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Introduction

In recent years networks have attracted a lot of attention since many real-world scenarios
can be modeled using them. From social and transportation networks to citation networks,
representing and analyzing data in this format is a common practice. While many al-
gorithms deal with networks successfully there is still a need to try and simplify graph
structure to one of fewer dimensions. The field of graph embedding is trying precisely
to bridge a gap between graph structures and structures of fewer dimensions. Once the
mapping is achieved, algorithms and techniques reserved for later structures can be suc-
cessfully used on the graph data and yield new results. Dimensionality reduction is of
great importance in many areas since it enables more efficient data mining, downsizes the
complexity, and speeds up computing.The practical reasons for using it are the following:

1. Curse of dimensionality
When data in hand is high-dimensional we come across a problem known as the
"curse of dimensionality". As the number of dimensions increases, the data becomes
more sparse which makes it harder for the model to learn similarities among the data
and important features. The dimensionality reduction makes data more compact and
as such more suitable for further analysis.

2. Efficiency and Scalability
The large graphs, with thousands or even millions of nodes, are very expensive to
store and manipulate. Once we have the lower-dimensional representation of a graph,
the needed resources are smaller and the speed of the algorithms manipulating the
graphs is increased.

3. Extracting important features
It happens often that some of the dimensions are redundant and do not provide useful
information but rather take away from the model’s precision. The dimensionality
reduction allows us to filter out unimportant information and focus on the valuable
features of the graph structure.

4. Data Visualization
The high-dimensional data can not be visualized. Once the dimensionality reduction
is applied we can showcase the data in 2D or 3D space and recognize the relations
and patterns in data.

In this thesis, we provide an overview of graph embedding methods and present in detail
three approaches - Locally Linear Embedding, Laplacian Eigenmaps, and DeepWalk.
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1. Graph Structure & Embeddings

In this section, we give theoretical definitions of both graphs [1] and graph embeddings
[2].

1.1 Mathematical Definition of the Graph

A graph is defined as an ordered pair G(V,E) where V is a set of nodes or vertices and
E represents a set of edges i.e. links connecting two nodes and denoting that there is a
present relationship among them. Being a non-linear data structure, graphs allow us to
model complex systems and scenarios of network data.
Let G(V,E) be a graph containing a set of vertices V = {v1, v2, ...} and a set of edges
among these vertices E. If there is a present link among two vertices vi, vj ∈ V it will be
denoted as an element of an edge set eij ∈ E.
There are many different classifications of graphs depending on which aspect of the graph
we focus on. Some of them are presented below:

1. Directed vs. Undirected graphs
In the directed graph every edge has a determined direction, which is often denoted
with an arrow pointed in the wanted direction. On the contrary, an undirected graph
has edges that are unordered pairs meaning that edge eij can be replaced with eji.
A real-world example that is modeled with the directed graph would be Google
Maps, while undirected graphs could be used to model online social networks -
friendship between two individuals is mutual.

2. Weighted vs. Binary graphs
In weighted graphs, each edge has a specific number called weight. The weight
associated with the edge eij will be denoted by wij . In general, the edge weight
represents a similarity between the two nodes being connected by it. The edge
weight being higher indicates that the respective nodes are expected to be more
similar. Conversely, in binary graphs, also called unweighted graphs, edges are not
assigned numbers.

3. Homogeneous vs. Heterogeneous graphs
In homogeneous graphs all nodes and edges are consistent i.e. of the same kind. We
can think of it as if the nodes and edges are all equal in a hierarchy, for example in a
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friendship group.
On the other hand, in heterogeneous graphs, there can be many different types of
nodes and edges. An example of a network that could be modeled with a directed
heterogeneous graph would be an education network. In the education network,
there are nodes representing teachers, as well as nodes representing students. There
are also different types of edges modeling different relationships between different
types of nodes.

There are three ways of representing graphs:

1. Adjacency matrix
An adjacency matrix is denoted with A and it shows whether there is an edge
between two nodes or not. It is a square matrix of dimensions |V | × |V |, where |V |
represents the total number of nodes in the graph. For aij ∈ A holds:

aij =


1 if there is an edge eij in binary graph

0 if there is no edge eij in binary graph

w where w is a corresponding edge weight in a weighted graph

(1.1)

An adjacency matrix is symmetric for undirected graphs. If a graph in hand is sparse,
an adjacency matrix is not the best way to represent it due to the high computational
cost.

2. Adjacency list
A better way to represent large sparse graphs would be an adjacency list since it
only stores each vertex’s adjacent vertices. An adjacency list is also suitable for
operations on vertices such as deletion, insertion, and addition of vertices.

3. Incidence matrix
An incidence matrix is a way to capture node-edge relationships in a graph. It is a
matrix of dimensions |V | × |E| in which each column is assigned a specific edge
and each row represents a different node in a directed graph.
Elements of the matrix for the directed graph are either 1—meaning that there is a
connection between column edge and row node in a way that the edge is outgoing
from the node, 0—denoting that there is no link between edge and node in hand, and
-1—similar to the first case with an exception that column edge is incoming edge to
the given node. If the graph in hand is undirected, elements of the matrix are only 0
and 1 depending on whether the connection between the column edge and row node
is present.
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1.2 Graph Embeddings Formal Setup

There are usually two ways of dealing with graph-based problems. We either use an
original graph adjacency matrix, or represent a network in a vector space while trying to
preserve its properties. Attaining such an embedding is what allows for using different
techniques. There are various definitions of graph embeddings - one relates to representing
a whole graph in vector space. At the same time, the other assumes representing each sole
node in a vector space.
Deriving a vector representation of every node of a graph proposes a few challenges:

1. Choosing the property
A vector representation of nodes is well-defined if it conserves the graph structure
and links among the nodes. But how does one choose which property embedding
should preserve? There are many options for the choice of the property since there
are many metrics and properties related to graphs.

2. Scaling the network
Another challenge put in front of the embedding is related to scaling large networks.
Many networks in the real world are of considerable size, containing millions of
vertices and edges. The embedding must pass the test of scalability and be able
to deal with large graphs with minimal information loss. This is not an easy task
especially when we aim to preserve the overall properties of the graph.

3. Choosing the number of the dimensions
Yet another choice worth being considered is choosing the optimal dimensions
of the embedding. While leaning toward a higher number of dimensions allows
more precise reconstruction there is a bigger computational cost associated with it.
On the other hand, choosing fewer dimensional embedding is computationally less
expensive but can lead to losing important information about the network. That is not
always the case though. Depending on the task at hand, choosing fewer dimensions
can be the right choice as in predicting link accuracy while only taking into account
local links among nodes.
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Let us consider a weighted graph with the edge weights denoted by wij and present three
proximity measures:

1. First-order proximity
As mentioned before, edge weights are indicators of how similar the nodes connected
by it are. They represent the first such a measure and therefore are referred to
as first-order proximities. First-proximity measures capture local graph structure
property and as such are not sufficient for conserving the global network structure[1].

2. Second-order proximity
The second-order proximity takes into account how similar the neighborhoods of the
two nodes are. Firstly, we compute the neighborhood of each node meaning we look
at the weights of links present for each node. Then we say two nodes are similar if
their neighborhoods are similar. Second-order proximity allows us to capture global
network structure property.

3. Higher-order proximities
Many metrics can be used to define higher-order proximities such as Rooted PageR-
ank, Katz Index, Common Neighbors, and others. However, second-order proximity
gives good enough results in a majority of graph embedding methods.

An embedding maps every vertex to a low-dimensional vector of features while simulta-
neously trying to preserve graph structure properties and strength of the links among the
nodes.
Mathematically, graph embedding can be defined as a mapping f : vi → yi ∈ Rd, for
every node vi ∈ V , such that the dimension d is significantly lower than the order of the
graph i.e. |V |. The mapping f should be able to conserve proximity measures of the graph
[2].
Embedding techniques learn representations by solving an optimization problem. For
example, if the embedding has a goal of preserving first-order proximity one way to achieve
that would be by minimizing the following:

∑
i,j

wij||yi − yj||2

where (vi, vj) and (vi, vk) are two node pairs with link strengths wij , wik such that wij >

wik.Since the nodes vi and vj have a stronger connection they will be mapped to points
closer to each other in the embedding space [2].
The || · || is notation used for the Euclidean, i.e, L2 norm that is defined for a vector
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x = (x1, x2, ..., xn) in Rn as follows

||x|| = (
n∑

i=1

|xi|2)
1
2

Graph embedding techniques have three cornerstones [1]:

1. Preservation of graph structure property
2. Similarity measures of nodes in both the original and mapped space
3. Encoder
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2. Overview of Graph Embedding Methods

Graph embedding methods can be categorized into three wide categories: Factorization
based, Random Walk based and Deep Learning based [2].
In this chapter, we give an overview of each category.

2.1 Factorization based Methods

Factorization based methods represent the link among the vertices in a matrix form and
proceed to factorize this matrix to obtain the new representation of the original graph.
Some of the matrices commonly used to capture the links among nodes are the adjacency
matrix, node transition probability matrix, Laplacian matrix, Katz similarity matrix, and
others. Depending on the properties of the matrix we can use different techniques to
factorize it. For example, if the matrix in hand is positive semidefinite, then eigenvalue
decomposition is a good choice. On the other hand, for unstructured matrices gradient
descent methods can be used to derive the graph embedding.
In the following table, we present the Factorization based methods, along with information
about their time complexity and which proximity order they preserve [2].

Table 1. Factorization based methods

Nr Name of the Method Properties perserved Time Complexity
1 Locally Linear Embedding (LLE) 1st order proximity O(|E|d2)
2 Laplacian Eigenmaps 1st order proximity O(|E|d2)
3 Graph Factorization 1st order proximity O(|E|d)
4 GraRep 1 - kth order proximities O(|V |3)
5 HOPE 1 - kth order proximities O(|E|d2)
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2.2 Random Walk based Methods

Random walks are beneficial if the graph is too large to be observed and measured as a
whole. They have been utilized to estimate many properties of the graph such as node
similarity and centrality. Some of the embedding methods based on random walks that
carry out node representations are DeepWalk and node2vec.

Table 2. Random walk based methods

Nr Name of the Method Properties perserved Time Complexity
1 DeepWalk 1 - kth order proximities O(|V |d)
2 node2vec 1 - kth order proximities O(|V |d)

2.3 Deep Learning based Methods

With the rise of deep learning research, there are many deep neural network based ap-
proaches applied to graph data. The non-linear structure of the graph data can be captured
using deep autoencoders. And they are precisely used to generate an embedding model.
The deep learning based methods are Structural Deep Network Embedding (SDNE), Deep
Neural Networks for Learning Graph Representations (DNGR), and Graph Convolutional
Networks (GCN). In the following table, we list their properties preservation and time
complexity information.

Table 3. Random walk based methods

Nr Name of the Method Properties perserved Time Complexity
1 SDNE 1st & 2nd order proximities O(|V ||E|)
2 DNGR 1 - kth order proximities O(|V |2)
3 GCN 1 - kth order proximities O(|E|d2)
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3. Locally Linear Embedding

Locally Linear Embedding (LLE) is an unsupervised learning algorithm that derives low-
dimensional embeddings of high-dimensional inputs, while preserving information about
the neighborhood structure of the graph. This method is presented at [3],[4]. It addresses
the problem of nonlinear dimensionality reduction.

3.1 The Intuitive Notion of Manifolds

A manifold is a concept that describes topological space that locally resembles Euclidean
space, but can have a more complex structure on a global level. It is a generalization of
line, curve, plane, or sphere terms. Intuitively, we can think of it as taking an object from
Rk and trying to place it into Rn, where n > k [5].
Let us start with a line, which is of course one dimensional. We can embed a line in
two dimensions by wrapping it around into a circle. If we now look at each arc of the
circle, locally it seems closer to a one-dimensional line segment. This way we embedded
a one-dimensional manifold - a circle, in two dimensions. Some other examples of one-
dimensional manifolds are parabolas, hyperbolas, and ellipses.
Moving onto the two-dimensional manifolds, the simplest example is a sphere. Locally,
each patch of the sphere resembles a 2D Euclidean plane. More examples of 2D manifolds
include torus, double torus, Klein bottle, and cross surface as shown in Figure 1.

Figure 1. Non-intersecting closed surfaces in R3. Examples of 2D manifolds,
(source:[5])
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The neighborhood of each point on these manifolds locally resembles a two-dimensional
plane. An appropriate analogy is Earth. When we stand on the ground Earth looks flat.
There are also higher-dimensional manifolds embedded in even larger dimensions. How-
ever, they can not be visualized.
In machine learning manifolds are a central term of the manifold hypothesis. This hypothe-
sis states that "real-world high dimensional data (such as images) lie on low-dimensional

manifolds embedded in the high dimensional space" [5].
The idea is that there is some lower-dimensional representation of high-dimensional real-
world data. Let us take as an example RGB images having dimensions 512 × 512 × 3.
They may lie on a lower-dimensional manifold compared to their original dimensions.
This reasoning makes sense because we can, for example, learn to classify these images in
a capacity-limited neural network. If not, learning an 512× 512× 3 function would be
infeasible .
The topic of dimensionality reduction was previously explored by classical approaches
that include principal component analysis (PCA) as well as multi-dimensional scaling and
neural network based approaches. The majority of these approaches try to solve a nonlinear
optimization problem, usually using gradient descent which only guarantees derivation of
a local optimum. Most of these approaches do not take into account the structure of the
manifold on which data may lie.

3.2 Introduction

LLE tries to discover nonlinear structures in high-dimensional data by making use of the
local symmetries of linear embeddings. LLE maps its inputs into a sole global coordinate
system of fewer dimensionality and manages to recover global nonlinear structure from
locally linear fits.
Locally Linear Embedding is an eigenvector method aimed at solving the problem of
nonlinear dimensionality reduction. Its optimizations do not relate to local minima. Two
popular eigenvector methods that preceded the LLE are principal component analysis
(PCA) and multidimensional scaling (MDS). Both of these methods are designed to mould
linear variabilities in data of high dimensions. Although both of these methods are easy to
implement and their optimizations do not include local minima, they have their limitations
as linear models. LLE addresses the problem of mapping high-dimensional data into a sole
global coordinate system of fewer dimensions.
It is based on a simple geometric intuition.
Assume that data is comprised of N real-valued vectors x⃗i, i = 1, ..., N , of dimensionality
D. Data points are sampled from some underlying manifold, and we expect data points and
their neighbors to be located on or at least close to a locally linear patch of the manifold.
The local geometry of those patches is identified by linear coefficients that allow the
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reconstruction of each data point from its neighbors. There are many ways in which we
can identify neighbors of the data point. The basic formulation of LLE locates the K
neighbors using the Euclidean distance. Alternatively, one can choose different rules based
on local metrics.
The cost function used to measure the reconstruction error is the following:

ϵ(W ) =
∑
i

||x⃗i −
∑

j wijx⃗j||2 (1)

This cost function summarizes the squared distances among all data points and their
reconstructions. Reconstruction weights wij outline the contribution of the jth data point
to the ith reconstruction and are computed by minimizing the cost function with two
constraints:

1. Each data point x⃗i is reconstructed using only its neighbors, meaning that wij = 0 if
x⃗j is not the neighbor of x⃗i.

2. The rows of the weight matrix add to one (
∑
j

wij = 1).

Keeping in mind these constraints, optimal weights are achieved by solving a least-squares
problem.
The described weights have an important symmetry. Namely, for each data point, they are
invariant to rotations, resizing, and translations of both that one data point and its neighbors.
This symmetry implies that the reconstruction weights identify the inherent geometric
properties of each neighborhood. The latter constraint is responsible for enabling the
invariance of translations, while the invariance to rotations and resizing follows from the
definition of equation (1).
The idea that the LLE uses to construct its neighborhood-preserving mapping is that the
same weights wij that reconstruct the data point in higher D dimensions should also allow
us to remake its embedded manifold coordinates in fewer d dimensions. Intuitively, we
can think of it as breaking locally linear patches of the underlying manifold and placing
the pieces into desired low-dimensional embedding space. Suppose that we managed
to preserve the angles that each data point forms with its nearest neighbors. Under this
assumption, placing each patch into the embedding space requires no more than rotation,
resizing, and translation of its data point. And those are precise operations to which
weights are invariable. That is the reason why we expect that we can use the same weights
to rebuild data points from their neighbors in a low-dimensional space.
The final step of the algorithm is reserved for mapping each observation x⃗i from high-
dimensional space to a vector y⃗i of fewer dimensions. The vector y⃗i represents the general
inner coordinates on the manifold and its d coordinates are chosen in a way to minimize
the following embedding cost function:
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ϕ(Y ) =
∑
i

||y⃗i −
∑
j

wij y⃗j||2 (2)

The latter cost function, as the first one, is based on locally linear reconstruction errors. The
difference is that here the weights wij are fixated while we optimize for the coordinates y⃗i.
The cost function (2) explicates a quadratic form in the vectors y⃗i and it can be minimized
by finding a solution to a sparse N ×N eigenvector task.
The reconstruction weights wij for each data point are derived only from its local neighbor-
hood and as such are independent of the weights for the rest of the data points. On the other
hand, the embedding coordinates are derived using the global operation that combines all
data points into connected components of the network determined by the weight matrix.
By computing the bottom eigenvectors one at a time from the second equation we can
determine the different dimensions in the embedding space. We should keep in mind
that derivation is always coupled across data points which allows the algorithm to exploit
overlying local information and uncover the global structure.

3.3 Algorithm

The summary of the Locally Linear Embedding (LLE) algorithm in three steps is:

1. Select the neighbors
Find the neighbors of each high-dimensional data point, x⃗i. This can be done with
the K nearest neighbors algorithm.

2. Reconstruct with linear weights
By solving the least-squares problem in (1), while keeping in mind presented con-
straints, compute the weights wij that allow for the best linear reconstruction of x⃗i
from its neighbors.

3. Map to embedded coordinates
Derive the low-dimensional embedding vectors y⃗i that are rebuilt by the reconstruc-
tion weights wij , and are minimizing cost function (2). The constraint that points
are solely reconstructed from neighbors allows for highly nonlinear embeddings.

Implementation of the algorithm is simple. Data points are rebuilt using their K nearest
neighbors that are determined using either Euclidean distance or normalized dot products.
The only free parameter in this algorithm is the number of neighbors, K. Once the
neighbors are fixated we search for the optimal weights wij and coordinates y⃗i. The
algorithm manages to reach a global minimum of the reconstruction and embedding costs
provided in equations (1) and (2), respectively [3].
It can happen, although rarely, that the number of neighborsK is higher than the dimension
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of the input D. In such a scenario one solution could be to add a regularization that
penalizes the squared measures of the weights to the reconstruction cost.
Although the algorithm takes as input N high dimensional data points x⃗i, in many cases,
data of this form may not be available. Instead of the high dimensional vectors x⃗i one can
have at disposal only the measures of dissimilarity or coupled distance among different
data points. With a simple change, LLE can deal with input data in such a form. That
way LLE requires only a small part of all feasible pairwise distances. Namely distances
between neighboring points and their corresponding neighbors.

Algorithm 1 Locally Linear Embedding Algorithm
Our input X is a matrix of dimensions D × N , composed of N data points in D
dimensions. The desired output is a matrix Y having the dimensions d×N , composed
of embedding coordinates of the input points in d− dimensional embedding, d < D.
1. Compute neighbors in input space, X
1 : for i = 1, ..., N :
2 : compute the Euclidean distance from x⃗i to the rest of the points x⃗j
3 : obtain the K smallest distances
4 : assign the respective data points to be neighbors of x⃗i
2. Derive reconstruction, linear weights W
5 : for i = 1, ..., N :
6 : compute the matrix Z that contains all of the neighbors of x⃗i, but not x⃗i itself
7 : Deduct x⃗i from every column of matrix Z
8 : Derive the local covariance C, as C = ZTZ
9 : Find a solution for linear system Cw = 1, with respect to w
10 : Set the value of wij to 0 if xj is not the neighbour of xi
11 : The remaining elements of the ith row of W should be set to w

sum(w)

3. Derive embedding coordinates Y with weights W
12 : Compute sparse matrix M , as M = (I −W )T (I −W )
13 : Obtain the bottom d+ 1 eigenvectors of M
14 : The qth row of Y should be set to the q + 1 smallest eigenvector

▷ the bottom vector [1, 1, 1, ...] with corresponding eigenvalue zero is discarded

In the above algorithm x⃗i and y⃗i represent the ith column of matricesX and Y , respectively,
i.e., the data and the embedding coordinates of the ith data point. I is the identity matrix
and 1 is the column vector of 1s.
Computing the K nearest neighbors in step 1 can be done in many different ways. Instead
of using Euclidean distance, one can try to include all the points within a fixed radius or
use some other domain-specific local distance metrics. There are well-run techniques for
computing the neighbors of each point such as KD trees.
In step 2, if K > D, the local covariance will not be full rank and should be regularized.
This can be done by setting it to C = C + ϵI , where ϵ is a small constant. In this way, we
ensure that the linear system in step 2 has a unique solution.

18



3.4 Discussion

The advantage of the LLE is that it does not involve many free parameters such as the
learning rate, convergence criteria, and others. Let us investigate the time complexities
of different steps of LLE. Computing the nearest neighbors in the first step has O(DN2)

scalability. Meaning, it scales linearly in the dimensionality of the input and quadratically
in the number of data points. In the second step, reconstruction weights wij are computed
in O(DNK3) time. That is the number of operations needed to solve a system of linear
equations of the dimension K×K for each data point. Deriving the bottom eigenvectors in
the third step scales linearly regarding embedding dimensions d and quadratically regarding
the number of data points N ,i.e., O(dN2). As we add more dimensions to the embedding
space the previous one does not change, hence we do not rerun LLE to derive higher
dimensional embeddings. The size of the weight matrix, N × K, restricts the storage
requirements of LLE.
LLE demonstrates a universal concept of working with manifolds. Namely, if we analyze
overlapping local neighborhoods all together we can derive conclusions about global
structure. A big advantage of the LLE is that it does not require solving any big dynamic
programming task. It also collects sparse matrices whose structure allows for time and
space computational reduction.
Combining LLE with different methods can yield more useful results in statistics and data
analysis. One direction would be to understand how to learn a parametric mapping from
the observation to the embedding space using the conclusions of the LLE. One can try
and use pairs (x⃗i, y⃗i) as labeled samples for supervised learning models. Learning such a
mapping would make LLE widely applicable in many areas of information science.
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3.5 Example

The following example showcases the nonlinear dimensionality reduction of three-
dimensional data to a two-dimensional embedding space. The data is selected from a
two-dimensional manifold. We can notice that LLE managed to discover the mapping that
successfully preserved the neighborhood of the data points [4].
The input to the LLE algorithm was N = 1000 points selected from the Swiss roll
two-dimensional manifold. The algorithm used k = 15 neighbors per each data point [6].

Figure 2. Original 3D data in the form of a Swiss roll

Figure 3. LLE dimension reduction with k = 15 neighbors
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4. Laplacian Eigenmaps

Laplacian Eigenmaps is a geometrically inspired, dimensionality reduction algorithm
presented at [7], [8]. It is a method for "constructing a representation for data sampled

from a low dimensional manifold embedded in a higher dimensional space" [7] while
preserving the local properties and naturally being prone to clustering.

4.1 Introduction

Laplacian Eigenmaps is a method that uses the Laplacian of the graph and derives a low-
dimensional representation of the data set that includes local neighborhood information.
This representation map can be perceived as a "discrete approximation to a continuous

map that naturally arises from the geometry of the manifold" [8].
Let us highlight the main points of the algorithm. Its core is simple, having few local
computations and a sparse eigenvalue problem, while its solution contemplates the intrinsic
geometric shape of the manifold to which the data belongs. This is made possible by
observing that the Laplacian matrix of the graph, acquired through data points, can be seen
as an estimation of the Laplace Beltrami operator established on the manifold.
The Laplace Beltrami operator has a role in providing an appropriate embedding for the
manifold. We approximate the manifold by the adjacency graph obtained from data points.
The Laplace Beltrami operator is estimated using the weighted Laplacian of the adjacency
graph with the optimally chosen weights. The connection between Laplacian and the
heat kernel allows us to choose the weights of the graph. As a result, the embedding
maps of the data points estimate the eigenmaps of the Laplace Beltrami operator. The
graph Laplacian has been broadly utilized for different clustering tasks. The connections
between the graph Laplacian and the Laplace Beltrami operator are explicitly used in this
framework to explain dimensionality reduction task geometrically.
As we said, this algorithm preserves the local properties of the graph and it is thus less
sensitive to outliers and noise. By trying to conserve the local information in the embedding,
it highlights the natural clusters of data points. From that perspective, we can see how
clustering and dimensionality reduction are connected. Note that this method does not
yield meaningful clusters for all data sets. However, we will provide an example for which
that is the case.
Given that this method stems from the intrinsic geometric manifold’s structure, it has
stability concerning embedding. For isometric embeddings, the representation stays the
same. In the RGB image example, different choices of height and width of the image, i.e.,
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the image resolution, will result in embedding the same underlying manifold into spaces
of different dimensions. However, this algorithm will compute similar representations
separate from resolution.
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4.2 Algorithm

The general dimensionality reduction setup is similar to the graph embedding definition.
Having a set of n points x1, x2, ..., xn ∈ Rl we are looking for set of points y1, y2, ..., yn ∈
Rd, where d << n, such that the point yi is an representation of point xi. In this case
points x1, x2, ..., xn ∈M , where M is a manifold embedded in Rl.
The following algorithm aims to construct the optimal representations, i.e., set of points yi,
i = 1, ..., n.

Algorithm 2 Laplacian Eigenmaps Algorithm

Our input are n points x1, x2, ..., xn ∈ Rl. The desired output is a weighted graphGwith
n vertices (corresponding to each of n points) and the set of edges joining neighboring
points. The embedding is obtained by deriving the eigenvectors of the graph Laplacian.
1. Compute the (adjacency) graph G
1 : The edge between nodes i and j is present if xi and xj are close to each other, for
which we have two variations:
2 : (i) ||xi − xj||2 < ϵ, where ϵ ∈ R is fixed.
3 : (ii) i is among j’s k nearest neighbors, or j is among i’s k nearest neighbors.
2. Selecting the weights
4 : Again, we have two variations for choosing the edge’s weights:

5 : (i) If there is a present link between nodes i and j, set wij = e−
||xi−xj ||

2

t , t ∈ R,
else set wij to 0.
6 : (ii) If there is a present link among nodes i and j set wij = 1, else wij = 0
3. Eigenmaps
7 : Assume graph G we just obtained is connected, or proceed using its connected
components.
8 : Derive eigenvalues (λ0, λ1, ..., λn−1) and eigenvectors (f0, f1, ..., fn−1), for eigenvec-
tor problem: Lf = λ∆f
9 : ∆ is a diagonal weight matrix, ∆ii =

∑
j

wji and L is the Laplacian matrix defined

as L = ∆−W
10 : We dismiss the eigenvector f0 whose corresponding eigenvalue is 0
11 : The next d eigenvectors are used for embedding in d-dimensional Euclidean space:
xi → (f1(i), f2(i), ..., fd(i)).
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Let us explain in more detail the algorithm we just presented.
In the first step, in which we compute the graph G, we presented two options for reasoning
if the points xi and xj are close. Each of them has its advantages and disadvantages. The
first one (line 2) can be referred to as ϵ-neighborhoods. The norm used is the Euclidean
norm in Rl. The advantage of using this approach is that it is geometrically motivated and
it is symmetric by definition. Disadvantages are that it can often result in graphs with few
connected components and it is not obvious how to choose a proper value for ϵ.
The second option (line 3) can be referred to as k nearest neighbors, k ∈ N. The advantages
of choosing this approach are that this relation is symmetric, does not tend to result
in disconnected graphs and the value of k is easier to select. On the other hand, its
disadvantage is that it is less geometrically intuitive.
In step two we again have two options. The first one (line 5) is called Heat kernel and
it has parameter t ∈ R. The second one (line 6) is a simplification of the first one (for
t = ∞) as it does not require choosing t.
In the third step, we are solving a general eigenvector problem:

Lf = λ∆f i.e.
Lf0 = λ0∆f0

Lf1 = λ1∆f1

...
Lfn−1 = λn−1∆fn−1

0 = λ0 ⩽ λ1 ⩽ ... ⩽ λn−1

∆ is a diagonal weight matrix, whose entries are column or row sums of matrix W , and L
is a Laplacian matrix, defined as L = ∆−W . Laplacian matrix is positive semidefinite
and symmetric, and we can think of it as an operator on functions defined on nodes of
graph G.
Now, let us discuss why the embedding derived in the Laplacian Eigenmap algorithm
optimally conserves local information. The answer is based on standard spectral graph
theory.
We compute a weighted graph G = (V,E) with links among the nearby points. Let us also
assume that the graph G is connected. We are looking at the special case where d = 1, i.e.,
the problem of mapping the weighted graph G to a line in a way that the points among
whom there is a link stay close together. We denote such a map as y = (y1, y2, ..., yn)

T . A
good map can be obtained by minimizing the objective function under proper constraints:

∑
i,j

(yi − yj)
2wij
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This objective function together with our selection of weights wij imposes a penalty if
points xi and xj , which are close to each other, are mapped apart. By minimizing it we are
trying to make sure that if points xi and xj are neighboring, then corresponding yi and yj
will be neighboring as well.

∀y, yTLy = 1
2

∑
i,j

(yi − yj)
2wij

where L = ∆−W , W is symmetric and ∆ii =
∑
j

wij . This relation also implies that L is

positive semidefinite.
Our minimization problem becomes finding

argmin
y,yT∆y=1

yTLy

We have a constraint yT∆y = 1 that takes out a random scaling factor in the embedding.
The matrix ∆ gives us a natural measure of the nodes of the graph. Meaning that, the
larger the value ∆ii is, the node corresponding to it is more significant. Matrix L is positive
semidefinite. The vector y that minimizes the objective function is stated by the minimum
eigenvalue solution to the general eigenvalue problem:
Ly = λ∆y

Constraint, as it is now, has a trivial solution, constant function 1 that sends all nodes of
the graph G to the real number 1. For connected graphs, 1 is the only eigenvector with
eigenvalue 0. To avoid this trivial case we introduce a constraint of orthogonality and
search for

argmin
yT∆1=0,yT∆y=1

yTLy .

In this way, the solution is obtained as an eigenvector with the corresponding smallest
nonzero eigenvalue.
In the more general setup, when we are embedding the graph into d-dimensional Euclidean
space, the embedding is given as the n × d matrix Υ = [y1,y2, ...,yd]. The embedding
coordinates of the ith node are given as the ith row of the matrix Υ. Similar to before, we
are trying to minimize the following

∑
i,j

||y(i) − y(j)||2wij = tr(ΥTLΥ)

and y(i) = [y1(i),y2(i), ...,yd(i)]
T is the ith’s node d-dimensional representation. This

simplifies to searching for
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argmin
ΥT∆Υ=I

tr(ΥTLΥ)

We have again introduced the constraint, which, in the d-dimensional embedding problem,
prevents collapse onto a subspace of dimension less than d (if we request orthogonality to
the constant vector) or less than d− 1 (otherwise). The solution is obtained by the matrix
of eigenvectors corresponding to the lowest eigenvalues of Ly = λ∆y.

4.3 The Laplace Beltrami Operator

As we said in the introduction, there is an analogy between the Laplacian of the graph
and the Laplace Beltrami operator on manifolds. We proceed to explain the properties of
eigenfunctions of the Laplace Beltrami operator that make them suitable for embedding.
Let us consider a smooth, compact, d-dimensional Riemannian manifold M . The Rieman-
nian structure on the manifold is generated by the standard Riemannian structure on Rl in
case the manifold is embedded in Rl [9]. Once again we aim to map a manifold to the real
line in a way that points which are close to each other on a manifold are close together on
a line as well.
Let us denote such a map by φ, φ : M → R. And let us assume that φ is twice differen-
tiable. We are observing two neighboring points x,h ∈M and their respective mappings,
φ(x) and φ(h).
The first-order Taylor approximation of the mapping φ at the point x tells us that, for any
h in the neighborhood of x, the following holds:

φ(h) = φ(x) +∇φ(x)(h− x) + o(||h− x||)) i.e.

φ(h)− φ(x) = ∇φ(x)(h− x) + o(||h− x||))

Which becomes

|φ(h)− φ(x)| = |⟨∇φ(x),h− x⟩|+ o(||h− x||))

The Cauchy-Schwartz inequality gives us

|φ(h)− φ(x)| ⩽ ||∇φ(x)|| ||h− x||distM + o(||h− x||distM ))

If manifold M is isometrically embedded in Rl holds the following
distM(x,h) = ||h− x||Rl + o(||h− x||Rl) and

|φ(h)− φ(x)| ⩽ ||∇φ(x)|| ||h− x||Rl + o(||h− x||Rl).

Hence, ||∇φ(x)|| gives us an estimate of how distant nearby points are, after being mapped
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by φ.
By attempting to find the

argmin
||φ||L2(M)=1

∫
M

||∇φ(x)||2,

we are searching for a map that best conserves locality on average.
Minimizing

∫
M

||∇φ(x)||2 corresponds to minimizing Lf = 1
2

∑
(fi − fj)

2wij , where f is

a function defined on nodes and fi is the value function f on the ith vertex.
Minimizing

∫
M

||∇φ(x)||2 comes down to finding Laplace Beltrami’s operator (L) eigen-

functions. The Laplace Beltrami operator is defined as

L(f) := −div∇(f),

and div represents the divergence of the vector fields.
It holds the following

∫
M

||∇f ||2 =
∫
M

L(f)f

L is positive semidefinite. The function f that minimizes the left side of the latter equation
must be an eigenfunction of L. The spectrum of the Laplace Beltrami operator on a
compact manifold is shown to be discrete [9]. Let us denote eigenvalues as 0 = λ0 ⩽ λ1 ⩽

λ2 ⩽ λ3 ⩽ ..., and corresponding eigenfunctions by fi, i = 0, 1, 2, 3, .... Again, similar
to the graph setting, f0 is the constant function that sends the whole manifold to a single
point. We battle this case by demanding that the embedding map f is orthogonal to f0.
Consequentially f1 is the optimal embedding map. As in the previous section, the optimal
d-dimensional embedding is provided by

x → (f1(x), f2(x), ..., fd(x)).
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4.4 Heat Kernels and Choosing the Weights

When discussing the Laplacian Eigenmaps algorithm, more precisely, its second step in
which we choose the weights of the graph, we have offered two options. In this section,
we provide a brief intuition of the Heat kernel and how it relates to our weight choice. The
Laplace-Beltrami operator, acting on differentiable functions over a manifold M is closely
related to heat flow. Let us consider the initial heat distribution given as φ :M → R and
the heat distribution at time ẗ, u(x, t). Note that u(x, 0) = φ(x). The heat equation is
given as the following partial differential equation

( ∂
∂t
+ L)u = 0

Its solution is given as

u(x, t) =
∫
M

χt(x, y) φ(y)

and χt is the heat kernel, the Green’s function for this equation. As a consequence,

Lφ(x) = Lu(x, 0) = −( ∂
∂t

[
∫
M

χt(x, y) φ(y) ])t=0.

In a suitable coordinate system, we can approximate heat kernel by the Gaussian [9]:

χt(x, y) = (4πt)−
d
2 e−

||x−y||2
4t (ψ(x, y) +O(t)),

and ψ(x, y) is a smooth function for which holds ψ(x, x) = 1. With this in mind, when t
is small and x and y are close to each other,

χt(x, y) ≈ (4πt)−
d
2 e−

||x−y||2
4t

Detailed explanation is provided in [9].
As t→ 0 the heat kernel tends to Dirac’s δ-function, i.e., lim

t→0

∫
M

χt(x, y)φ(y) = φ(x). For

small t, we have

Lφ(x) ≈ 1
t
[ φ(x)− (4πt)−

d
2

∫
M

e−
||x−y||2

4t φ(y) dy ]

For n data points on the manifold x1,x2, ...,xn, the latter comes close to

Lφ(xi) ≈ 1
t
[ φ(xi)− 1

n
(4πt)−

d
2

∑
xj ,||xj−xi||<ϵ e

−
||xi−xj ||

2

4t φ(xj) ],

where 1
t

is a global coefficient. Since the intrinsic dimensionality of the manifold may be
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unknown it is set µ = 1
n
(4πt)−

d
2 . Using the fact that the Laplacian of the constant function

is zero we get

µ = (
∑

xj ,||xj−xi||<ϵ e
−

||xi−xj ||
2

4t )−1 .

Now, there are few feasible approximations for the manifold Laplacian. We aim for the
approximation matrix to be positive semidefinite and thus the graph Laplacian is computed
with the subsequent weights:

wij =

e −
||xi−xj ||

2

4t , when ||xi − xj|| < ϵ

0 , otherwise
(4.1)
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4.5 Example

As in the previous chapter, we consider an example of a Swiss roll, a flat two-dimensional
manifold in R3. We sample N = 2000 random data points from the Swiss roll and present
it in Figure 4. We obtain its two-dimensional representation using Laplacian Eigenmps

algorithm [6] with k = 15 number of neighbors. We see that the locality, while not the
distances on the manifold are preserved.
Note that the weights are binary, either 0 or 1, meaning we do not choose the heat kernel
parameter t ∈ R. This simplified version of the algorithm seems to give good results in
practice.

Figure 4. Random N = 2000 data points on the Swiss Roll

Figure 5. Two-dimensional Laplacian Eigenmaps representation
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5. DeepWalk

DeepWalk introduced at [10] is an approach that allows for learning latent representations
of nodes in a network. Social relations of the nodes are encoded in a continuous vector
space and then can be easily processed by known statistical methods. DeepWalk bridges
the gap in language modeling and unsupervised feature learning from word sequences to
graphs. With DeepWalk the successful deep learning techniques from natural language
processing are introduced to network analysis. An algorithm learns social representations
of nodes by representing a stream of short random walks. By social representations, we
mean latent features of the nodes that describe neighborhood properties and similarities.
The social relations of the nodes are encoded into a continuous vector space with a small
number of dimensions. Instead of processing the semantic structure of human language
neural language models are now generalized to treat a set of randomly-made walks.
The input of a DeepWalk algorithm is a graph while the output is a latent representation.
Once the representation is outputted simple linear classifiers such as logistic regression can
be used to obtain good results. The other advantage of a DeepWalk is that it is trivially
parallelizable.

5.1 Problem Setting

We are trying to classify social network members into single or more categories. Let us
denote the graph with G = (V,E) where, as before, V is a set of nodes, i.e., members of
the network and E represents a set of edges, E ⊆ (V × V ).
We consider a partially labeled network Gl = (V,E,X, Y ), where the attributes X ∈
R|V |×ζ , with ζ being the size of the feature space for every attribute vector, and the set of
labels Υ, where Y ∈ R|V |×|Υ|. Compared to a traditional machine learning classification
task where we are trying to learn a hypothesis Ξ mapping elements of X into the label set
Υ in this approach we can make use of the important information about the dependence of
the examples placed in the structure of G.
This problem is related to as the relational classification or the collective classification.
Previously, this problem was addressed as reasoning in an undirected Markov network with
the use of iterative approximate reasoning algorithms that aimed to derive the succeeding
distribution of labels, provided the network structure. Here, a different approach is taken
to encapsulate the topology information of the network. The label space is not mixed as a
part of the feature space. Instead, the unsupervised method learns features that encapsulate
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the structure of the network independent of the distribution of the labels. Separating the
structural characterization and labeling task allows us to avoid the consecutive errors that
can happen in iterative techniques. Also, it is possible to reuse the same representation for
other classification tasks in the network.
The goal is to learn low-dimensional representationXe, whereXe ∈ R|V |×d and d represent
a small number of latent dimensions. These representations are distributed in a way that
each social event is indicated by a subset of the dimensions and each dimension adds to a
subgroup of the social notions expressed by the space. Taking advantage of these structural
features we will change the space of the attributes to support the classification decision.
The use of these features is broad: they can be used with any classification method and
they integrate easily with simple machine learning algorithms. They also have the property
of scaling well in real-world networks.

5.2 Social Representation Characteristics

We expect our social representations to satisfy the following characteristics:

1. Adaptability
Since the real-world social networks are always changing we expect our representa-
tions to be able to deal with new social relations in a way that does not require the
learning process to be repeatedly performed.

2. Being aware of the community
We want to ensure that similar members of the network are concentrated together.
With that in mind, the distance among latent dimensions is a metric we use to
evaluate similarity among the members of the network.

3. Low dimensionality
Low dimensional techniques generalize better, converge, and make inferences faster
when the labeled data is scarce.

4. Being continuous
Latent representations should model the limited community membership in continu-
ous space. A continuous representation allows for more robust classification because
of its straightforward decision boundaries among the communities.

These characteristics are satisfied by learning the representation for nodes from a stream
of random walks, utilizing the optimization methods initially introduced for the tasks of
language modeling.
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5.2.1 Random Walks

Let us consider a random walk with a root at the node vi, ℘vi . It represents a stochastic
process with random variables ℘1

vi
, ℘2

vi
, ℘3

vi
, ..., ℘k

vi
where ℘k+1

vi
is a node chosen randomly

from the neighborhood of a node vk. Many tasks in the domain of community detection
and content recommendation relied on random walks as similarity measures.
They are also beneficial in deriving a local community structure knowledge taking sub-
linear time in comparison to the size of the input network in the class of output sensitive
algorithms. The random walks are the basis of the DeepWalk algorithm for a few reasons.
Firstly, they capture the local information. Secondly, it is easy to parallelize the local
exploration. Meaning that more than one random walker can explore different parts of the
same network at once. Finally, since we are using a stream of short random walks and
the information they provide, we can adjust to small changes in a graph structure without
having to compute the model from scratch. The learned model can be iteratively updated
with added random walks in a changed part of the graph in time that is sublinear to the
whole graph.
Once the random walks are chosen we need an appropriate technique to capture the infor-
mation about graph structure that random walks provide. If the degrees of the connected
graph is distributed following a power law i.e. the distribution of the degrees is a scale-free

then the frequency in which nodes show up in the random walks will also have a power-law
distribution.
The frequency of the words in a natural language shows similar distributional behavior.
Hence, the methods for language modeling take into account this distribution property. For
example, it can be shown that the frequency of node occurrence in the short random walks
in a scale-free graph and on the other hand, the frequency of word occurrence in the text
of Wikipedia articles text follow similar power-law distributions. This justifies the idea
that the methods applied to modeling the natural language in which the frequency of the
symbols obeys the Zipf’s law distribution can be reused to mold the community structure
in networks. We continue examining the language modeling work and adapting it to learn
the representations of the nodes that meet the desired criteria.

5.2.2 Natural Language Modeling

Language modeling aims to estimate the probability that a particular sequence of words
will appear in a collection of words. Mathematically, we define a sequence of words as
W n

i = (w0, w1, w2, ..., wn), where wi ∈ ν and ν represents a vocabulary.
The goal is to maximize the probability P (wn|w0, w1, ..., wn−1) over the whole collection
of words we train on. Here we try to generalize the language modeling to explore the
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network using a stream of short random walks. We think of these walks as short sentences
or phrases in a language. The analogy is the following: estimate the probability of
noting the node vi, given all the previous nodes visited until now in the random walk.
Mathematically, that probability is denoted by P (vi|(v1, v2, v3, ..., vi−1)).
We want to learn a latent representation so we define a mapping φ : v → R|V |×d, v ∈ V .
The function φ represents the underlying social representation related to each node v in the
network. Practically, we will represent φ as a matrix of free parameters of the dimensions
|V | × d and we will later on use it as our Xe. So, now we are trying to estimate the
probability:

P (vi|φ(v1), φ(v2), φ(v3), ..., φ(vi−1)) (3)

With the walk length becoming larger deriving this objective function becomes impractica-
ble.
Luckily, certain relaxations in language modeling can be used to modify the optimization
problem. The first one is that we do not use the context to predict the word that is missing
but we use one word to predict the context. Secondly, both the words that are to the right
side and to the left side of the word we are considering are creating the context. Finally, the
ordering constraint of the problem is taken out and we require that the model maximizes
the likelihood of any word showing up in the context in the absence of information about its
offset from the observed word. Related to node representation modeling, the optimization
problem becomes:

min
φ

− logP ((vi−k, ..., vi−1, vi+1, ..., vi+k)|φ(vi)) (4)

The mentioned relaxations are very useful for social representation learning. Namely,
assuming the order independence allows us to better capture the information about the
nearness of the nodes that random walks provide. This relaxation also allows us to speed
up the training process since we are building small models with one node at a time.
By solving the optimization problem represented by (4) we will get representations that
preserve the common similarities among the nodes in a local graph structure. Nodes with
similar neighborhoods will obtain alike representations.
Short random walks combined with neural language models create a method that meets all
of the desired criteria. The representations of the social networks generated by this model
are low-dimensional and in a continuous vector space. They encode underlying forms of
community membership. The method computes the helpful intermediate representations
and thus it is adaptable to dynamic network topology.
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5.3 Algorithm

Following a theme of language modeling methods the only requirements for theDeepWalk

as an input are a corpus and a vocabulary ν. In the case of a DeepWalk the corpus is a set
of short truncated random walks and the vocabulary is a set of the graph nodes, meaning
ν = V . Although it is useful to have a knowledge of V and the frequency distribution
of nodes in the random walks before the training process, it is not mandatory for the
algorithm’s efficiency.

Algorithm 3 DeepWalk

Our input is a graph G(V,E), as well as window size w, the size of the embedding d,
walks per node υ and walk length τ . The desired output is a matrix of node representa-
tions φ ∈ R|V |×d.
1.Initialization
1 : Sample φ from U |V |×d

2 : Construct a binary tree T from V
2.Main part
3 : for i = 0, ..., υ:
4 : o =Shuffle(V )
5 : for vi ∈ o:
6 : ℘vi = RandomWalk(G, vi, τ)
7 : SkipGram(φ,℘vi , w) ▷ Updating the representations

The algorithm has two main parts: a random walk generator and an update procedure. The
role of the random walk generator is to take a graphG and sample uniformly a random node
vi as the starting point of the random walk ℘vi . At each step, until the maximum length τ is
obtained the walk chooses uniformly from the neighborhood of the last visited node. The
random walks do not have to be of the same length. They can have restarts, i.e., returning
to the root, but having them would not yield any improvements. This implementation fixes
the number of random walks υ of length τ starting at each node.
In the main part of the algorithm, the outer for loop states the number of walks υ that we
should start at each node. In each iteration, we pass over the data and choose one walk per
node in this pass. To speed up the convergence of the stochastic gradient descent, at the
beginning of each pass a random ordering to traverse the nodes is generated. In the inner
for loop the algorithm iterates over all the nodes of the network. A random walk ℘vi of the
length τ is generated for each node vi and then utilized to update the representations. The
updating of the representations is done with the SkipGram algorithm in correspondence
with the objective function from (4) [10].
Instead of inferring the present word based on the context, the continuous Skip-gram model
[11] aims to maximize the classification of a word on the basis of the other word in the
same sentence. The model uses a log-linear classifier with a continuous projection layer
and feeds each current word as input. Predictions are words within a certain scope before
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and after the present word. Increasing the scope gives the resulting word vectors a higher
quality with the increased computational cost. The words more apart from the current
word are commonly less related compared to those close to it. This is taken into account
by giving less weight to the far-apart words by taking fewer samples from those words in
the training examples.
The complexity of the training process for this model is proportional to
q = ρ× (d+ d× log2(V )), where ρ is the maximum distance of the words, V is the size
of the vocabulary. For example, if we set ρ = 5 for each training word we choose a random
number r < ρ. We proceed with using r words from before and r words after the current
word as correct labels. With the current word as input and each of the r + r words as
output, we end up doing r × 2 classifications. To summarize, the SkipGram predicts
surrounding words given the current word.

Algorithm 4 SkipGram
Our input is φ, ℘vi as well as window size w.
1 : for vj ∈ ℘vi:
2 : for uk ∈ ℘vi [j − w, j + w] :
3 : J(φ) = −logP (uk|φ(vj))
4 : φ = φ− α dJ

dφ

The main idea of the SkipGram algorithm is that within a window of the size w we iterate
over all possible collocations in a random walk. For each collocation, we map each node
vj to its present representation vector φ(vj) ∈ Rd. Having the representation of vj in line
3, we aim to maximize the likelihood of neighbors of vj in the walk. Learning such a
posterior distribution can be achieved through different choices of classifiers. For instance,
if we decide to use a logistic regression we would end up with a large number (|V |) of
labels. Having millions or billions of labels would require a lot of computational resources.
Several optimization tactics can be used to speed up the training process. The first one is
using a Hierarchical Softmax to approximate the probability distribution.
Since uk ∈ V , it is not attainable to calculate P (uk|φ(vj)) and deriving the partition
function, i.e., normalization factor, is high-cost. By allocating nodes of the graph to the
leaves of a binary tree, we are now solving the problem of maximizing the likelihood of a
particular path in the tree. Let us identify the path to a node uk by a series of tree nodes
(t0, t1, ..., t⌈log |V |⌉), where t0 is a root, and t⌈log |V |⌉ is uk. Now, the probability becomes

P (uk|φ(vj)) =
⌈log |V |⌉∏

l=1

P (tl|φ(vj))

One way to model P (tl|φ(vj)) is by using the binary classifier that is allocated to the node’s
tl parent. This way the computational complexity of deriving P (uk|φ(vj)) is decreased
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from O(|V |) to O(log|V |).
Another way to speed up the training time is by allocating shorter paths to the frequently
occurring nodes in the random walks. One can use Huffman coding to decrease the access
time of frequently occurring elements of the tree. The parameter set of the model is φ, T
and the size of each one is O(d|V |). In line 4, we use Stochastic gradient descent (SGD)
to enhance these parameters. The back-propagation algorithm is used to estimate the
derivatives. In terms of the learning rate, α for SGD at the start of the training has a value
of 0.025. During the training, it decreases linearly with the number of nodes seen thus far.
As we mentioned, the frequency distribution of nodes in random walks of the social graph
and words in a language obey a power law. Consequently, we end up with a long tail of
rare nodes and accordingly, the updates that concern φ will be sparse. Hence, we can use
an asynchronous stochastic gradient descent (ASGD), when dealing with the multi-worker
case. Since our updates are sparse one can access the shared parameters of the model
ASGD attains an optimal convergence rate.
DeepWalk is highly scalable and can be utilized in large scale deep learning. The
parallelizing that we just presented allows us to speed up the processing of the networks
as we increase the number of workers. There is also no loss of predictive performance in
terms of running the algorithm serially.

5.4 Different Variants of the Algorithm

Here we present two variants of the DeepWalk method: streaming and non-random walks.
Streaming approach is a variant of DeepWalk that can be implemented without knowing
about the whole network. Short walks from the network are sent straight to the representa-
tion learning code and the algorithm is updated straight away. There are a few changes to
be made to the learning process. Firstly, the learning rate α should be set to a small constant
value instead of using a decaying learning rate. It will be harder to learn it but could be
useful in some applications. Secondly, we are not able to build a tree of parameters now.
In the case when the cardinality of a set of vertices is either familiar or can be bounded the
Hierarchical Softmax tree can be constructed for that maximum value. The construction
goes as follows: When we first see the node we assign it to one of the leftover leaves. If
the node frequency can be estimated in advance, the Huffman coding can still be used to
reduce the access times of the recurring element.
Some networks are made by a stream of non-random walks, for example, users navigat-
ing the pages on a website. In that case, we can feed the modeling phase straight away.
Sampling the graph in this way allows it to capture the network structure information
as well as the information about the frequency at which paths are traveled across. This
approach also encloses language models. We can think of sentences as purposed walks
through a language graph, and use language models such as SkipGram to encapsulate this
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behavior. Combining this approach with the Streaming variant allows us to train features
on an evolving network without having to construct the whole graph. This approach could
allow web-scale classification without the complexity of having a web-scale graph.

5.5 Example

In this example, we use a famous Zachary′s Karate Club [12] dataset represented in
Figure 6. Using DeepWalk [13] each node is represented as a vector in Rd space. In our
case, we end up with 64-dimensional data. These vectors should mirror the community
structure of the graph and can further be utilized by conventional classification algorithms.
We reduce the embedding dimensionality using the PCA algorithm [6] to 2-dimensional
space. Additionally, we divided the graph using the KMeans [6] algorithm into 3 clusters
and we can see the corresponding community structure in Figure 7.

Figure 6. Zachary’s Karate Club graph

Figure 7. The Graph R2 Representation
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Conclusion

In this thesis, we presented the topic of selected graph embeddings. An embedding
maps every node to a low-dimensional vector of features while trying to preserve the
structure properties of the graph and the strength of the links among the nodes. The graph
embedding methods can be categorized into Factorization based, Random Walk based
and Deep Learning based. We give a short overview of each category with information
about time complexity and which proximity measure each method preserves. The focus is
set on three approaches - Locally Linear Embedding (LLE), Laplacian Eigenmaps, and
DeepWalk.
Locally Linear Embedding (LLE) tries to discover nonlinear structures in high-dimensional
data by using the local symmetries of linear embeddings. It addresses the problem of
mapping high-dimensional data into a sole global coordinate system of fewer dimensions.
An example that showcases the nonlinear dimensionality reduction of three-dimensional
data to a two-dimensional embedding space is provided.
Laplacian Eigenmaps is a geometrically inspired dimensionality reduction algorithm that
preserves local properties and has a natural tendency towards clustering. The basis of the
algorithm is simple, with a few local calculations and an eigenvalue problem, while its
solution considers the geometric shape of the manifold to which the data belongs. This is
made possible through the observation that the Laplace matrix of the graph formed over the
data points can be viewed as an estimate of the Laplace-Beltrami operator established on
the manifold. We provide an example in which we obtain a two-dimensional representation
that preserves the locality of a manifold embedded in R3.
DeepWalk bridges the gap in language modeling and unsupervised feature learning from
word sequences to graphs. With DeepWalk the successful deep learning techniques from
natural language processing are introduced to network analysis. An algorithm learns latent
features of the nodes that describe neighborhood properties and similarities by representing
a stream of short random walks. These features are encoded into a continuous vector space
with a small number of dimensions. Once the representation is outputted simple linear
classifiers can be used to obtain good results. As an example, we use a Zachary’s Karate

Club dataset and present each node as a 64-dimensional vector. These vectors capture
the community structure of the graph and can further be manipulated by conventional
classification algorithms.
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Appendix Python Code

LLE

i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from s k l e a r n . d a t a s e t s i m p o r t m a k e _ s w i s s _ r o l l
from s k l e a r n . m a n i f o l d i m p o r t L o c a l l y L i n e a r E m b e d d i n g
from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler
from m p l _ t o o l k i t s . mplot3d i m p o r t Axes3D
from g oo g le . c o l a b i m p o r t f i l e s

# S e t t i n g t h e random seed f o r r e p r o d u c i b i l i t y
np . random . seed ( 4 2 )

# G e n e r a t i n g Swiss R o l l d a t a
da t a , c o l o r = m a k e _ s w i s s _ r o l l ( n_samples =1000 , n o i s e = 0 . 3 )

# N o r m a l i z i n g t h e d a t a
s c a l e r = MinMaxScaler ( )
d a t a _ n o r m a l i z e d = s c a l e r . f i t _ t r a n s f o r m ( d a t a )

# Apply ing LLE
n _ n e i g h b o r s = 15
l l e = L o c a l l y L i n e a r E m b e d d i n g ( n_components =2 , n _ n e i g h b o r s = n _ n e i g h b o r s )
r e d u c e d _ d a t a = l l e . f i t _ t r a n s f o r m ( d a t a _ n o r m a l i z e d )

# P l o t t i n g t h e o r i g i n a l Swiss R o l l d a t a
f i g 1 = p l t . f i g u r e ( f i g s i z e = ( 7 , 7 ) )
ax1 = f i g 1 . a d d _ s u b p l o t ( 1 1 1 , p r o j e c t i o n = ’ 3d ’ )
ax1 . s c a t t e r ( d a t a [ : , 0 ] , d a t a [ : , 1 ] , d a t a [ : , 2 ] , c= c o l o r , cmap= ’ v i r i d i s ’

)

ax1 . s e t _ x l a b e l ( "X" )
ax1 . s e t _ y l a b e l ( "Y" )
ax1 . s e t _ z l a b e l ( "Z" )
ax1 . g r i d ( F a l s e )
ax1 . v i e w _ i n i t ( 1 0 , −70) # v iewing a n g l e

# Sav ing t h e o r i g i n a l Swiss r o l l d a t a f i g u r e
f i g 1 . s a v e f i g ( ’ s w i s s _ r o l l _ o r i g i n a l . png ’ , d p i =300)
p l t . show ( )

f i l e s . download ( ’ s w i s s _ r o l l _ o r i g i n a l . png ’ )
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# P l o t t i n g t h e LLE r e d u c e d d a t a
f i g 2 = p l t . f i g u r e ( f i g s i z e = ( 7 , 6 ) )
ax2 = f i g 2 . a d d _ s u b p l o t ( 1 1 1 )
ax2 . s c a t t e r ( r e d u c e d _ d a t a [ : , 0 ] , r e d u c e d _ d a t a [ : , 1 ] , c= c o l o r ,
cmap= ’ v i r i d i s ’ )

ax2 . s e t _ x l a b e l ( "X" )
ax2 . s e t _ y l a b e l ( "Y" )
ax2 . g r i d ( F a l s e )

# Sav ing t h e LLE r e d u c e d d a t a f i g u r e
f i g 2 . s a v e f i g ( ’ s w i s s _ r o l l _ L L E . png ’ , d p i =300)
p l t . show ( )

f i l e s . download ( ’ s w i s s _ r o l l _ L L E . png ’ )

LAPLACIAN EIGENMAPS

i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from s k l e a r n . d a t a s e t s i m p o r t m a k e _ s w i s s _ r o l l
from s k l e a r n . m a n i f o l d i m p o r t S p e c t r a l E m b e d d i n g
from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler
from m p l _ t o o l k i t s . mplot3d i m p o r t Axes3D
from g oo g le . c o l a b i m p o r t f i l e s

# S e t t i n g t h e random seed f o r r e p r o d u c i b i l i t y
np . random . seed ( 4 2 )

# G e n e r a t i n g t h e Swiss R o l l d a t a
da t a , c o l o r = m a k e _ s w i s s _ r o l l ( n_samples =2000 , n o i s e = 0 . 3 )

# N o r m a l i z i n g t h e d a t a
s c a l e r = MinMaxScaler ( )
d a t a _ n o r m a l i z e d = s c a l e r . f i t _ t r a n s f o r m ( d a t a )

# Apply ing L a p l a c i a n Eigenmaps ( S p e c t r a l Embedding )
n _ n e i g h b o r s = 15
l a p l a c i a n _ e i g e n m a p s = S p e c t r a l E m b e d d i n g ( n_components =2 , n _ n e i g h b o r s =

n _ n e i g h b o r s )
r e d u c e d _ d a t a = l a p l a c i a n _ e i g e n m a p s . f i t _ t r a n s f o r m ( d a t a _ n o r m a l i z e d )

# P l o t t i n g t h e o r i g i n a l Swiss R o l l d a t a
f i g 1 = p l t . f i g u r e ( f i g s i z e = ( 7 , 7 ) )
ax1 = f i g 1 . a d d _ s u b p l o t ( 1 1 1 , p r o j e c t i o n = ’ 3d ’ )
ax1 . s c a t t e r ( d a t a [ : , 0 ] , d a t a [ : , 1 ] , d a t a [ : , 2 ] , c= c o l o r , cmap= ’ plasma ’ )
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ax1 . s e t _ x l a b e l ( "X" )
ax1 . s e t _ y l a b e l ( "Y" )
ax1 . s e t _ z l a b e l ( "Z" )
ax1 . g r i d ( F a l s e )
ax1 . v i e w _ i n i t ( 1 0 , −70) # t h e v iewing a n g l e

# Sav ing t h e o r i g i n a l Swiss R o l l d a t a f i g u r e
f i g 1 . s a v e f i g ( ’ s w i s s _ r o l l _ o r i g i n a l . png ’ , d p i =300)
p l t . show ( )

f i l e s . download ( ’ s w i s s _ r o l l _ o r i g i n a l . png ’ )

# P l o t t i n g t h e L a p l a c i a n Eigenmaps r e d u c e d d a t a
f i g 2 = p l t . f i g u r e ( f i g s i z e = ( 7 , 6 ) )
ax2 = f i g 2 . a d d _ s u b p l o t ( 1 1 1 )
ax2 . s c a t t e r ( r e d u c e d _ d a t a [ : , 0 ] , r e d u c e d _ d a t a [ : , 1 ] , c= c o l o r , cmap= ’

plasma ’ )
ax2 . s e t _ x l a b e l ( "X" )
ax2 . s e t _ y l a b e l ( "Y" )
ax2 . g r i d ( F a l s e )

# Sav ing t h e L a p l a c i a n Eigenmaps f i g u r e
f i g 2 . s a v e f i g ( ’ s w i s s _ r o l l _ l a p l a c i a n _ e i g e n m a p s . png ’ , d p i =300)
p l t . show ( )

f i l e s . download ( ’ s w i s s _ r o l l _ l a p l a c i a n _ e i g e n m a p s . png ’ )

DEEPWALK

! p i p i n s t a l l k a r a t e c l u b

i m p o r t ne tworkx as nx
from k a r a t e c l u b i m p o r t DeepWalk
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from s k l e a r n . d e c o m p o s i t i o n i m p o r t PCA
from s k l e a r n . c l u s t e r i m p o r t KMeans

# Reading i n t h e graph
G = nx . k a r a t e _ c l u b _ g r a p h ( )

# Removing t h e l o o p s from t h e graph
G. remove_edges_f rom ( nx . s e l f l o o p _ e d g e s (G) )

# Apply ing t h e DeepWalk a l g o r i t h m
dw = DeepWalk ( d i m e n s i o n s =64)
dw . f i t (G)
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embedding = dw . ge t_embedding ( )

# D i m e n s i o n a l i t y r e d u c t i o n t o 2D u s i n g PCA
pca = PCA( n_components =2)
embedding_2d = pca . f i t _ t r a n s f o r m ( embedding )

# C l a s t e r i n g wi th KMeans
kmeans = KMeans ( n _ c l u s t e r s =3 , n _ i n i t =10 , r a n d o m _ s t a t e =42)
l a b e l s = kmeans . f i t _ p r e d i c t ( embedding_2d )

# P l o t t i n g t h e embedding i n 2D
d e f p l o t _ e m b e d d i n g ( embedding_2d , l a b e l s ) :

p l t . f i g u r e ( f i g s i z e =(10 , 8 ) )
s c a t t e r = p l t . s c a t t e r ( embedding_2d [ : , 0 ] , embedding_2d [ : , 1 ] , c=

l a b e l s , cmap= p l t . cm . rainbow , s =100)
p l t . c o l o r b a r ( s c a t t e r )
p l t . s a v e f i g ( " e m b e d d i n g _ v i s u a l i z a t i o n . png " )
p l t . show ( )

# C a l l i n g i n f u n c t i o n f o r p l o t t i n g
pos = nx . s p r i n g _ l a y o u t (G, i t e r a t i o n s =1000 , s eed =42)
p l o t _ e m b e d d i n g ( embedding_2d , l a b e l s )
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da mnogi realni problemi koriste podatke u obliku grafova. Iako postoje uspešni algoritmi
za analizu mreža, potreba za metodama koje pojednostavljuju strukturu grafova i dalje
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skupovima podataka, gde su čvorovi uspešno predstavljeni u vektorskom obliku sa
smanjenom dimenzionalnošću.
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PP

Physical description: 5 chapters, 46 pages, 13 references, 7 figures
PD

Scientific field: Mathematics
SF

Scientific discipline: Applied mathematics
SD

Key words: Graphs, dimensionality reduction, graph embeddings, manifolds, features,
community structure, Locally linear embedding, Laplacian eigenmaps, Deepwalk
KW

Universal decimal classification:
UDC

Holding data: The Library of the Department of Mathematics and Informatics, Faculty of
Sciences, University of Novi Sad
HD

Note:
N

Abstract: In this paper, we provide an overview of selected graph embedding methods,
focusing on their applications in dimensionality reduction. The motivation for this topic
lies in the fact that many real-world problems use graph-structured data. Although there
are successful algorithms for network analysis, the need for methods that simplify graph
structures still exists. The paper first introduces the mathematical definitions of graphs and
their embedding methods, then classifies existing methods into three categories. It then
covers three algorithms. The first algorithm, Locally Linear Embedding, uses local
symmetries for dimensionality reduction and the discovery of nonlinear structures.
Laplacian Eigenmaps, the second algorithm, preserves the local properties of graphs and
has a natural tendency for clustering. The third algorithm is DeepWalk, which applies
deep learning techniques to represent graphs through random walks. These methods were
tested on well-known datasets, where the nodes were successfully represented in a
reduced-dimensional vector form.
AB

Accepted by the Scientific Board on: 6.9.2024.

51



ASB

Defended on:
DE

Thesis defend board:
DB
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