(e) ≥ σG′(e).

On the other hand, if e ∈ A\M , then a ∈ L(e). Since M ⊆ A is optimal,
there exists an edge f ∈M such that either:
(1) ue = uf and c(f) > c(e) or
(2) we = wf and c(f) < c(e).

Therefore,

|L′(e)| = |L(e)| − 1 = σG(e)− 1 ≥ σG′(e).

Let L′ = {L′(e) : e ∈ E(G′)}.
Since |E(G′)| ≤ |E(G)|, by induction hypothesis G′ is L′-edge choosable.
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Hence, there exists a proper edge coloring c′ of graph G′, c′ : E(G′)→ N,
such that c′(e) ∈ L′(e) for every edge e ∈ E(G).

Let us define c : E → N as

c(e) =

{
c′(e), e ∈ E(G)

a, e ∈ .
Then, c(e) ∈ L(e) for every edge e ∈ E(G) and c(e) 6= c(f) for every

two adjacent edges e and f of G. We get that c is a proper edge coloring of
graph G and G is L-edge-choosable.

�

From Lemma 2.3.1, we can now present a proof of Galvin’s theorem

Theorem 2.3.1. (Galvin′s Theorem) If G is a bipartite graph, then

χ′L(G) = χ′(G).

Proof. By König’s Theorem 1.2.3, since G is bipartite, we get that G is
of Class one, that is, χ′L(G) = ∆(G) = ∆. Hence, there exists a proper
edge-coloring c : E(G)→ {1, 2, ...,∆} of G.

Let L(e) be a list of colors such that for each edge e ∈ E(G) it holds

|L(e)| = σG(e) = 1 + |{f ∈ E(G) : ue = uf and c(f) > c(e)}|

+ |{f ∈ E(G) : we = wf and c(f) < c(e)}|

≤ 1 + (χ′(G)− c(e)) + (c(e)− 1) = χ′(G).

Let L = {L(e) : e ∈ E(G)}. By Lemma 2.3.1, G is L-choosable. Hence,
G is χ′(G)-edge choosable, so χ′L(G) ≤ χ′(G).

Combining this result with the fact that χ′(G) ≤ χ′L(G) we get that
χ′L(G) = χ′(G).

�

Since every bipartite graph is of Class one, it follows that the list chro-
matic index of every bipartite graph G equals ∆(G).
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PP
Physical description
(chapters/pages/references/tables/
pictures/charts/supplements): (2/57/24/0/30/0/0)
PD
Scientific field: Mathematics



BIBLIOGRAPHY 60

SF
Scientific discipline: Graph theory
SD
Subject, key words: Graphs, colorings, L-colorings,

2-characterization, Thomassen, Mirzakhani,
Galvin

SKW
UC
Holding data: Library of Department of Mathematics

and Informatics, Novi Sad
HD
Note:
N
Abstract: In this thesis we describe L-colorings of graphs, show characteriza-

tion of 2-choosable graphs, and then Thomassen theorem. We explain
Mirzakhani graph and show proof of Galvin’s lemma.

AB
Accepted on Scientific board on: September 23rd 2023
AS
Defended:
DE
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