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1 Introduction

Throughout the ages, people have been looking for ways to move faster and easier. The
first steps in that direction were simple, but revolutionary for their time. Thousands of
years ago, our ancestors discovered that they could use sleds to transport goods over
snow. This discovery was crucial, but the real breakthrough occurred with the in-
vention of the wheel, which dates back to around 4200–4000 BC in Mesopotamia.
Initially used for pottery, the true impact of the wheel was seen with the development
of wheeled vehicles between 3500 and 3350 BC. The wheel enabled the creation of
carts, chariots, and carriages, which used horses for traction. In ancient Egypt, Greece,
and Rome, these chariots became the primary means of transporting people and goods,
shaping trade routes and war strategies.
During the Middle Ages, vehicles were further developed. Carriages and wagons be-
came more sophisticated, and horse-drawn vehicles were commonly seen on European
roads.
However, the major advancement in vehicle development occurred during the Indus-
trial Revolution in the 18th and 19th centuries. The introduction of steam engines led
to the creation of the first steam locomotives and ships. These vehicles enabled faster
and more efficient transport, revolutionizing trade and everyday life. At the end of
the 19th century, the world saw yet another important moment—the advent of the first
gasoline-powered cars. After working for different companies, Carl Benz and Gottlieb
Daimler developed the first cars in history at Stuttgart and Mannheim, respectively.
These vehicles were the first version of the modern cars we know today. There was a
gap of several years before the invention of the automobile and its economic exploita-
tion. Although initially luxurious and expensive, Henry Ford changed everything by
introducing the assembly line in 1908. His Model T became affordable to the masses,
making the car an essential part of everyday life. For more details and further insights
on this topic, see [2].
The development of aviation at the beginning of the 20th century further expanded
the horizons of transport. In 1903, the Wright brothers made the first successful flight
with a powered airplane, laying the foundations for the development of commercial
and military aviation. Additional information on this topic can be found in [1]. While
airplanes conquered the skies, on the seas, container ships revolutionized maritime
transport, enabling more efficient global trade.
Entering the 21st century, the world has witnessed incredible technological advances
in the world of vehicles. Electric vehicles became increasingly popular as a response
to environmental challenges. Companies like Tesla and Nissan led this revolution, de-
veloping vehicles that do not rely on fossil fuels. At the same time, the development
of autonomous vehicles promises to revolutionize the way we travel, aiming to in-
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crease road safety and efficiency. From package delivery to ocean exploration, drones,
and autonomous underwater vehicles have become standard in many industries. These
advanced systems enable new ways of exploration, research, surveillance, and trans-
portation, adding another dimension to the world of vehicles.

Vehicles have been crucial to societal development throughout history. By enabling
faster and more efficient transport, they have improved the quality of life, connected
people and communities, and spurred economic growth. Whether it is cars, trains,
planes, or ships, vehicles have shaped the world we live in. Today, with advances in
technology, vehicles continue to play a key role in our daily lives, helping us move,
explore, and connect in ways we could not have imagined just a few decades ago.

Vehicle localization, the process of accurately estimating a vehicle’s position, has
an essential role across numerous aspects of modern transportation and technology. In
the field of autonomous vehicles, precise localization is indispensable. Self-driving
cars depend on accurate position estimates to navigate roads safely, avoid obstacles,
and adhere to traffic regulations. Without this capability, the promise of fully au-
tonomous driving would remain unfulfilled, as the vehicle’s ability to understand its
surroundings and make informed decisions hinges on knowing exactly where it is at
all times. Beyond autonomous driving, vehicle localization is at the heart of every-
day navigation systems. Whether it is a driver using a GPS to find the fastest route
or a logistics company optimizing delivery routes, the ability to specify a vehicle’s
location enables efficient and timely travel. In the context of vehicle-to-vehicle com-
munication, accurate localization is crucial for cooperative driving systems. Vehicles
need to understand their relative positions to each other to prevent collisions, facilitate
platooning, and enhance driver-assistance systems. This interconnectedness between
vehicles promises safer roads and more efficient traffic flow. Urban planners and traffic
management systems also benefit from precise vehicle localization. By analyzing the
movement of vehicles, they can devise strategies to reduce congestion and improve the
flow of traffic in cities, leading to a smoother and more efficient transportation net-
work. Safety and security are other critical areas where vehicle localization makes a
difference. Emergency response systems can quickly locate vehicles involved in acci-
dents, potentially saving lives by reducing response times. Additionally, localization
technology is employed in theft recovery systems to track and recover stolen vehicles,
offering peace of mind to vehicle owners. Finally, in the broader scope of Intelligent
Transportation Systems (ITS), vehicle localization serves as a foundation. ITS inte-
grates various technologies to enhance transportation efficiency, safety, and environ-
mental sustainability. By providing accurate location data, these systems can manage
traffic more effectively, disseminate real-time information, and ultimately improve the
overall transportation experience.

In essence, vehicle localization is a cornerstone of modern transportation, enabling
a wide range of applications that contribute to safer, more efficient, and more intelli-
gent mobility solutions.

This study aims to present an algorithm for improving the precision of vehicle po-
sition estimation. To model the vehicle’s environment, we will use a factor graph,
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where the factor nodes represent sensor measurements such as GPS and odometry,
and the variable nodes represent the vehicle’s positions. The accuracy of vehicle posi-
tion estimation will be based on the Kalman Filter and Belief Propagation algorithms.
Measurement data will be simulated, and the algorithm will be implemented using the
Python programming language.
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2 Factor Graph

The graph G is an ordered pair (V,E), where G = (V,E), and V and E are finite
sets, with V being non-empty. The elements of the set V are called vertices, and the
elements of the set E are edges. The edges are unordered pairs of vertices (not nec-
essarily distinct). The set of neighbors of a vertex v in the graph G consists of all
vertices u such that there exists an edge uv in G. If we denote this set as NG(v), then
NG(v) = {u|uv ∈ E(G)}. If it is clear which graph is being referred to, the index G
can be omitted, and we can simply write N(v) instead of NG(v). A bipartite graph is
a graph in which the nodes can be divided into two disjoint sets such that there are no
edges connecting nodes within the same set.

Factor graph is a bipartite graph G = (F, V,E) that has two types of nodes: factor
nodes fi ∈ F and variable nodes xj ∈ V . Variable nodes represent random variables
or unknowns in the model and they can be used to quantitatively describe an event. For
example, we can use a random variable to denote if Pavle cooks. If Pavle cooks, the
random variable takes a value of 1, and 0 if he does not cook. Each variable node typi-
cally corresponds to a specific element in the model. Factor nodes represent functions
on subsets of the variables. They encode the dependencies or relationships between
variables. Factors can be seen as conditional probability distributions or error functions
that capture the information from the measurements or constraints in the model. The
edges eij ∈ E in the factor graph are always between variable nodes and factor nodes,
indicating which variables are involved in each factor. This connectivity represents the
dependencies or influences between variables. With these definitions, a factor graph G
defines the factorization of a global function f(X) as f(X) =

∏
i fi(Xi) where Xi is

the set of all variables xj connected by an edge to factor fi.

Figure 2.1: Example of factor graph.

f(x1, x2, x3, x4) = f1(x1, x2, x3)f2(x3, x4)f3(x4)
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It is used to represent the global function as a product of local functions, which
allows efficient analysis and inference using algorithms such as Belief Propagation.
The benefits of constructing a factor graph are visualization and analysis of the struc-
ture of the probabilistic model, understanding the dependencies between variables, and
efficiently performing inference and optimization tasks using algorithms designed for
factor graphs. Factor graphs are widely used in fields such as computer vision, robotics,
and machine learning for tasks such as sensor fusion, state estimation, and inference.
This chapter relies on [6] and [8] which have provided essential insights and founda-
tional understanding for the concepts presented.
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3 Belief Propagation on Factor Graphs

Belief Propagation (BP) is an algorithm developed by Judea Pearl1 in the early 1980s
as part of his research in artificial intelligence and probabilistic reasoning. Pearl in-
troduced BP as a method for efficiently computing marginal probabilities in Bayesian
networks but also works in other probabilistic graphical models such as Markov Ran-
dom Fields and Factor graphs. For more details in this chapter we refer to [5].

Probabilistic inference is the process of estimating statistical properties of unknown
variables from known or observed quantities. It involves determining how variables of
interest behave given the available evidence. Two forms of probabilistic inference are
marginal inference and MAP (Maximum A Posteriori) inference. Marginal inference
computes the marginal distribution of each variable. MAP inference computes the
mode of the posterior distribution identifying the most probable values of the variables
given the observed data.

Belief Propagation is a powerful and efficient algorithm for inference in graphical
models, such as factor graphs. It operates through an iterative process where mes-
sages are exchanged between nodes in the graph. Each iteration of the BP algorithm
begins with Variable-to-Factor Message Passing. During this phase, each variable
node communicates its current belief, based on the messages received from all other
factor nodes. Next, in the Factor-to-Variable Message Passing step, each factor node
sends messages to its neighboring variable nodes. These messages are influenced by
the information received from other adjacent variable nodes. Essentially, the factor
node aggregates the information it has and sends it to the variable nodes. Following
these exchanges, the Belief Update occurs. Each variable node recalculates its belief
about itself by considering the messages it has received from all the factor nodes it is
connected to. Together, these steps form the core of the Belief Propagation algorithm.
The iterative nature of BP ensures that the beliefs about each variable and factor be-
come more accurate over time.

Now, we will present the Sum-Product BP algorithm that solves the marginal in-
ference problem.

1Judea Pearl (1936-) is an Israeli-American computer scientist.
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3.1 Sum product algorithm

Acording to [9] we bring up the following explantion.

The Sum-Product Update Rule: The message sent from a node v on an edge e, is the
product of the local function at v (or the unit function if v is a variable node) with all
messages received at v on edges other than e , summarized for the variable associated
with e.

We have the following notation:

• µx→f (x) - the message sent from node x to node f

• µf→x(x) - the message sent from node f to node x

• n(x) - the set of neighbors of a given node x in a factor graph

Variable-to-Factor node message:

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x) (3.1)

Factor-to-Variable node message:

µfs→x(x) =
∑
x1

· · ·
∑
xm

fs(x, x1, ..., xm)
∏

xl∈n(fs)\{x}

µxl→fs(xl) (3.2)
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Belief update:

p(x) =
∏

fs∈n(x)

µfs→x(x) (3.3)
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4 Normal distribution

The normal distribution plays a central role in describing uncertainty and probabilistic
state estimation in vehicle localization using KF and BP. In the Kalman filter, each
state (precited or updated) estimate is modeled as normal distribution. Similarly, Be-
lief Propagation relies on message passing, which often involves normal distributions
in linear systems. This assumption enables simple analytical processing, as the normal
distribution has several key properties that make filtering and probability propagation
highly efficient. In this chapter, we will discuss the fundamental characteristics of nor-
mal distribution.

Let (Ω,F , P ) be probability space. A function X : Ω → Rn is called random vari-
able if X−1(S) ∈ F for every Borel set S ∈ BRn . Random variable X = (X1, ..., Xn)
is absolutely continuous if there exists nonnegative integrable function φX : Rn → R,
such that for every Borel set S ∈ BRn it holds that

P ({X ∈ S}) =
∫

· · ·
∫
S

φX(x1, ...xn) dx1...dxn.

Function φX(x) is called density of random variable X.

For every one-dimensional absolutely continuous random variable X we define
its expectation and variance as follows E(X) =

∫∞
−∞ xφX(x) dx and V ar(X) =

E(X2)− E2(X).

If X and Y are two one-dimensional absolutely continuous random variables then
their covariance is defined in the following way cov(X, Y ) = E(XY )− E(X)E(Y ).
For more details about probability theory, we refer to [10].

The normal distribution, or Gaussian1 distribution holds the greatest significance
among the probability distributions of absolutely continuous random variables. Many
random variables that arise in relation to experiments have a normal distribution. A
large number of random variables have an approximately normal distribution. If a ran-
dom variable does not have a normal distribution, even approximately, it can be trans-
formed into a normally distributed random variable through relatively simple transfor-
mations. It has a wide range of applications in mathematical statistics.

1Carl Friedrich Gauss (1777 – 1855) was a German mathematician, astronomer, geodesist, and
physicist who contributed to many fields in mathematics and science.
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Let X be a one-dimensional random variable. A random variable X has a normal
distribution N (m,σ2), m ∈ R and σ > 0, if its probability density function is

φX(x) =
1√
2πσ2

exp

(
−(x−m)2

2σ2

)
, x ∈ R.

The parameter m is called mean and represents an expectation E[X] and σ2 is variance,
i.e. V ar(X).

−10 −8 −6 −4 −2 2 4 6 8 10

0.1

0.2

0.3

x

φX(x)
σ = 1
σ = 3
σ = 5

Figure 4.1: Normal distribution with parameters m = 0 i σ ∈ {1, 3, 5}

The graphs of the density curves vary depending on the values of the parameters m
and σ , but some common characteristic features can be observed. All density curves
are symmetric with respect to the line x = m. The maximum point is at (m, 1

σ
√
2π
). To

the left and right of the maximum point, the density curve symmetrically decreases to
zero. Changing the value of the parameter m will result in a translation of the density
curve along the x-axis. Changing the value of the parameter σ will lead to a change in
the flatness of the density curve. The larger the σ, the lower the maximum value of the
curve, but the dispersion around the point x = m is greater. All density curves have
the shape of a bell.

The distribution function of the random variable X with normal N (m,σ2) distrib-
tion is

FX(x) =

∫ x

−∞

1√
2πσ2

exp

(
−(t−m)2

2σ2

)
dt, x ∈ R.

The probability that the random variable X : N (m,σ2), takes a value within the
interval (a, b)i s given by

P{a < X < b} =

∫ b

a

1√
2πσ2

exp

(
−(x−m)2

2σ2

)
dx.
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This integral represents the area under the normal distribution curve between a and
b, which corresponds to the probability that the random variable X falls within that
interval.

Multivariate normal distribution

Let Σ be a symmetric, positive-definite n × n matrix, x = (x1, . . . , xn) a column
vector, xT the transpose of x, and m = (m1, . . . ,mn) a fixed column vector. Then

φX(x1, . . . , xn) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x−m)TΣ−1(x−m)

)
is the density of the n-dimensional normal distribution N (m,Σ).

In the case n = 2, where X ∼ N (m,Σ),

x =

[
x1

x2

]
m =

[
m1

m2

]
Σ =

[
σ1 ρX1X2

ρX1X2 σ2

]
we have that m1 = E[X1], m2 = E[X2], σ1 = var(X1), σ2 = var(X2) and ρX1X2 =
cov(X1, X2).

4.1 Product of Gaussian densities

We denote N (x,µ,Σ) ∝ exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
if there exists α > 0 such

that φX(x) = α exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
where φX(x) represents densitiy func-

tion for normal distribution N (x,µ,Σ) .

If we have two two-dimensional normal distributions N (x,µ1,Σ1) and N (x,µ2,Σ2),
their product will also give normal distribution N (x,µ3,Σ3), where

Σ−1
3 = Σ−1

1 + Σ−1
2 and µ3 = Σ3

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
.

In the following, we provide a proof of this statement.
Density function for first one: φ1(x) =

1

2π
√

det(Σ1)
exp

(
−1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)
.

Density function for second one: φ2(x) =
1

2π
√

det(Σ2)
exp

(
−1

2
(x− µ2)

TΣ−1
2 (x− µ2)

)
.

The product of these densities is given with

φ1(x)·φ2(x) =
1

(2π)2
√
det(Σ1) det(Σ2)

exp

(
−1

2

[
(x− µ1)

TΣ−1
1 (x− µ1) + (x− µ2)

TΣ−1
2 (x− µ2)

])
Below, we will consider just the exponent of the exponential function.

−1
2
[(x− µ1)

TΣ−1
1 (x− µ1) + (x− µ2)

TΣ−1
2 (x− µ2)]

= −1
2
[xTΣ−1

1 x− xTΣ−1
1 µ1 − µT

1Σ
−1
1 x+ µT

1Σ
−1
1 µ1+
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xTΣ−1
2 x− xTΣ−1

2 µ2 − µT
2Σ

−1
2 x+ µT

2Σ
−1
2 µ2]

[1]
= −1

2
[xTΣ−1

1 x− 2µT
1Σ

−1
1 x+ µT

1Σ
−1
1 µ1 + xTΣ−1

2 x− 2µT
2Σ

−1
2 x+ µT

2Σ
−1
2 µ2]

= −1
2
[xT (Σ−1

1 + Σ−1
2 )x− 2(µT

1Σ
−1
1 + µT

2Σ
−1
2 )x+ (µT

1Σ
−1
1 µ1 + µT

2Σ
−1
2 µ2)]

= −1
2
[xT (Σ−1

1 + Σ−1
2 )x− 2(µT

1Σ
−1
1 + µT

2Σ
−1
2 )x+ (µT

1Σ
−1
1 µ1 + µT

2Σ
−1
2 µ2)

±(µT
1Σ

−1
1 + µT

2Σ
−1
2 )(Σ−1

1 + Σ−1
2 )−1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
] = (∗)

Now, if we take Σ−1
3 = Σ−1

1 + Σ−1
2 and µ3 = Σ3

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
we get

(∗) = −1
2
[xTΣ−1

3 x− 2µT
3Σ

−1
3 x+ µT

3Σ
−1
3 µ3]

+1
2
(µT

1Σ
−1
1 +µT

2Σ
−1
2 )(Σ−1

1 +Σ−1
2 )−1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2)

= −1
2
(x− µ3)

TΣ−1
3 (x− µ3) + C,

where previous constant C is given with

C = 1
2
(µT

1Σ
−1
1 +µT

2Σ
−1
2 )(Σ−1

1 +Σ−1
2 )−1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2).

In the step [1] we use the fact that when B is symmetric matrix then aTBc = cTBa.
Matricies Σ−1

1 and Σ−1
2 are symmetric as inverse matricies of symmetric matricies Σ1

and Σ2 (based on our assumption).

We have shown that the product of two normal distributions is again a normal
distribution N (x,µ3,Σ3) ∝ exp

(
−1

2
(x− µ3)

TΣ−1
3 (x− µ3)

)
, i.e.

N (x,µ1,Σ1)N (x,µ2,Σ2) ∝ N (x,µ3,Σ3) (4.1)

where Σ−1
3 = Σ−1

1 + Σ−1
2 and µ3 = Σ3

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
.

Now, we will find that

∫
N (x,µ1,Σ1)N (y, Ax,Σ2) dx ∝ N (y, Aµ1, AΣ1A

T + Σ2) (4.2)

where

N (x,µ1,Σ1) ∝ exp
(
−1

2
(x− µ1)

⊤Σ−1
1 (x− µ1)

)
N (y, Ax,Σ2) ∝ exp

(
−1

2
(y − Ax)⊤Σ−1

2 (y − Ax)
)
.
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Firstly, we will show that N (y, Ax,Σ2) ∝ N (x, A−1y, (ATΣ−1
2 A)−1).

N (y, Ax,Σ2) ∝ exp

(
−1

2
(y − Ax)⊤Σ−1

2 (y − Ax)

)
= exp

(
−1

2

(
(−A)(x− A−1y)

)T
Σ−1

2

(
(−A)(x− A−1y)

))
= exp

(
−1

2
(x− A−1y)TATΣ−1

2 A(x− A−1y)

)
∝ N (x, A−1y, (ATΣ−1

2 A)−1)

Now, we have that∫
N (x,µ1,Σ1)N (y, Ax,Σ2) dx ∝

∫
N (x,µ1,Σ1)N (x, A−1y, (ATΣ−1

2 A)−1) dx

For simplicity during calculations we will use the notation µ2 = A−1y, Σ2 = (ATΣ−1
2 A)−1

and we will revert to original notation after final calculations.∫
N (x,µ1,Σ1)N (x, A−1y, (ATΣ−1

2 A)−1) dx

=
∫
N (x,µ1,Σ1)N (x,µ2,Σ2) dx

∝
∫
exp

(
−1

2
(x− µ3)

TΣ−1
3 (x− µ3) + C

)
dx

=
∫
exp

(
−1

2
(x− µ3)

TΣ−1
3 (x− µ3)

)
· exp(C) dx

= exp(C)
∫
exp

(
−1

2
(x− µ3)

TΣ−1
3 (x− µ3)

)
dx

∗
=

√
det(2πΣ3) exp(C) ∝ exp(C)

We have denoted

C = 1
2
(µT

1Σ
−1
1 +µT

2Σ
−1
2 )(Σ−1

1 +Σ−1
2 )−1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2),

and in the step * we have used that
∫
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx =

√
det(2πΣ).

Based on tips and tricks in [4] we aim to bring the expression exp(C) into the form of
exp(−1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2)). First, it holds that

exp
(
−1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2)

)
.

= exp
(
−1

2
(µ1

T (Σ1 + Σ2)
−1µ1 − 2µ1

T (Σ1 + Σ2)
−1µ2 + µ2

T (Σ1 + Σ2)
−1µ2)

)
We will now focus on simplifying the exponent C of the exponential function.

C = 1
2
(µT

1Σ
−1
1 +µT

2Σ
−1
2 )(Σ−1

1 +Σ−1
2 )−1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2)
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= 1
2
(µT

1Σ
−1
1 + µT

2Σ
−1
2 )(Σ−1

1 (I + Σ1Σ
−1
2 ))−1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1 + µT

2Σ
−1
2 µ2)

= 1
2
(µT

1Σ
−1
1 + µT

2Σ
−1
2 )(I + Σ1Σ

−1
2 )−1Σ1

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1 + µT

2Σ
−1
2 µ2)

= 1
2
(µT

1Σ
−1
1 + µT

2Σ
−1
2 )(I + Σ1Σ

−1
2 )−1Σ1Σ

−1
1

(
µ1 + Σ1Σ

−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1 + µT

2Σ
−1
2 µ2)

= 1
2
(µT

1Σ
−1
1 +µT

2Σ
−1
2 )((Σ2+Σ1)Σ

−1
2 )−1

(
µ1 + Σ1Σ

−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2)

= 1
2
(µT

1Σ
−1
1 +µT

2Σ
−1
2 )Σ2(Σ2+Σ1)

−1
(
µ1 + Σ1Σ

−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2)

= 1
2
(µT

1Σ
−1
1 Σ2+µT

2 )Σ
−1
2 Σ2(Σ2+Σ1)

−1
(
µ1 + Σ1Σ

−1
2 µ2

)
−1

2
(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2)

= −1
2
[−(µT

1Σ
−1
1 Σ2+µT

2 )(Σ2+Σ1)
−1

(
µ1 + Σ1Σ

−1
2 µ2

)
+(µT

1Σ
−1
1 µ1+µT

2Σ
−1
2 µ2)

= −1
2
[−µT

1Σ
−1
1 Σ2(Σ2 + Σ1)

−1µ1 − µT
1Σ

−1
1 Σ2(Σ2 + Σ1)

−1Σ1Σ
−1
2 µ2

−µT
2 (Σ2 + Σ1)

−1µ1 − µT
2 (Σ2 + Σ1)

−1Σ1Σ
−1
2 µ2 + µT

1Σ
−1
1 µ1 + µT

2Σ
−1
2 µ2]

= −1
2
[µT

1 (Σ
−1
1 −Σ−1

1 Σ2(Σ2+Σ1)
−1)µ1−µT

1 (Σ
−1
2 Σ1)

−1(Σ2+Σ1)
−1(Σ2Σ

−1
1 )−1µ2

−µT
2 (Σ2 + Σ1)

−1µ1 + µT
2 (Σ

−1
2 − (Σ2 + Σ1)

−1Σ1Σ
−1
2 )µ2]

= −1
2
[µT

1 (Σ
−1
1 − Σ−1

1 Σ2(Σ2 + Σ1)
−1)µ1 − µT

1 (Σ2Σ
−1
1 (Σ2 + Σ1)Σ

−1
2 Σ1)

−1µ2

−µT
2 (Σ2 + Σ1)

−1µ1 + µT
2 (Σ

−1
2 − (Σ2 + Σ1)

−1Σ1Σ
−1
2 )µ2]

= −1
2
[µT

1 (Σ
−1
1 − Σ−1

1 Σ2(Σ2 + Σ1)
−1)µ1−µT

1 (Σ1 + Σ2)
−1µ2

−µT
2 (Σ2 + Σ1)

−1µ1 + µT
2 (Σ

−1
2 − (Σ2 + Σ1)

−1Σ1Σ
−1
2 )µ2]

By equivalent transformations we obtain Σ−1
1 − Σ−1

1 Σ2(Σ2 + Σ1)
−1 = (Σ2 + Σ1)

−1.

(Σ−1
1 − Σ−1

1 Σ2(Σ2 + Σ1)
−1)(Σ2 + Σ1) = (Σ2 + Σ1)

−1(Σ2 + Σ1)

Σ−1
1 (Σ2 + Σ1)− Σ−1

1 Σ2 = I

Σ−1
1 Σ2 + I − Σ−1

1 Σ2 = I

I = I

Analogously it can be shown (Σ−1
2 − (Σ2 + Σ1)

−1Σ1Σ
−1
2 ) = (Σ2 + Σ1)

−1.
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It holds that

−µT
1 (Σ1 + Σ2)

−1µ2 − µT
2 (Σ2 + Σ1)

−1µ1 = −2µT
1 (Σ1 + Σ2)

−1µ2,

because the sum of two symmetric matrices is a symmetric matrix and when B is a
symmetric matrix then we know that aTBc = cTBa.

We have derived the desired form.

exp(C) = exp
(
−1

2
(µ1

T (Σ1 + Σ2)
−1µ1 − 2µ1

T (Σ1 + Σ2)
−1µ2 + µ2

T (Σ1 + Σ2)
−1µ2)

)
= exp

(
−1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2)

)
To finish our proof, we revert the original notation

µ2 = A−1y, Σ2 = (ATΣ−1
2 A)−1

and rearrange the expression to the desired form.

exp
(
−1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2)

)
= exp

(
−1

2
(µ1 − A−1y)T (Σ1 + (ATΣ−1

2 A)−1)−1(µ1 − A−1y)
)

= exp
(
−1

2
(−A−1(y − Aµ1))

T (Σ1 + A−1Σ2A
−T )−1(−A−1(y − Aµ1))

)
= exp

(
−1

2
(y − Aµ1)

TA−T (A−1(AΣ1A
T + Σ2)A

−T )−1A−1(y − Aµ1)
)

= exp
(
−1

2
(y − Aµ1)

TA−TAT (AΣ1A
T + Σ2)

−1AA−1(y − Aµ1)
)

= exp
(
−1

2
(y − Aµ1)

T (AΣ1A
T + Σ2)

−1(y − Aµ1)
)

∝ N (y, Aµ1, AΣ1A
T + Σ2)
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5 Kalman Filter

In this chapter, we will present the Kalman Filter (KF) relying on the information
provided in [11] and [7]. The Kalman filter is a powerful algorithm used to estimate
unknown variables given the measurements observed over time. It stands as one of
the most significant advancements in statistical estimation theory, and arguably one of
the greatest discoveries of the twentieth century. It is known for its simplicity and low
computational requirements. Developed by Rudolf E. Kálmán1 in the 1960s, this pow-
erful mathematical tool is used in a wide range of applications for estimating the state
of dynamic systems. Whether it is in engineering, finance, robotics, or navigation, the
Kalman Filter offers an efficient way to make predictions and updates about a system’s
state based on noisy and uncertain measurements. The key strength of the Kalman Fil-
ter lies in its ability to provide accurate estimates based on incomplete and imprecise
data. This makes it an essential tool for scenarios where real-time decision-making is
crucial, such as tracking the position of a vehicle, predicting stock prices, or control-
ling the movement of a robot. Additionally, the Kalman filter is used for predicting
future states of systems, making it useful in areas like meteorology, economics, and
navigation. What makes the Kalman filter special is its ability to optimally combine
previous predictions with new data, thereby reducing estimation errors. This algo-
rithm operates in a recursive manner, meaning it continuously refines its estimates as
new data becomes available. The fact that it supports estimations of past, present, and
even future states, and it can be used even when the precise nature of the modeled
system is unknown makes this filter very powerful.

Introduction to the Discrete Kalman Filter Algorithm

The Kalman filter deals with the challenge of estimating the state x ∈ Rn of a
discrete-time controlled system that follows a linear stochastic difference equation

xk+1 = Akxk +Buk + wk (5.1)

with a measurement zk ∈ Rm that is

zk = Hkxk + vk (5.2)

Vector xk represents the state vector at time k. It represents the current assessment of
the system state (e.g. position, speed, orientation of the vehicle). The state transition
matrix, denoted as Ak, is n×n matrix that describes how the current state xk transitions

1Rudolf E. Kálmán (1930-2016) was a Hungarian-born American mathematician, electrical engi-
neer, and inventor.
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to the next state xk+1 without considering driving functions or process noise. Vector
uk ∈ Rl represents the control input vector at time k and n × l matrix B represents
the control input matrix.Random variable that represents unpredictable disturbances
or errors in the model that are not captured by the deterministic parts of the equation,
wk, is called process noise. Usually, it is assumed to be zero-mean Gaussian with the
covariance Qk, i.e., wk ∼ N (0, Qk). Thus, wk is added to the model to capture the
uncertainties and inaccuracies in the system. The formula (5.1) describes how the state
of the system changes from k to moment k + 1 taking into account the previous state,
control inputs, and process noise.

The second formula (5.2) describes the relationship between the state and the mea-
surement at the current time step k. Vector zk is denotes the measurement at the mo-
ment k. These are actual measurements obtained using sensors or some other data
source in the system (e.g. GPS, radar, camera readings, etc.). Matrix that relates the
current state of the system xk to the measurement zk, denoted with Hk, is m× n mea-
surement matrix. It defines how the state of the system affects the measurements and
can be different at each time point k. Random variable that represents measurement
errors often caused by sensor imprefections or external disturbances, vk, is the mea-
surement noise vector. Usually, vk is assumed to be white noise with zero mean and
known covariance Rk, i.e. vk ∼ N (0, Rk).

The role of KF is to provide estimate xk given the initial estimate of x0, the series
of measurement, z1, ..., zk, and the information of the system described by Ak, B, Hk,
Qk, and Rk.

Kalman Filter Algorithm

In the sequel, we define

•
∧
x
−
k ∈ Rn to be our a priori state estimate at step k, also called predicted estimate,

•
∧
xk ∈ Rn to be a posteriori state estimate or updated estimate after incorporating
the new measurement at time k.

Kalman filter algorithm consists of two stages: prediction (I) and update (II-IV) (see
illustration 5.1).

Prediction stage:

∧
x
−
k = Ak−1

∧
xk−1 +Buk−1 (5.3)

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1 (5.4)

The predicted state estimate is derived from the previously updated state estimate. The

a priori estimate error is x−
k − ∧

x
−
k and the a priori estimate error covariance is then

P−
k = E[(x−

k − ∧
x
−
k )(x

−
k − ∧

x
−
k )

T ]. An uncertainty in the Kalman filter’s prediction be-
fore receiving a new measurement is quantified by P−

k . A smaller P−
k suggests that

the filter has greater confidence in its prediction, indicating reliable model assumptions
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and previous estimates. Conversely, a larger P−
k , implies higher uncertainty, leading

the filter to rely more on the new measurement to correct the state estimate. The matrix
P−
k is a crucial factor in determining the Kalman gain Kk and is computed using the

previous state covariance Pk−1 and the process noise covariance Qk−1.

Update stage:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (5.5)

∧
xk =

∧
x
−
k +KK(zk −Hk

∧
x
−
k ) (5.6)

Pk = (I −KkHk)P
−
k (5.7)

The first task during the measurement update is to compute the Kalman gain. The
matrix Kk is chosen to be the gain or blending factor that minimizes the a posteriori
error covariance Pk.

The diferenece (zk −Hk
∧
x
−
k ), i.e., the weighted differenece between an actual mea-

surement zk and a measurement prediction Hk
∧
x
−
k , is called the measurement innova-

tion or residual. It quantifies how much the new measurement deviates from what
was expected based on the current state estimate. A large innovation indicates that the
predicted state may be inaccurate, whereas a small innovation suggests that the pre-
dicted state is close to the actual state. For example, residual zero means that two are
in complete agreement. The residual is then multiplied by the Kalman gain, Kk, to

apply a correction, Kk(zk −Hk
∧
x
−
k ), to the predicted estimate

∧
x
−
k . After obtaining the

updated state estimate, the Kalman filter calculates the updated error covariance Pk,
which will be used in the next step. The a posteriori covariance error Pk reflects the
reduced uncertainty in this updated estimate. It is influenced by the Kalman gain Kk,
which determines how much the measurement zk affects the updated state estimate.
Notably, the updated error covariance is smaller than the predicted error covariance,
indicating that the filter is more confident in the state estimate after incorporating the
measurement in the update stage.

The a posteriori state estimate error is the difference between the true state xk and
the posteriori state estimate

∧
xk, i.e. xk −

∧
xk. The a posteriori state error covariance is

then E[(xk −
∧
xk)(xk −

∧
xk)

T ]. It holds that the result Pk of (5.7) is exatctly what the
expected error value E[(xk −

∧
xk)(xk −

∧
xk)

T ] describes, i.e. error covariance after state
update.

It holds that p(xk|zk) ∼ N (E[(xk)], E[(xk −
∧
xk)(xk −

∧
xk)

T ]) = N (
∧
xk, Pk), i.e.

Kalman Filter will give us xk ∼ N (x̂k, Pk).
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O: Set initial values:
∧
x0, P0

I: Predict state and
error covariance:

∧
x
−
k = Ak−1

∧
xk−1 + Buk−1

P−
k = Ak−1Pk−1A

T
k−1 + Qk−1

II: Compute Kalman Gain:
Kk = P−

k HT
k (HkP

−
k HT

k + Rk)
−1

III: Compute estimate:
∧
xk =

∧
x
−
k + KK(zk − Hk

∧
x
−
k )

IV: Compute the error covariance:
Pk = (I − KkHk)P

−
k

measurement zk estimate
∧
xk

Figure 5.1: Ilusttration of the algorithm
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6 Kalman Filtering using Belief Propagation

Based on [9] we derive Kalman Filter as an instance of the sum-product algorithm
operating in the factor graph corresponding to a discrete-time linear dynamical system

xj+1 = Ajxj +Buj +wj

yj = Cjxj + vj

with xj,yj,uj , wj , vj denoting the time-j state, output, input, and two noise (two-
dimensional) vector variables, respectively. Further, Aj, B, and Cj are assumed to be
known time-varying matrices of appropriate dimensions. In the sequel, we will neglect
the input part. We assume that wj and vj are independent Gaussian noise sequences
with zero mean.

Figure 6.1: A hidden Markov model. Taken from [9].

The Markov structure of the system Figure 6.1 permits us to write the conditional
joint probability density function of the state variables x1, ...,xk given y1, ...,yk as

f(x1, ...,xk|y1, ...,yk) =
k∏

j=1

f(xj|xj−1)f(yj|xj), (6.1)

where f(xj|xj−1) is a Gaussian density with mean Ajxj−1 and variance Qj (process
noise covariance) and f(yj|xj) is a Gaussian density with mean Cjxj and variance Rj

(measurement noise covariance).
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Figure 6.2: A portion of the factor graph corresponding to (6.1). Taken from [9].

In Figure 6.2 is shown a portion of the factor graph and messages that are passed
in the operation of the sum-product algorithm. With Pj|j−1(xj) we denote the message
passed to xj from f(xj|xj−1) . This message is always of the form N (xj,mj|j−1,Σj|j−1).
Vector mj|j−1 is interpreted as the MMSE (Minimal Mean Square Error) prediction of
the xj given the set of observations up to time j − 1. So, Pj|j−1(xj) represents the
prediction based on information up to time j−1, before the new measurement is taken
into account, i.e. represents the prior probability estimate for the state xj at time j.

According to the product rule, applying (4.1), we have:

Pj|j(xj) = Pj|j−1(xj) · f(yj|xj)

= N (xj,mj|j−1,Σj|j−1)N (yj, Cjxj, Rj)

∝ N (xj,mj|j−1,Σj|j−1)N (xj, C
−1
j yj, C

−1
j RjC

−T
j )

∝ N (xj,mj|j,Σj|j)

where
Σj|j = (Σ−1

j|j−1 + CT
j R

−1
j Cj)

−1 (6.2)

mj|j = Σj|j(Σ
−1
j|j−1mj|j−1 + CT

j R
−1
j yj) (6.3)

.
The posterior probability estimate for the state xj at time j is given by Pj|j(xj).

From (6.2) we can express Σ−1
j|j−1 as follows:

Σj|j(Σ
−1
j|j−1 + CT

j R
−1
j Cj) = I

Σj|jΣ
−1
j|j−1 = I − Σj|jC

T
j R

−1
j Cj

Σ−1
j|j−1 = Σ−1

j|j (I − Σj|jC
T
j R

−1
j Cj)

Σ−1
j|j−1 = Σ−1

j|j − CT
j R

−1
j Cj
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This can be substituted into (6.3).

mj|j = Σj|j((Σ
−1
j|j − CT

j R
−1
j Cj)mj|j−1 + CT

j R
−1
j yj)

mj|j = Σj|jΣ
−1
j|jmj|j−1 − Σj|jC

T
j R

−1
j Cjmj|j−1 + Σj|jC

T
j R

−1
j yj

mj|j = mj|j−1 + Σj|jC
T
j R

−1
j (yj − Cjmj|j−1)

mj|j = mj|j−1 + (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j (yj − Cjmj|j−1)

In the last equation, the value Kj = (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j is Kalman gain.

(Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j

= (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1(RjC
−T
j )−1

= (RjC
−T
j (Σ−1

j|j−1 + CT
j R

−1
j Cj))

−1

= (RjC
−T
j Σ−1

j|j−1 + Cj)
−1

= ((RjC
−T
j + CjΣj|j−1)Σ

−1
j|j−1)

−1

= Σj|j−1C
T
j (Rj + CjΣj|j−1C

T
j )

−1

Which perfectly matches with (5.5).

Now, by applying elementary transformations, we will show that the right-hand side
of equations (6.2) and (5.7) are equal.

(Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1 = (I −KJCj)Σj|j−1

(Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1 = (I − (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j Cj)Σj|j−1

(Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1 = Σj|j−1 − (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j CjΣj|j−1

I = (Σj|j−1 − (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j CjΣj|j−1)(Σ

−1
j|j−1 + CT

j R
−1
j Cj)

I = I − (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j Cj + Σj|j−1C

T
j R

−1
j Cj

−(Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j CjΣj|j−1C

T
j R

−1
j Cj

I = I+Σj|j−1C
T
j R

−1
j Cj−(Σ−1

j|j−1+CT
j R

−1
j Cj)

−1CT
j R

−1
j Cj(I+Σj|j−1C

T
j R

−1
j Cj)

I = (I − (Σ−1
j|j−1 + CT

j R
−1
j Cj)

−1CT
j R

−1
j Cj)(I + Σj|j−1C

T
j R

−1
j Cj)

Σ−1
j|j−1 + CT

j R
−1
j Cj = ((Σ−1

j|j−1 + CT
j R

−1
j Cj)− CT

j R
−1
j Cj)(I + Σj|j−1C

T
j R

−1
j Cj)
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Σ−1
j|j−1 + CT

j R
−1
j Cj = Σ−1

j|j−1(I + Σj|j−1C
T
j R

−1
j Cj)

Σ−1
j|j−1 + CT

j R
−1
j Cj = Σ−1

j|j−1 + CT
j R

−1
j Cj

Likewise, applying (4.2), we have

Pj+1|j(xj+1) =
∫
Pj|j(xj)N (xj+1, Ajxj, Qj) dxj ∝ N (xj+1,mj+1|j,Σj+1|j)

where

xj+1|j = Ajmj|j = Ajmj|j−1 + AjKj(yj − Cjmj|j−1)

Σj+1|j = AjΣj|jA
T
j +Qj = Aj(Σ

−1
j|j−1 + CT

j R
−1
j Cj)

−1AT +Qj

which correspond to (5.3) and (5.4), respectively.
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7 Sensor Technologies and Implementation

7.1 GPS and Odometry

Over the years, people have used a variety of techniques to navigate across the globe.
Traditionally, people relied on stars and landmarks to travel between different areas,
while maps and compasses helped to keep people from getting lost. The Global Posi-
tioning System (GPS) is a component used to estimate location and has made it much
easier for people to find their way around. It became fully functional in 1994. It was
originally developed for military applications but was made available for public use
and became widely adopted in civilian applications, including automobile navigation
systems, (recreational orienteering, and inventory tracking for transportation compa-
nies). The GPS system consists of a network of 24 active satellites (and 8 spares)
located nearly 20,000 km above the Earth’s surface. Every satellite sends out distinct
signals that can be traced and analyzed by a GPS receiver on Earth to pinpoint the
exact location of the satellite. Even if you are in the desert, the ocean, or Antarc-
tica, GPS receivers can determine your position anywhere on Earth 24 hours a day in
all weather conditions (rain, fog, shine, etc.). Also, satellite signals can travel through
most plastics and glass, but cannot penetrate through solid objects, such as wood, rock,
or concrete. GPS receivers can be found anywhere, are reasonably priced, and come in
a variety of sizes and forms. These days, GPS receivers are present in a huge range of
devices, including computers, watches, phones, tablets, and automobiles. While GPS
signals can theoretically be received almost anywhere on Earth, practical factors can
affect the accuracy of GPS measurements. For instance, although fog itself does not
directly interfere with GPS signals, other factors such as dense clouds, buildings, trees,
or terrain that obstruct the line of sight to satellites can impact signal quality. More-
over, GPS signals pass through the atmosphere, and delays caused by the ionosphere
and troposphere can lead to inaccuracies in position measurements. Thus, while GPS
is available nearly everywhere, the accuracy of measurements can vary depending on
environmental and atmospheric conditions. However, GPS alone can be imprecise, es-
pecially in urban areas with signal obstructions.

An odometry is a form of localization that uses data from sensors like encoders to
derive an estimated position relative to a starting point. The process typically relies
on measuring parameters such as wheel rotations, angular rates, or accelerations to
estimate how the vehicle has moved. By integrating these measurements over time,
odometry provides an estimation of the vehicle’s trajectory and its relative changes in
position and orientation. Odometry is used in various applications such as robotics,
autonomous vehicles, and navigation systems.
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Achieving precise and reliable vehicle localization is paramount for ensuring safety
and efficiency. This is where sensors like GPS and odometry play crucial roles. In this
chapter we refer to [3] and [8].

In our work, we will focus on GPS and odometry providing an overview of their
functionalities and discussing their integration into our system. Although RADAR sen-
sors are also relevant in the context of vehicle localization, they will not be included
in our implementation, since their complexity exceeds the theme of this work. We
will, however, briefly mention their role and potential benefits in the broader scope
of sensor technologies. RADAR (RAdio Detection And Ranging) is used for detect-
ing and tracking objects using radio waves. It operates by emitting radio waves and
then measuring the time it takes for the waves to bounce back after hitting an object.
This allows RADAR to determine the distance, direction, and speed of the objects.
RADAR sensors are typically mounted on the vehicle and provide information about
the range (distance), angle, and possibly the velocity of the detected vehicles. RADAR
measurements can be incorporated as factors in factor graphs or probabilistic graphical
models to improve the accuracy of vehicle localization. The RADAR measurements
help constrain the estimation process by providing additional information about the
relative positions and motions of the vehicles.

7.2 Implementation with Simulated Data

In this section we will implement an algorithm to estimate vehicle positions by simu-
lating true positions, applying GPS and odometry measurements with noise, and using
our equations.

We want to estimate position of vechile, xk, at state k, i.e. xk =

[
xk

yk

]
where xk and yk

are the vehicle coordinates at time k, i.e. xk represents latitude and yk longitude .

GPS measurements also provide two-dimensional position data, so the measurement

vector zGPS,k would be zGPS,k =

[
zgx,k
zgy,k

]
, where zgx,k and zgy,k are the GPS measure-

ments for xk and yk.
The measurement model for GPS can be represented as

zGPS,k = HGPSxk + vGPS,k

where HGPS =

[
1 0
0 1

]
and vGPS,k is the measurement noise with covariance matrix

RGPS .

Odometry itself can be nonlinear due to the complexity of measurement and calculation
of the vehicle’s trajectory. However, in the context of Kalman filters and other state
estimation methods, it is often useful to linearize the problem to simplify analysis and
computation. By using a linearized model for odometry we approximate the odometric
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measurements in a linear form. If we assume we get estimates of traveled distance in

x and y directions, the odometry measurement vector would be zO,k =

[
∆x
∆y

]
.

The measurement model for odometry can be represented as

zO,k = HOxk + vO,k

where HO =

[
1 0
0 1

]
and vO,k is the measurement noise with covariance matrix RO.

Hence, we have

f(zGPS,k|xk) ∝ N (zGPS,k, HGPSxk, RGPS) and f(zO|xk) ∝ N (zO,k, HOxk, RO)

Applying product rule we get

Pk|k(xk) = Pk|k−1(xk)f(zGPS,k|xk)f(zO,k|xk).

∝ N (xk,mk|k−1,Σk|k−1)N (zGPS,k, HGPSxk, RGPS)N (zO,k, HOxk, RO)

∝ N (xk,mk|k−1,Σk|k−1)N (xk, H
−1
GPSzGPS,k, (H

T
GPSR

−1
GPSHGPS)

−1)N (xk, H
−1
O zO,k, (H

T
OR

−1
O HO)

−1)

where based on (4.1)

Σ−1
k|k = Σ−1

k|k−1 +R−1
GPS +R−1

O

mk|k = Σk|k(Σ
−1
k|k−1mk|k−1 +R−1

GPSzGPS,k +R−1
O zO,k)

Numerical results
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7.3 The Python code

import numpy as np
import matplotlib.pyplot as plt

# Simulation parameters
num_steps = 100
lat_min, lat_max = -90, 90
lon_min, lon_max = -180, 180
true_positions = np.zeros((num_steps, 2)) # Simulated true

positions
estimates = np.zeros((num_steps, 2)) # Position estimates (mean)
covariances = np.zeros((num_steps, 2, 2)) # Covariances

# Model parameters
R_GPS = np.diag([1.0, 1.0]) # GPS measurement covariance
R_O = np.diag([1.0, 1.0]) # Odometry measurement covariance
Q = np.diag([0.5, 0.5]) # Process covariance
A = np.eye(2) # Dynamic system model (identity

assumption)
P = np.eye(2) # Initial covariance

# Function to clamp latitude values
def clamp_latitude(lat):

return np.clip(lat, lat_min, lat_max)

# Function to wrap longitude values
def wrap_longitude(lon):

if lon > 180:
return lon - 360

elif lon < -180:
return lon + 360

return lon

# Simulate true positions
true_positions[0] = np.array([

np.random.uniform(lat_min, lat_max), # Latitude
np.random.uniform(lon_min, lon_max) # Longitude

]) # Initial position

for k in range(1, num_steps):
delta_pos = np.random.normal(0, 1, 2) # Change in position
new_pos = true_positions[k-1] + delta_pos
# Limit coordinates to geographical boundaries
new_pos[0] = clamp_latitude(new_pos[0])
new_pos[1] = wrap_longitude(new_pos[1])
true_positions[k] = new_pos

# Set initial values
m_prior = true_positions[0] # Initial estimate (mean)
P_prior = P # Initial covariance

for k in range(num_steps):
# Simulate measurements
z_GPS = true_positions[k] + np.random.multivariate_normal([0,
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0], R_GPS) # GPS measurement with noise
z_O = true_positions[k] + np.random.multivariate_normal([0, 0],

R_O) # Odometry measurement with noise

# A posteriori estimate
S= np.linalg.inv(np.linalg.inv(P_prior) + np.linalg.inv(R_GPS) +

np.linalg.inv(R_O))

m_posterior = S @ (np.linalg.inv(P_prior) @ m_prior + np.linalg.
inv(R_GPS) @ z_GPS + np.linalg.inv(R_O) @ z_O)

P_posterior = S

# Store results
estimates[k] = m_posterior
covariances[k] = P_posterior

# A priori estimate for the next step
m_prior = A @ m_posterior
P_prior = A @ P_posterior @ A.T + Q

# Visualization
plt.figure(figsize=(12, 6))

# Plot true positions and estimates
plt.plot(true_positions[:, 0], true_positions[:, 1], ’g-’, label=’

True Positions’)
plt.plot(estimates[:, 0], estimates[:, 1], ’b--’, label=’Position

Estimates’)

# Plot uncertainty as ellipses
from matplotlib.patches import Ellipse
for i in range(0, len(true_positions), 10): # Plot every 10 steps

for clarity
cov = covariances[i]
eigenvalues, eigenvectors = np.linalg.eig(cov[:2, :2])
angle = np.arctan2(*eigenvectors[:, 0][::-1])
width, height = 2 * np.sqrt(eigenvalues)
ellipse = Ellipse(xy=estimates[i], width=width, height=height,

angle=np.degrees(angle), color=’r’, alpha=0.2)
plt.gca().add_patch(ellipse)

plt.xlabel(’Longitude’)
plt.ylabel(’Latitude’)
plt.title(’Position Estimates and Covariances’)
plt.legend()
plt.grid(True)
plt.show()
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8 Conclusion

Vehicle localization is crucial for numerous applications, ranging from autonomous
driving to navigation systems. Accurate localization ensures that vehicles can deter-
mine their precise position in real-time, which is fundamental for safe and efficient op-
eration. It enables advanced driver assistance systems, collision avoidance, and route
optimization. Moreover, in the context of autonomous vehicles, robust localization is
essential for effective decision-making and interaction with other vehicles and infras-
tructure. By improving localization accuracy through techniques like factor graphs and
BP, we enhance the overall reliability and performance of vehicle systems.

Factor graphs allow complex functions to be represented as a product of simpler,
local functions. This makes it easier to visualize and understand the connections be-
tween different parts of the problem and can be applied in a wide range of application
areas. The sum-product algorithm, which is based on only a single conceptually sim-
ple computational rule, can encompass an enormous variety of practical algorithms,
including KF. Based on the study presented in [9], which demonstrates KF as an in-
stance of a sum-product algorithm in the one-dimensional case, we extend this frame-
work to a two-dimensional scenario, considering vehicle position coordinates. Rep-
resenting the Kalman Filter as an instance of Belief Propagation is important because
it highlights how KF can be understood within a broader framework of probabilistic
inference. This perspective reveals the underlying connections between different meth-
ods for state estimation and message propagation. It simplifies the integration of KF
with other BP-based techniques and helps in adapting KF to more complex, non-linear
scenarios. However, this framework serves as a basis that can be extended to handle
non-linear cases and incorporate additional sensors, such as RADAR. In our work, we
utilized normal distributions along with GPS and odometry measurements to establish
a baseline approach.

Looking ahead, cooperative localization is a promising area for future research.
Expanding our approach to include collaborative methods between multiple vehicles
could enhance accuracy and reliability, addressing challenges posed by non-linear dy-
namics and complex vehicle interactions.
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PP

Physical description: 8 chapters, 38 pages, 11 references, 9 figures
PD



Scientific field: Mathematics
SF

Scientific discipline: Applied mathematics
SD

Key words: factor graphs, Belief propagation, Kalman filter, normal distribution, localization of the
vehicles
KW

Universal decimal classification:
UDC:

Holding data: The Library of the Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad
HD

Note:
N

Abstract: This paper explores the relationship between the Kalman Filter (KF) and the Belief Propa-
gation (BP) algorithm within the framework of probabilistic inference. Based on a study that demon-
strates KF as a Sum-product algorithm in the one-dimensional case, we extend this approach to a multi-
dimensional scenario, taking into account vehicle position coordinates. By applying normal distribu-
tions, GPS, and odometry measurements, we develop a foundation for vehicle state estimation. This
framework not only simplifies the understanding and integration of KF with other BP methods but also
allows extension to non-linear cases and additional sensors, such as RADAR. In future work, this model
could be expanded to cooperative vehicle localization, significantly improving the accuracy and relia-
bility of estimation in systems with multiple vehicles and more complex dynamic conditions.
AB
Accepted by the Scientific Board on:
ASB

Defended:
DE

Thesis defend board:
DB
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