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Abstract

The purpose of this thesis is to �nd and train the most adequate

machine learning model for predicting pollen allergy symptoms, using

Python programming language. As a major pandemic health problem

for a human pollen allergies can interrupt people's everyday activi-

ties with sneezing, stu�y nose, watery eyes, cough, asthma and other

eyes, nose and lungs problems. Two sources of data were used: Pa-

tient's Hayfever Diary (PHD) where users entered their symptoms and

pollen measurements conducted by the Laboratory for Palynology at

the Faculty of Sciences, University of Novi Sad. The thesis evaluates

the performance of two approaches for the symptoms prediction: pre-

diction of the intensity of overall symptoms (0-21) and prediction of

the type of symptoms (eyes, nose or lungs symptoms). For the �rst

approach, four regression models were evaluated: K-Nearest Neigh-

bors Regressor, Random Forest Regressor, Gradient Boosting Regres-

sor and XGB Regressor and for the second one �ve classi�cation models

were evaluated: K-Nearest Neighbors Classi�er, Random Forest Clas-

si�er, Support Vector Machine Classi�er, Gradient Boosting Classi�er

and XGB Classi�er. All mentioned models were trained on both daily

and cumulative pollen concentrations - cumulative n = 2, n = 3, n =

4, n = 5, n = 10 and n = 15, where n is the number of days. The

best regression results were obtained with Random Forest Regressor

for n = 15, while XGB Classi�er showed the best performance for

classi�cation, also for n = 15. In-depth evaluation and exploration

of the models was conducted for the user who used the pollen diary

the most. Although in that case a smaller amount of data was used,

the results obtained were highly satisfactory: accuracy score is equal

to 0.83 for RF Classi�er and mean absolute error is equal to 1.05 for

RF Regressor. In addition, extensive data analysis was conducted in

this thesis, revealing signi�cant correlations, statistics and conclusions

drawn from two distinct datasets.
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1 Introduction

1 Introduction

Pollen exposure is a major cause of respiratory allergies worldwide. Climate
change, air pollution and urbanization could indirectly favour respiratory
allergies, as increasing temperatures bring about earlier �owering and polli-
nation periods and concomitantly overall shorter allergen-free seasons [1][2].
Pollen allergy can manifest itself as allergic rhinitis, allergic conjunctivitis
and/or allergic bronchial asthma [3]. It a�ects millions of individuals world-
wide, leading to symptoms which can signi�cantly impact the quality of life,
causing discomfort, reducing productivity and a�ecting daily activities. Ac-
curate prediction of pollen allergy symptoms enables individuals to plan their
activities accordingly, avoid exposure and take preventive medications. This
can lead to a signi�cant reduction in symptoms and an overall improvement
in quality of life.

Figure 1: The seasons of pollen allergies [4]

The development of accurate predictive models for pollen allergy symp-
toms requires the integration of various scienti�c disciplines, including mete-
orology, biology and data science. This interdisciplinary approach can lead to
advancements in research methodologies, data analysis and machine learning
techniques. Machine learning algorithms, with their ability to handle large
datasets and uncover complex patterns, present a promising approach to
predicting pollen allergy symptoms. By leveraging historical data on pollen
counts and reported symptoms, machine learning models can be trained to
forecast symptom occurrence and intensity. This predictive capability can
be harnessed through both regression and classi�cation techniques. Regres-
sion algorithms can predict the intensity of symptoms on a continuous scale,
while classi�cation algorithms can categorize symptoms into distinct classes,
such as eyes, nose, lungs or some of the combinations of these three groups
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1 Introduction

of symptoms. Regression and classi�cation algorithms are types of super-
vised machine learning algorithms, which are a subset of the broader �eld of
machine learning.

Machine learning is a branch of arti�cial intelligence that allows sys-
tems to automatically learn from data and improve their performance over
time without explicit programming. It involves creating algorithms capable
of processing and analyzing large datasets, recognizing patterns, and mak-
ing predictions or decisions based on the input data. Historically, machine
learning has been in�uenced by biologically inspired models, with long-term
objectives often focused on developing models and algorithms that can pro-
cess information with the same e�ciency as biological systems. The �eld
also integrates many traditional statistical methodologies but emphasizes
mathematical modeling and prediction. Today, machine learning is a central
component of numerous areas within computer science and plays a critical
role in large-scale data processing and analysis across various domains.

Figure 2: Machine Learning Methods [5]
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1 Introduction

Broadly speaking, the two main sub�elds of machine learning are super-
vised learning and unsupervised learning. In supervised learning, the primary
focus is on making accurate predictions, while in unsupervised learning, the
goal is to �nd concise representations or patterns within the data. In both
approaches, the objective is to develop methods that generalize well to pre-
viously unseen data. Consequently, a distinction is made between the data
used for training a model and the data used for evaluating the performance
of the trained model.

Supervised Learning. Given a set of dataD = {(xn, yn), n = 1, . . . , N},
the task is to learn the relationship between the input x and output y such
that, when given a novel input x∗, the predicted output y∗ is accurate. The
pair (x∗, y∗) is not in D but is assumed to be generated by the same unknown
process that generated D. To specify explicitly what accuracy means, one
de�nes a loss function L(ypred, ytrue) or, conversely, a utility function U = −L.
In supervised learning, our interest is in describing y conditioned on knowing
x. From a probabilistic modelling perspective, we are therefore concerned
primarily with the conditional distribution p(y|x,D). The term 'supervised'
indicates that there is a notional 'supervisor' specifying the output y for
each input x in the available data D. The output is also called a 'label',
particularly when discussing classi�cation. [5]

Predicting tomorrow's pollen allergy symptom y(T + 1) based on past
observations y(1), . . . , y(T ) is a form of supervised learning. We have a col-
lection of times and symptoms D = {(t, y(t)), t = 1, . . . , T} where time t
is the input and the symptom y(t) is the output. If the output is one of a
discrete number of possible classes, this is called a classi�cation problem. If
the output is continuous, this is called a regression problem.

Key algorithms in supervised learning, such as those utilized in this thesis,
include Random Forest, Gradient Boosting, XGBoost, K-Nearest Neighbors,
and Support Vector Machines. Each of these algorithms o�ers distinct ad-
vantages: Random Forest and mentioned boosting methods are ensemble
techniques that aggregate multiple decision trees to enhance predictive accu-
racy, while K-Nearest Neighbors classi�es data points based on the distance
to nearby points. Support Vector Machines, on the other hand, are particu-
larly well-suited for classi�cation tasks in high-dimensional feature spaces.

Unsupervised Learning. Given a set of data D = {xn, n = 1, . . . , N},
in unsupervised learning we aim to �nd a plausible compact description of
the data. An objective is used to quantify the accuracy of the description.
In unsupervised learning, there is no special prediction variable; thus, from a
probabilistic perspective, we are interested in modeling the distribution p(x).
The likelihood of the model to generate the data is a popular measure of the
accuracy of the description. [5]
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1 Introduction

Machine learning plays a crucial role in aerobiology. In addition to pre-
dicting pollen allergy symptoms, forecasting pollen concentrations is also of
signi�cant importance. By analyzing datasets that include historical pollen
counts, meteorological data and environmental variables, machine learning
algorithms can identify complex patterns and relationships that are not easily
detectable using traditional methods.

The majority of pollen sensitization in Europe are caused by Betula(Birch)
and Poaceae(Grass)[6]. Ambrosia is the second most important cause of sea-
sonal asthma and rhinitis in many areas of its native distribution range (i.e.
North America), and in the past decade, its clinical relevance has increased
notably throughout Europe [7]. It is estimated that the number of allergic
people in Europe will more than double by 2060 [8]. Hence, the ability to
predict the variability of daily pollen concentrations for the most important
allergenic pollen would be bene�cial for a great number of pollen-sensitive
individuals. Pollen calendars as predictive models for daily concentrations
of airborne Ambrosia, Betula, and Poaceae pollen (pollen species used in this
thesis) which are based on historical pollen data by calculating the mean or
median pollen concentrations for speci�c dates over several years can pro-
vide reliable predictions for managing allergies. Increasing the number of
calibration years generally enhances model performance, with four years be-
ing identi�ed as the optimal period for the most signi�cant improvement.
However, calendar models are more accurate when using daily resolutions,
as this better captures the variability in pollen exposure, which is crucial
for individuals sensitive to pollen. Using advanced calendar models improves
the prediction of pollen concentrations by lowering the normalized root mean
square error (NRMSE) compared to standard models. Overall, pollen calen-
dars have proven to be valuable tools for forecasting airborne pollen levels
in the absence of meteorological data, o�ering reliable predictions that can
assist in managing allergy symptoms e�ectively. [9]

Also, a model for predicting Ambrosia pollen emissions has been devel-
oped [10]. This model is based on a study conducted on the Pannonian
Plain over three �owering seasons (2014-2016), involving the sampling of
airborne pollen at di�erent heights and temporal resolutions. The results
demonstrated substantial variability in pollen production, with daily esti-
mates ranging from 6.38 billion to 770 billion grains for the entire �eld.
The weak correlations between pollen concentrations and meteorological pa-
rameters were found, indicating nonlinear relationships. High pollen con-
centrations were associated with temperatures between 20-24°C, while high
humidity could delay or halt pollen emission. Additionally, the notable di-
urnal cycles in Ambrosia pollen release, with a signi�cant morning peak and
a secondary peak in the evening, are identi�ed. These �ndings underline the
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1 Introduction

need for further studies to re�ne emission models and explore the variability
in pollen production across di�erent regions.

Various techniques have been employed to forecast airborne Ambrosia
pollen. One of them includes applying Deep Neural Networks and Ensem-
ble Machine Learning methods: XGBoost, Random Forests and Bayesian
Ridge Regression. The training data included twenty-four years of daily
pollen concentration measurements together with the European Center for
Medium-Range Weather Forecasts atmospheric weather and land surface re-
analysis data from 1987 to 2011 is used to develop the machine learning
predictive models. The last six years of the dataset from 2012 to 2017 is
used to independently test the performance of models. The correlation coef-
�cients between the estimated and actual pollen abundance for the indepen-
dent validation datasets for the deep neural networks, random forest, extreme
gradient boosting and Bayesian ridge were 0.82, 0.81, 0.81 and 0.75 respec-
tively, showing that machine learning can be used to e�ectively forecast the
concentrations of airborne pollen. [11]

In addition to predicting the concentration of Ambrosia, there is also
investigations whether intermittent sampling can e�ectively replace contin-
uous sampling for monitoring airborne pollen concentrations, particularly
Ambrosia pollen [12]. Continuous long-term sampling, often considered the
gold standard in aerobiology, is resource-intensive and may not always be
feasible due to limitations in sampling media and equipment, especially in
environments with high concentrations of airborne particles. Hourly pollen
concentrations obtained by averaging 56, 28, 14 and 7 equidistantly dis-
tributed 1.07-min concentrations of Ambrosia airborne pollen were compared
and the results showed that a majority of the information on trends and mag-
nitudes of hourly pollen concentrations could be captured even with reduced
sampling frequency. Although the absolute percentage error increased as the
number of samples per hour decreased (averaging 10% for 28 samples, 20%
for 14 samples, and 39% for 7 samples), these errors were considered accept-
able given the strong correlations. The maximum observed error was 143%
for the case of 7 samples per hour. [12]

Beyond the prediction of pollen from ragweed, birch, and grass, among the
most prevalent and recognized pollen types in Europe, there exists a notewor-
thy study focused on predicting pollen concentrations of Oleaceae(olive)and
Quercus Taxa(pedunculate oak). The study utilized the Gradient Boosting
Regression technique to estimate pollen concentrations of both species, using
daily meteorological and land surface data obtained from the European Cen-
ter for Medium-Range Weather Forecasts. The method accurately predicted
pollen concentrations, with an Index of Agreement (IoA) of 0.86 for Oleaceae
and 0.78 for Quercus, despite the limited size of the dataset.[13]
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1 Introduction

Drawing from the same data sources as this thesis, namely the Patients
Hayfever Diary and Pollen Concentration Data from the EAN database,
several computational intelligence methods, such as Multi-layer Perceptron
(MLP), Support Vector Regression (SVR), Least Squares Support Vector
Regression (LS-SVR), K-Nearest Neighbors (kNN) and Multiple Linear Re-
gression (MLR), are employed to develop personalized models for estimating
overall symptoms based on pollen concentrations [14]. The focus was on
users with a large amount of data records; the threshold was set to at least
100 data records, thus resulting in a sample of 102 distinct users. The root-
mean-square error (RMSE), the correlation coe�cient (r) and the index of
agreement (d) have been used to validate the models. Results are presented
as averages (and standard deviations) of the statistical indices used to eval-
uate model performance. LS-SVR has the highest d (0.79) and r (0.70),
indicating that it generally has the best agreement with the actual data and
the highest correlation between predicted and observed values among the
models tested. It also has the lowest RMSE (1.92), suggesting it is the most
accurate model for predicting the number of symptoms. kNN also performs
well, with a relatively high d (0.80) and r (0.67) and a low RMSE (2.07).
However, its performance is slightly inferior to LS-SVR. MLP has a moder-
ate performance with d (0.76) and r (0.63) and an RMSE of 2.17. MLR and
SVR show similar performance levels with d values of 0.74, r values around
0.61 - 0.64, and RMSE values around 2.11-2.26, indicating that they are less
accurate than LS-SVR and kNN.

The etiopathogenesis of allergic diseases is multifactorial, as the immune
system of each individual may react di�erently. Thus, the triggering of aller-
gic symptoms in humans is a highly complex process that depends on several
factors such as pollen concentrations, meteorological and chemical (i.e., air
quality) weather conditions, people habits (outdoor activity, traveling, medi-
cation). Therefore, in some cases, the available data cannot produce accurate
models. This was also demonstrated in [14] for the cases of two speci�c users
((users with ID number 80 and 85), with similar data records and maximum
overall symptoms. The results of two user-speci�c models showed that the
allergic symptoms indicated by User85 can be successfully modeled; however,
the models were not as successful for User80. It is evident that the pattern of
symptoms for both users is di�erent and emphasizes the need for the produc-
tion of user-speci�c models. It will also be demonstrated in this thesis that
the prediction results for a single user (speci�cally, the user with the most
entries) are superior to those obtained from training and evaluating models
on data from all pollen diary users.

12



2 Materials and Methods

2 Materials and Methods

2.1 Data

Data is a critical component in the development and deployment of machine
learning models. The quality, quantity and variety of data signi�cantly in-
�uence the performance of the models.

2.1.1 Data Source and Data Description

Two sources of data were used in this research: Patients' Hayfever Diary
(PHD) and pollen measurements data collected in the Laboratory for Paly-
nology at the Faculty of Sciences, University of Novi Sad. The PHD is a
web-based tool for people su�ering from pollen allergy and asthma hosted
by Austrian Pollen Information Service and the ORL Department at Vienna
Medical University [15]. The data utilized in this research are not publicly
available. The symptom data from the PHD database was obtained through
collaboration with the ORL Department at Vienna Medical University. The
pollen data included in this thesis cover the period from 2009 to 2017 for the
region of Vojvodina. Also, symptom data corresponding to the same time
period and region were extracted from the PHD database.

The �rst dataset ”PHD − 2009 − 2017.csv” contains 27 features and
33136 samples. The features represent information about people who use
pollen diary application, their symptoms and medical treatments. The sec-
ond dataset ”ParticleCountDailyV ojvodina2009 − 2017.xlsx” contains 36
features which represent di�erent pollen species and 3287 samples which rep-
resent daily pollen particle count for nine years. An excerpt of that dataset
could be found in the Figure 3.

Figure 3: Features of pollen dataset
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2.1 Data

All features from the PHD dataset and their values are displayed in Figure
4.

Figure 4: Features of the PHD dataset

2.1.2 Data Analysis

In order to uncover patterns, trends and insights that can inform model de-
velopment and decision-making data analysis was performed before applying
machine learning models. That process includes techniques such as statisti-
cal analysis, data visualization and exploratory data analysis to understand
the underlying structure and relationships within the datasets.

As a �rst step, data entries in available PHD dataset for each user were
counted and presented as histogram. It is shown in the Figure 5.

14



2.1 Data

Figure 5: User's data entries

From the Figure 5 we can conclude that there are large oscillations re-
garding data entries. The pollen diary is not used equally by all users. There
are some users who entered their symptoms, usage of the medications and the
other information only when they had some symptoms. On the other hand,
there are users who �lled the diary on the daily level, regardless of whether
they had symptoms or not. In order to see how constant diary usage and
daily user's information are important for predictions the user with the most
entries was found and the models are trained and evaluated on his data.

Additionally, entries per year and unique number of users per year were
counted and presented graphically in the following �gures.

Figure 6: Data entries per year

15



2.1 Data

Figure 7: Unique number of users per year

The next step in data analysis was to measure correlations between di�er-
ent symptoms (Eye Itching, Eye Redness, Nose Sneezing, Lungs Cough,etc.)
including also Overall Symptom Score. The pairwise correlations are pre-
sented with heatmap in the Figure 8, where we can see that overall symptoms
are the most correlated with nose symptoms, excluding values on diagonal.
It means that the value of overall symptoms can be predicted with high
probability(0.84) based on knowledge of the value of nose symptoms.

Figure 8: Correlation between symptoms
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2.1 Data

In order to have a clear visual summary of how symptoms vary throughout
the year, highlighting di�erences in central tendency, spread and the presence
of outliers, overall symptoms on monthly level are presented with boxplot
which is shown in the Figure 9. We can see that the distribution of symptoms
varies across the months. For instance, months like August and September
have higher medians and a broader spread of symptom totals compared to
other months. They have also more outliers indicating more variability or
extreme values.

Figure 9: Overall Symptoms on the monthly level

In the following �gure, counts of di�erent medical treatments are pre-
sented with bar graph, where we can see that nose drops are the most used
medicine for relieving the symptoms.

Figure 10: Percentage of use of Medical Treatment

The analysis of the second dataset was started with the presenting overall
sums of daily measurements of di�erent pollen species over the years, from
2009 to 2017. It is displayed in Figure 11, from which it can be concluded that

17



2.1 Data

the highest overall concentration of pollen is in the spring, and then in the fall
where the peek is signi�cantly smaller. A high overall pollen count does not
always indicate a strong concentration of the speci�c pollen to which person
is allergic so for this research it is important to �nd a correlation between
pollen concentrations and user's symptoms, which will be done in some of
the following data analysis steps.

Figure 11: Overall pollen concentration over the years

18



2.1 Data

The remaining data analysis tasks essential for this thesis focus on exam-
ining the relationship between the two datasets. Speci�cally, the connection
between the data from PHD users and the concentrations of various pollen
species will be analyzed. To identify correlations between symptoms and
pollen concentrations, the top ten users based on the number of their records
in the database were selected. For these users, their overall symptoms data
alongside measurements of pollen concentrations were presented. For each of
the top ten users, we also identi�ed the year in which they used the PHD di-
ary most frequently and graphically represented their symptoms and overall
pollen concentrations for that year, as shown in Figure 12. In these graphics,
symptoms are depicted in blue, while overall pollen concentrations are shown
in green. From these ten graphics, we can observe that for User 1 (top left
graphic), the peak in overall pollen concentration coincides with the peak
in user-reported symptoms, both occurring in March and April. Addition-
ally, it is evident that most of the top ten users experience the most intense
symptoms in autumn. This observation highlights the importance of includ-
ing pollen species that are predominant in the autumn (such as Ambrosia,
represented by AMBR) as features in the training and validation of machine
learning models for predicting symptoms.
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2.1 Data

Figure 12: Overall symptoms data(blue graph) along pollen concentration
measurements(green graph) for the top 10 users
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2.1 Data

2.1.3 Data Pre-processing

Data pre-processing is a critical step in the machine learning pipeline that
involves improving data quality, selecting the features for the models, elimi-
nating data issues such as missing values and make the data useful for ma-
chine learning purposes. The scheme of the machine learning process used
in this research can be found in Figure 13.

Figure 13: Machine learning pipeline of the implementation

� Mapping features from two di�erent data sets by dates. In
this step, the dates from the two data sets were �rstly converted in the same
format using library datetime and after that they are sorted properly. Since
there is data for pollen concentration measurements for each day from year
2009 to 2017, but on the other hand there are no symptoms recorded by
PHD diary user's for all of those days we only selected samples from pollen
concentrations data set for which we have symptoms.

� Feature Selection. Feature selection is a very important step in ma-
chine learning because it can hugely impact the performance of the model.
Features used for training the machine learning model have a huge in�uence
on the performance the model can achieve, so in this phase we wanted to
�nd the features i.e. the pollen species that are the most correlated with the
symptoms. To �nd those features the Pearson's correlation coe�cient was
the �rst try in this implementation. The Pearson's correlation coe�cient
measures the strength of the linear relationship between two variables. It is
calculated as the covariance of the two variables divided by the product of
the standard deviation of each data sample. It is a normalized measurement
of the covariance. Because of that, the value of the Pearson's correlation
coe�cient is always between -1 and 1 representing the limits of correlation
from a full negative correlation to a full positive correlation. [16] The formula
for calculating Pearson's correlation coe�cient is:
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r =

∑
(X − X̄)(Y − Ȳ )√∑
(X − X̄)2(Y − Ȳ )2

After calculating Pearson's correlation coe�cient between di�erent pollen
species and symptoms, the highest coe�cient value, r = 0.27, was obtained
for Ambrosia. For other pollen species, the coe�cient was mostly positive,
but signi�cantly lower than coe�cient for Ambrosia. A Pearson correlation of
0.27 suggests a weak linear relationship but does not rule out the possibility
of a strong non-linear relationship. In such cases, using Spearman's rank
correlation might be more appropriate, so it was used as another means to
�nd pollen species that causes the most symptoms.
The Spearman's correlation coe�cient measures the strength of the relation-
ship between two variables which does not have to be strictly linear. While
pearsons's correlation calculates the coe�cient using covariance and stan-
dard deviations, spearman's correlation calculates the same but using rank
variables. Instead of raw data x and y, spearman's correlation coe�cient uses
ranked data rx and ry:

ρrx,ry =
cov(rx, ry)

σrxσry

where cov(rx, ry) is the of ranked data rx and ry, while σrx and σry are the
standard deviations of rx and ry. For all these values of standard deviation,
centered and ranked values, covariance, and correlation, we use functions
from the scipy library.[17] After calculating Spearman's correlation coe�-
cient between di�erent pollen species and symptoms, the highest coe�cient
value, ρ = 0.19 and p-value = 0, was obtained again for Ambrosia. A Spear-
man correlation coe�cient of 0.19 with a p-value of 0 suggests a weak but
statistically signi�cant monotonic relationship between the variables. While
the correlation is weak, the statistical signi�cance underscores the presence
of a genuine relationship in the data, meriting further investigation or con-
textual analysis.

After the previous analyses, we can conclude that Ambrosia concentra-
tions should be de�nitely included in the features combination for model
training, but additional investigation is needed in order to select other fea-
tures as well, so the next step was to �nd the pollen species with the highest
concentration for a given month. Figure 14 shows the most common type of
pollen for a given month and the overall symptoms for that month.
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Figure 14: The most common pollen species and overall symptoms for a
given month

Finally, the pollen species that were most common for a certain month and
two more well-known types of pollen, grass (POAC - Poaceae) and birch
(BETU - Betula), will be used as a feature combination for training the ma-
chine learning models, which can be found in Figure 15 .

Figure 15: Selected Features
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� Filling the Missing Values. The missing values were �lled with
zeros in this implementation. Most of the NaN values were in December and
some of them were in January when pollen concentration measurements are
usually 0.

� Grouping. There are the samples with the same dates and the same
pollen concentration measurements but the di�erent symptoms entered by
di�erent pollen diary user's. It is the main reason why the models can get
confused when making predictions. In order to see how multiple same inputs
with a lot of di�erent targets a�ect model performance, we evaluate the mod-
els on both multiple inputs(same dates and the same pollen concentrations)
and the input grouped in the way explained in the following �gure:

Figure 16: Grouping samples by most intense type of symptoms

Figure 16 explains how the samples are grouped for classi�cation problem
where we need to predict one of the eight labels:

� 0 - no symptoms,
� 1 - eye symptoms,
� 2 - nose symptoms,
� 3 - lungs symptoms,
� 4 - lungs and nose symptoms,
� 5 - lungs and eye symptoms,
� 6 - nose and eye symptoms,
� 7 - all symptoms.
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Grouping for regression problem where we want to predict the intensity
of overall symptoms is shown in the Figure 17.

Figure 17: Grouping samples by average of overall symptoms

2.2 Methods

The thesis evaluates the performance of two approaches for the symptoms
prediction: prediction of the intensity of overall symptoms (0-21) and pre-
diction of the type of symptoms (eyes, nose, lungs symptoms or some of the
combinations of those symptoms). For the �rst approach, four regression
models were evaluated: K-Nearest Neighbors Regressor, Random Forest Re-
gressor, Gradient Boosting Regressor and XGB Regressor and for the second
one �ve classi�cation models were evaluated: K-Nearest Neighbors Classi-
�er, Random Forest Classi�er, Support Vector Machine Classi�er, Gradient
Boosting Classi�er and XGB Classi�er. All mentioned models were trained
for both daily and cumulative pollen concentrations - cumulative n = 2, n =
3, n = 4, n = 5, n = 10 and n = 15, where n is the number of days.

The functions for summing current pollen concentrations with concentra-
tions for previous n days, where di�erent values of n were used: cumulative
n = 2, n = 3, n = 4, n = 5, n = 10 and n = 15, were implemented. As an
example visual representation of function for cumulative n = 2 is showed in
the following �gure:
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Figure 18: Cumulative concentration of Ambrosia for n = 2

The other functions work on the same principle, only for a higher value of
the parameter n which indicates a number of days.

The implementation of this thesis is coded in Python programming lan-
guage, using Jupyter Notebook. A Jupyter Notebook is an open source web
application used for all sorts of data science tasks such as exploratory data
analysis (EDA), data cleaning and transformation, data visualization, sta-
tistical modeling, machine learning and deep learning. The most important
used libraries are Scikit-learn - a simple and e�cient tool used in predictive
data analytics, Pandas - a library used for analyzing, cleaning and manipu-
lating data, Matplotlib - a tool used for performing di�erent visualizations
and Datetime - a library used for manipulating dates and mapping two data
sets by dates as one of the the most important step in this research.

2.2.1 K-Nearest Neighbors Algorithm

K-Nearest Neighbors (KNN) is a non-parametric, simple yet powerful super-
vised algorithm that can be used for both regression and classi�cation tasks.
This works by �nding K nearest neighbors to the new, unlabeled data and
making a prediction of the value or class that the new data point belongs to.
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Figure 19: KNN Algorithm working visualization for classi�cation and
regression

Visually observing classi�cation from Figure 19, there are two classes, red
and green. When there is a new data point (blue), and K = 5, we can see that
the blue point has 3 green neighbors and 2 red neighbors; this says that the
blue point is classi�ed as the green class as the majority voting is 3. Similarly,
when the K value changes, the number of neighbors increases, and the new
data point is classi�ed into its corresponding majority voting class. KNN
regressor is quite di�erent from the classi�er. As in a regressor, the dependent
variable is continuous, it is scattered throughout the coordinate plane. When
there is a new data point, the number of neighbors (K) is found by any of
the distance metrics. After �nding the neighbors, the predicted value of the
new data point is the average of all the neighbor's values combined. [18]

Step-by-Step explanation of how KNN works is discussed below:
Step 1: Calculating distance

In order to measure the similarity between target and training data points
the �rst step is to calculate the distance between the new point and each
training point. There are various methods for calculating this distance, of
which the most commonly known methods are � Euclidean, Manhattan (for
continuous), Minkowski and Hamming distance (for categorical).

Euclidean distance is the most widely used distance metric in KNN, and
this is the default distance metric for SKlearn library in Python. This is
the straight line distance between two data points in the Euclidean space,
calculated with the square root of the sum of squares of data points. The
formula for Euclidean distance between two points x = (x1, x2, . . . , xn) and
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y = (y1, y2, . . . , yn) is given by:

d =

√√√√ n∑
i=1

(xi − yi)2

Manhattan distance, also known as taxicab distance, is a measure of the
distance between two points. It is named after a grid-like layout of Manhat-
tan, where the distance between the two points is the shortest path a taxi
could take. It is the sum of the absolute di�erence of the coordinates. The
formula for Manhattan distance between two points x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) is calculated as follows,

d =
n∑

i=1

|xi − yi|

Minkowski distance is used to measure the distance between the points
in multidimensional space. This metric generalizes the Manhattan and Eu-
clidean distance metrics. This is computed as the pth root of the sum of
absolute di�erence raised to the power of p. We can manipulate the above
formula to give us di�erent distance metrics like:
� if p = 1, we get the Manhattan distance
� if p = 2, we get Euclidean distance.
There are a few conditions that the distance metric must satisfy:
� Non-negativity: The distance between any two points cannot be negative.
� Identity: The distance between a point and itself is zero.
� Symmetry: The distance between two points x and y should be the same
as the distance between y and x.
� Triangle Inequality: The distance between two points x and y should al-
ways be less than or equal to the sum of the distances between x and y, and
between y and z. [18]
The formula for Minkowski distance between two points x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) is,

d = ∥x− y∥p =

(
n∑

i=1

|xi − yi|p
) 1

p

Hamming distance is used for categorical variables. The Hamming dis-
tance between two strings of equal length is the number of positions at which
the corresponding symbols are di�erent. For two points x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) is given by:

dH(x,x) =
n∑

i=1

δ(xi, xi)

28



2.2 Methods

where

δ(xi, yi) =

{
1, if xi ̸= yi

0, if xi = yi

Step 2: Selecting the optimal value of K

K represents the number of nearest neighbors that needs to be considered
while making prediction. It is important to note that the choice of the k
value depends on the data set and the problem. A smaller k value can lead
to over�tting, while a larger value of k can lead to under�tting. Therefore, it
is recommended to experiment with di�erent values of k to �nd the optimal
value for a speci�c data set.
Step 3: Finding Nearest Neighbors

The k data points with the smallest distances to the target point are the
nearest neighbors.
Step 4: Voting for Classi�cation or Taking Average for Regression

In the classi�cation problem, the class labels of K-nearest neighbors are de-
termined by performing majority voting. The class with the most occurrences
among the neighbors becomes the predicted class for the target data point.
In the regression problem, the class label is calculated by taking average
of the target values of K nearest neighbors. The calculated average value
becomes the predicted output for the target data point.

2.2.2 Random Forest Algorithm

A Random Forest is an ensemble technique for both regression and classi�ca-
tion with the use of multiple decision trees using bootstrap and aggregation.
Random forest consists of a large number of decision trees operating as an
ensemble. The ensemble of learner is built using the same learning algorithm
but train each learner on a di�erent randomly chosen data sets. That is
bootstrap. In the case of a classi�cation problem, the �nal output is chosen
as majority voting classi�er. On the other hand, for regression problem, the
�nal output is the mean of all the outputs. That technique is called aggre-
gation. Bootstrap and aggregation are known as bootstrap aggregating or
bagging. The working scheme of random forest regression can be found in
Figure 20.[19][20]
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Figure 20: Random Forest Algorithm

Source: Random Forest Algorithm Explained [21]

2.2.3 Support Vector Machine Algorithm

Support vector machines are a set of supervised learning methods used for
both, classi�cation and regression. It is one of the most popular machine
learning algorithms and very powerful. The objective of the support vector
machine algorithm is to �nd a hyperplane in an n-dimensional space, where n
is the number of features, that distinctly classi�es the data points. In Figure
21, two classes of data points can be seen, blue circles, and orange triangles.
There can be seen many possible hyperplanes that can be chosen to separate
two classes of data points. These possible hyperplanes are presented with
green lines. Hyperplanes are decision boundaries that are used to predict the
continuous output. The goal is to �nd a hyperplane with a maximum margin
which represent the maximum distance between data points of both classes.
What would be the maximum margin and which hyperplane is optimal is
shown in Figure 21. Support vectors are data points that are closer to the
hyperplane and condition the position and orientation of the hyperplane.
They are represented in the right picture with a colored circle and squares.
Also, they are important for building support vector machines because they
maximize the margin of the classi�ers.[22][23]
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Figure 21: Possible hyperplanes

Source: Introduction to Support Vector Machines [24]

The number of features conditions the dimension of the hyperplane. So if
the number of features is two, there is 2D space and the hyperplane is a line,
while in 3D space there is a two-dimensional plane for a hyperplane. The
examples of hyperplanes for both spaces are in Figure 22.

Figure 22: Hyperplanes in 2D and 3D feature space

Source: Introduction to Support Vector Machines [24]
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2.2.4 Gradient Boosting Algorithm

Gradient Boosting is an supervised machine learning algorithm used for clas-
si�cation and regression problems. It is an ensemble technique which uses
multiple weak learners to produce a strong model for regression and classi-
�cation. The algorithm relies on the intuition that the best possible next
model , when combined with the previous models, minimizes the overall pre-
diction errors. The key idea is to set the target outcomes from the previous
models to the next model in order to minimize the errors.
Step-by-Step explanation of how Gradient Boosting Algorithm works is dis-
cussed below:
Step 1: Initialize model with the constant value F0:

F0(x) = argmin
γ

N∑
i=1

L(yi, γ) (1)

Where L(yi, γ) is the loss function, and γ is the initial prediction.

Step 2: For each iteration m = 1, 2, . . . ,M
� Compute the Pseudo-Residuals:

r
(m)
i = −

[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(2)

Here, r(m)
i is the pseudo-residual for instance i at iteration m.

� Fit a Weak Learner:
Train a weak learner hm(x) to the pseudo-residuals:

hm(x) = argmin
h

N∑
i=1

(
r
(m)
i − h(xi)

)2
(3)

� Compute the Step Size:

Find the optimal step size γm:

γm = argmin
γ

N∑
i=1

L(yi, Fm−1(xi) + γhm(xi)) (4)

� Update the Model:

Update the model with the new learner and step size:

Fm(x) = Fm−1(x) + γmhm(x) (5)
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Step 3: The Final Model:

FM(x) =
M∑

m=0

γmhm(x) (6)

In conclusion, Gradient Boosting is a highly e�ective and versatile algorithm
that excels in capturing complex relationships within data. Its ability to
iteratively improve model performance through sequential learning makes it
a preferred choice for many machine learning practitioners. However, the
trade-o� between accuracy and computational complexity requires careful
consideration and expertise in hyperparameter tuning. [25] [26] [27]

2.2.5 XGBoost Algorithm

XgBoost or eXtreme Gradient Boosting is a decision tree-based machine
learning algorithm which is using gradient boosting. The impact of XGboost
has been recognized in many machine learning and data mining challenges.
One of them is machine learning competition site Kaggle, where in 2015
among the 29 challenge winning solutions, 17 of them were using XGboost.
This machine learning algorithm can be used for both regression and classi-
�cation. Elements of gradient boosting are loss function which needs to be
optimized, a weak learner which needs to make predictions, and an additive
model which need to add weak learners to minimize the loss function. A loss
function is used to evaluate how well we can predict the value. It must be
di�erentiable. Usually, di�erent loss functions are used for regression and for
classi�cation. For loss function for classi�cation may be used logarithmic loss
function, while for regression is most common used squared error. In gra-
dient boosting decision trees are used as the weak learner. When gradient
boosting is used for regression we start with a leaf that is the average value
of the variable we want to predict. Regarding additive model, we add a tree
based on the residuals, the di�erence be-tween the observed values and the
predicted values and we scale the tree's contribution to the �nal prediction
with a learning rate. The learning rate is usually a value between 0 and 1.
We use learning rate to avoid over�tting of the model. Then we add another
tree based on the new residuals and we keep adding trees based on the errors
made by the previous tree. Gradient boost continues to build trees in this
fashion until it has made the number of trees we asked for, or additional trees
fail to improve the �t.[28][29]
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2.2.6 Grid Search

Grid Search acts as a valuable tool for identifying the optimal parameters
for a machine learning model. Instead of manually testing various combina-
tions of parameters, Grid Search systematically explores a prede�ned set of
parameter values, e�ectively creating a grid of possible con�gurations. By
evaluating the model's performance across the grid, Grid Search helps iden-
tify the best parameter combination that optimizes the model's performance,
making the tuning process much more e�cient and less prone to human er-
ror.
Step-by-Step explanation of how Grid Search works is discussed below:

Step 1: De�ne a hyperparameter grid:

A hyperparameter grid is de�ned using a python dictionary which contains
con�guration for the model we are targeting for tuning. As an example SVM
algorithm used for predicting the type of the symptoms will be considered.
SVM takes three parameters named C, kernel and gamma, so in this im-
plementation we de�ned nine di�erent values of C ( 'C' : [0.001, 0.01, 0.1,
0.5, 1, 5, 10, 100, 1000] ), three di�erent values of kernel ( 'kernel': ['lin-
ear', 'rbf ', 'poly'] ) and seven di�erent values of gamma ( 'gamma' : [0.001,
0.01, 0.1, 0.5, 1, 10, 100] ) in an array. Of course, we could de�ne more if
we wanted. C is known as the regularization parameter or the cost param-
eter, which controls the trade-o� between maximizing the margin (distance
between the decision boundary and the data points) and minimizing the clas-
si�cation error on the training data. Kernel is used to specify the type of
kernel function to be used when transforming the input data into a higher-
dimensional space. The parameter gamma plays a crucial role in de�ning the
behavior of the decision boundary. It can be seen as the inverse of the radius
of in�uence of samples selected by the model as support vectors. Intuitively,
a low gamma value means that the in�uence of a single training example
reaches far, a�ecting a larger region of the feature space. Conversely, a high
gamma value means that the in�uence is close, a�ecting only the region near
the training example.
Step 2: Model Training and Evaluation:

Grid Search typically uses cross-validation to evaluate model performance.
We split our data set into multiple subsets (folds), trained the model on some
of them, and evaluated it on others. This helps ensure that the model's per-
formance is robust and not just tailored to the training data. Grid Search
accepts several arguments

gs = GridSearchCV (SV C(), parameters, cv = 10, scoring =′ accuracy′).
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The �rst argument is the model which we want to evaluate. The second
argument is the grid con�guration we made earlier using python dictionary.
The cv argument accepts integers and represents number of folds for K-fold
cross-validation. K-fold cross-validation (Figure 23) is an iterative process
that divides the train data into k partitions. Each iteration keeps one parti-
tion for testing and the remaining k-1 partitions for training the model. The
next iteration will set the next partition as test data and the remaining k-1
as train data and so on. In each iteration, it will record the performance of
the model and at the end give the average of all the performance. Thus, it
is also a time-consuming process.

Figure 23: K-fold cross validation

Scoring represents the strategy employed to evaluate the model. After the
splitting the data into train and test set GridSearchCV() object can be �tted:

gs.fit(X_train, y_train).

Step 3: Get the best scores:

This step requires to access the best_params_ attribute from the processed
GridSearchCV object

best_params = gs.best_params_

best_score = gs.best_score_.

The best_score_ attribute gives us a �oat value which represent the best
accuracy score in this scenario.
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Step 4: Final model training:

In this step the model was trained again, but this time using the parameter
values which got the highest scores.

final_model = SV C(C = best_params[′C ′],

kernel = best_params[′kernel′],

gamma = best_params[′gamma′])

final_model.fit(X_train, y_train)

Finally, we can conclude that by evaluating all possible combinations of hy-
perparameters, Grid Search ensures that the model achieves the best possible
performance based on the chosen evaluation metric. However, it is compu-
tationally expensive, especially with high-dimensional parameter grids and
large datasets. Despite this, Grid Search remains a widely used approach
due to its straightforward implementation and ability to enhance model per-
formance signi�cantly. For e�cient hyperparameter tuning, Grid Search can
be complemented with more advanced techniques like Random Search or
Bayesian Optimization, particularly when computational resources are lim-
ited. [32] [33]

2.3 Evaluation Metrics

As the goal of this thesis is to build and deploy a well-generalized model for
predicting pollen allergy symptoms, model performance need to be measured.
Because of that, it is required to evaluate the model on di�erent metrics
which helps us to optimize the performance and e�ciency of the model.
Regression refers to predictive modeling problems that involve predicting
a numeric value. It is di�erent from classi�cation that involves predicting
a class label. Two most common metrics, Mean Absolute Error and Root
Mean Squared Error, were used for regression problem where the intensity
of overall symptoms need to be predicted. For classi�cation problem, where
the goal is to predict the type of the symptom, Accuracy, F1 Score, Recall
and Precision metrics were used. Sckit-learn library provide functions for
calculating these metrics.

2.3.1 Regression Evaluation Metrics

� Mean Absolute Error represents the average of the di�erence between
observed and predicted values.[30] It calculates how far the predictions are

36



2.3 Evaluation Metrics

from the observed values but do not give the direction of the error. Mathe-
matically, it is represented as:

MAE =
1

n

n∑
i=1

|Y i− Ŷi| (7)

where Yi are observed and Ŷi are predicted values.
� Root Mean Squared Error is very similar to mean absolute error,

but it represents the root of the average of the square of the di�erence between
observed and predicted values. Mathematical formula for it is:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)
2

(8)

where Yi are observed and Ŷi are predicted values.

2.3.2 Classi�cation Evaluation Metrics

An important tool for understanding model performance in classi�cation
tasks is the confusion matrix. It is a matrix whose elements represent number
of correctly or incorrectly classi�ed data points (Figure 24) .

Figure 24: Confusion Matrix
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Based on values of this matrix, and the priorities of classi�cation, di�erent
metrics have been developed [31]. During training and testing, the following
metrics were monitored:
� Accuracy is a fundamental metric in classi�cation, providing a straight-
forward measure of how well a model performs its intended task. It represents
the ratio of correctly predicted instances to the total number of instances in
the data set. The formula is:

Accuracy =
TP+ TN

TP+ FP+ FN+ TN
(9)

� Precision is used to measure the positive patterns that are correctly pre-
dicted from the total predicted patterns in a positive class, with formula:

Precision =
TP

TP+ FP
(10)

� Recall, also known as Sensitivity or True Positive Rate, is de�ned as the
ratio of true positive predictions to the total number of actual positive cases.

Recall =
TP

TP+ FN
(11)

� F1 Score, also known as Dice loss, represents the harmonic mean between
recall and precision values. As precision grows recall usually declines, and
vice versa, meaning that high F1 score indicates good balance between the
two. The formula is:

F1 = 2× Precision× Recall
Precision+ Recall

=
2× TP

2× TP+ FP+ FN
(12)
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3 Experimental Results

In this section the results obtained using di�erent classi�cation and regression
machine learning algorithms are represented.

3.1 The Symptom Types Prediction

Five machine learning algorithms, K-Nearest Neighbors Classi�er, Random
Forest Classi�er, Support Vector Machine Classi�er, Gradient Boosting Clas-
si�er and XGB Classi�er, were used to predict the type of symptoms caused
by pollen allergy. All of them were evaluated using di�erent evaluation met-
rics and obtained results were compared.

3.1.1 Classi�cation models evaluation on data set with repeated

inputs

Since there are the samples in our data set with the same dates and the same
pollen concentration measurements but the di�erent symptoms entered by
di�erent pollen diary user's, machine learning models can get confused when
making predictions. In order to see how repeated inputs with di�erent targets
a�ect model performance, we evaluate the models without modi�cations on
our data set using grouping showed in the Figure 16. The results are showed
in the Figure 25. Although the Random Forest model achieved the highest
accuracy score of 0.49 (highlighted in red), indicating it is the most accurate
among the �ve models, this result is still not satisfactory as nearly 50% of
the labels are misclassi�ed.

Figure 25: Prediction results with the best score highlighted in red - models
evaluation on dataset with repeated inputs
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3.1.2 Classi�cation models evaluation on data set with unique

inputs

After performed grouping showed in the Figure 16 mentioned classi�cation
machine learning models were trained and evaluated for both daily and cu-
mulative pollen concentrations. The new modi�ed data set with the daily
pollen concentrations can be found in the Figure 26.

Figure 26: Prediction results for user with the most entries

After training and evaluating machine learning models on daily and cumu-
lative pollen concentrations the results showed in the Figure were obtained.

Figure 27: Prediction results with highlighted best scores for di�erent n
values, obtained after training and evaluating ML models using data set

with grouped samples

From the previous �gure it can be seen that XGB Classi�er achieved the high-
est accuracy score of 0.894 (marked in red) for n = 15, that indicates the
highest proportion of correct predictions compared to others, and equally
good recall score which indicates that the e�ectively captured positive in-
stances and have a low rate of false negatives. The XGB parameters of best
score:
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{′learning_rate′ : 0.2,′max_depth′ : 5,′ n_estimators′ : 100}
were obtained using GridSearchCV.

3.1.3 Classi�cation models evaluation on data samples from user

with the most entries

We have already seen that data entered by a lot of di�erent users signi�cantly
a�ects models performance so top 1 user with the most entries was found and
models were trained and evaluated on his data samples. A pollen diary user
with the most entries has ID number 16796 and 2259 entries, which can be
seen in the following histogram that represents number of data entries from
top 10 users.

Figure 28: Number of data entries from top 10 users

After evaluating the classi�cation models on the daily pollen concentra-
tions and the symptoms only from user with the most entries the results from
the Figure 29 are obtained.

Figure 29: Prediction results with the best score highlighted in red for user
with the most entries (classi�cation)
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From the previous �gure, it can be concluded that Random Forest and Gra-
dient Boosting, both achieving an accuracy score of 0.83 (marked in red),
are the top performers, demonstrating strong performance across all met-
rics. Both models show balanced performance in accuracy, precision, recall,
and F1 score, making them suitable for applications where class balance and
correct predictions are critical. Random Forest and Gradient Boosting pa-
rameters of best score, obtained using GridSearchCV, are:

Random Forest− {′criterion′ :′ gini′,′max_depth′ : 7,
′max_features′ : 3,′ n_estimators′ : 15}

Gradient Boosing − {′n_estimators′ : 200,′ max_depth′ : 5,
′learning_rate′ : 0.01}

Additionally, the data set which is smaller then initial one with the data from
all users, yielded better results because it does not contain samples with the
same inputs (pollen concentrations) and di�ering targets (user symptoms),
leading to more reliable and consistent modeling.

3.2 The Overall Symptoms Prediction

Four machine learning algorithms, K-Nearest Neighbors Regressor, Random
Forest Regressor, Gradient Boosting Regressor and XGB Regressor, were
employed to predict the overall symptom intensity caused by pollen allergy,
ranging from 0 to 21. All those regression models were evaluated using
Mean Absolute Error and Root Mean Squared Error evaluation metrics and
obtained results were compared.

3.2.1 Regression models evaluation on data set with repeated in-

puts

Similar to the classi�cation problem, the worst results after training and eval-
uating the regression models were obtained using an initial data set contain-
ing many samples with the same inputs and di�erent targets. The grouping
showed in the Figure 17 was not performed here. The prediction results can
be found in the Figure 30.
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3.2 The Overall Symptoms Prediction

Figure 30: Prediction results with the best scores highlighted in red -
models evaluation on data set with repeated inputs

Random Forest Regressor gave us the best results: MAE = 4.22 and
RMSE = 3.35. Given that the range of the prediction parameter is 21,
an MAE of 4.22 is about 20% of the total range, which could be considered
relatively high. RMSE gives more weight to larger errors due to squaring
the di�erences before averaging. An RMSE of 3.35 is about 16% of the total
range. This is slightly better than the MAE in terms of error magnitude, but
still relatively high compared to the range.

3.2.2 Regression models evaluation on data set with unique inputs

After performed grouping showed in the Figure 17 mentioned regression ma-
chine learning models were trained and evaluated for both daily and cumu-
lative pollen concentrations. In this section, the objective is to predict the
mean of overall symptoms, as the samples are categorized based on that av-
erage. The same cumulative pollen concentrations as in section 3.1.2 were
used and results are shown in Figure 31.
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3.2 The Overall Symptoms Prediction

Figure 31: Prediction results with highlighted best scores for di�erent n
values, obtained after training and evaluating ML models using data set

with grouped samples

The previous table provides a comparison of four di�erent machine learn-
ing models across various cumulative pollen concentrations (n = 1, 2, 3,
4, 5, 10, and 15 days). Lower RMSE and MAE values indicate better
model performance, as they re�ect smaller errors in prediction. K-Nearest
Neighbors showed consistent improvement in both RMSE and MAE as the
cumulative concentration increases, indicating that it bene�ts from more
data points. Random Forest exhibited signi�cant improvement with in-
creasing n, particularly n=15 and parameters of best score: {′max_depth′ :
10,′max_features′ : 3,′ n_estimators′ : 100}, where it has the lowestMAE

= 0.883 (marked in red) across all models. Gradient Boosting performed
well overall, with competitive RMSE and MAE values, particularly excelling
for daily pollen concentrations (n = 1). Extreme Gradient Boosting demon-
strated strong performance, achieving the lowest RMSE = 1.333 (marked
in red) with optimal parameters: {′learning_rate′ : 0.1,′max_depth′ :
7,′ n_estimators′ : 200}, for n=15.

3.2.3 Regression models evaluation on data samples from user

with the most entries

The mentioned regression models were also trained and evaluated on data
samples from pollen diary user with the most entries, with ID number 16796
(Figure28), and daily pollen concentrations (n = 1). The results, represented
with the Figure 32, were obtained.
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Figure 32: Prediction results with the best scores highlighted in red for user
with the most entries (regression)

From the previous �gure it can be seen that Gradient Boosting with
an MAE of 2.11 is the best for Minimizing Average Error(MAE) and is
Random Forest with an RMSE of 1.05 is the best for Minimizing Larger Er-
rors(RMSE). K-Nearest Neighbors showed the least favorable performance in
both metrics, while Random Forest and Gradient Boosting are the top con-
tenders depending on whether minimizing average or larger errors is more
critical. Comparing the prediction results for both, all pollen diary users
and top user with the most entries (Figure 30 and Figure 32), we can con-
clude that the models achieved better results with the data set smaller then
initial one with the data samples from all users, because it lacked samples
that had identical inputs (pollen concentrations) but di�erent targets (user
symptoms).

4 Discussion and Ideas for Future Work

The results obtained in this thesis highlight the potential of machine learn-
ing models in predicting pollen allergy symptoms, yet several avenues for
improvement and future research remain.

4.1 Discussion

Several observations and conclusions can be drawn from the results analysis:
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4.1 Discussion

Impact of Repeated Inputs on Model Performance. When train-
ing and evaluating classi�cation and regression models on datasets containing
repeated inputs (i.e., identical dates and pollen concentrations but di�er-
ent symptom records from di�erent users), the models generally performed
poorly. This is evident from the lower accuracy scores and high error rates.
For example, the Random Forest classi�er, which achieved the highest accu-
racy of only 0.49 on the dataset with repeated inputs, indicates that nearly
half of the predictions were incorrect. Similarly, regression models trained on
repeated inputs showed suboptimal performance, with relatively high Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) values. These
�ndings suggest that the presence of identical inputs with varying target out-
puts confuses the models, reducing their ability to learn consistent patterns
and make accurate predictions.

E�ectiveness of Grouped and Unique Input Datasets. In contrast,
models trained and evaluated on datasets with unique inputs demonstrated
signi�cant improvements in performance. For classi�cation models, the XGB
classi�er achieved an accuracy score of 0.894, showing a strong ability to pre-
dict symptom types accurately when trained on a re�ned dataset. Similarly,
regression models evaluated on datasets with unique inputs yielded better
results, as indicated by lower MAE and RMSE values. The K-Nearest Neigh-
bors regressor, Random Forest regressor, and Extreme Gradient Boosting re-
gressor all showed improved performance with increasing cumulative pollen
concentrations (n = 1 to 15 days), suggesting that aggregating data over a
period helps in capturing underlying patterns more e�ectively.

Model Performance for Individual Users with the Most Entries.
The analysis also revealed that machine learning models trained on data from
the user with the most entries (User ID 16796) performed better than those
trained on the aggregated data from all users. Both Random Forest and Gra-
dient Boosting classi�ers achieved high accuracy scores of 0.83, highlighting
their ability to handle individual-speci�c variations in symptom presentation
e�ectively. For regression tasks, the Gradient Boosting and Random Forest
regressors showed the lowest errors, with MAE of 2.11 and RMSE of 1.05,
respectively, further demonstrating that user-speci�c models can be more
reliable and consistent. These �ndings emphasize the need for personalized
models that can account for individual variability in allergic responses to
pollen exposure.

Comparison of Model Performance Across Di�erent Algorithms.
Across di�erent machine learning algorithms, the performance varied signif-
icantly. For classi�cation tasks, ensemble methods such as Random Forest,
Gradient Boosting, and XGB classi�ers outperformed simpler models like K-
Nearest Neighbors, demonstrating the strength of these models in capturing
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4.2 Ideas for future work

complex relationships in the data. In regression tasks, similar trends were
observed, with ensemble methods like Random Forest and Gradient Boosting
showing superior performance, particularly when evaluated on datasets with
unique inputs or individual user data. These results suggest that ensem-
ble methods are more e�ective in handling the complexities and variability
inherent in allergic symptom prediction.

4.2 Ideas for future work

Data Quality and Diversity. One of the primary limitations encountered
during this study was the presence of identical input samples (pollen concen-
trations) associated with di�erent symptom labels across various users. This
inconsistency a�ected the performance of the models, leading to less accurate
predictions. Future work should focus on obtaining more precise and con-
sistent data. This could be achieved by incorporating additional contextual
data, such as weather conditions, pollution levels, or more details about user,
to improve the robustness of the predictions.

Model Enhancements. While Random Forest and Extreme Gradient
Boosting emerged as the top-performing models, there is still room for op-
timization. Future e�orts could involve exploring more advanced ensemble
techniques, such as stacking or blending multiple models to leverage their
strengths. Additionally, hyperparameter tuning could be further re�ned by
implementing more sophisticated search techniques like Bayesian optimiza-
tion or genetic algorithms, which may yield better parameter sets than those
obtained through GridSearchCV.

Feature Engineering and Selection. The current study primarily
focused on daily and cumulative pollen concentrations as input features.
Future research could bene�t from incorporating additional features, such
as historical symptom trends or time-lagged pollen data, which might cap-
ture latent patterns and improve model predictions. Additionally, feature
selection methods could be applied to identify the most relevant features,
potentially reducing model complexity and improving interpretability.

Temporal Modeling and Longitudinal Analysis. Given the tempo-
ral nature of allergy symptoms and pollen concentrations, future work could
explore time series modeling approaches, such as recurrent neural networks
(RNNs) or long short-term memory (LSTM) networks, which are speci�cally
designed to handle sequential data. These models could capture temporal
dependencies and improve the prediction of symptom onset or progression
over time.

Personalized Prediction Models. While this study explored predic-
tions for a single user with the most entries, future work could expand this
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approach by developing personalized models for other users or user segments.
By tailoring models to individual or group-speci�c data, the predictions could
become more accurate and relevant, thus enhancing their practical utility.

Real-Time Implementation and Application. The ultimate goal
of this research is to create a tool that can be used in real-time to help
individuals manage their allergy symptoms. Future work could focus on
developing a user-friendly application that integrates these machine learning
models, allowing users to input current conditions and receive immediate
predictions. Such an application could also continuously learn and adapt to
new data, further improving prediction accuracy over time.

Broader Data Integration. Integrating data from other geographical
regions or incorporating pollen data from other networks could expand the
applicability of the models developed in this thesis. This could enable a
more comprehensive understanding of pollen allergies on a global scale and
enhance the generalizability of the models.

By addressing these areas of improvement, future work can build on the
foundation laid in this thesis, further re�ning the models and enhancing
their predictive capabilities, ultimately contributing to better management
of pollen allergies and improved quality of life for su�erers.

5 Conclusion

This thesis successfully identi�ed and trained the most suitable machine
learning models for predicting pollen allergy symptoms, demonstrating var-
ious predictive capabilities in both regression and classi�cation tasks. By
leveraging data from the Patient's Hayfever Diary (PHD) and the Laboratory
for Palynology at the Faculty of Sciences in Novi Sad, the study evaluated
multiple models across di�erent time frames.

For symptom type classi�cation, the XGB Classi�er consistently outper-
formed other models, achieving the highest accuracy and recall scores, partic-
ularly when using cumulative pollen concentrations over multiple days. This
indicates that the XGB Classi�er is highly e�ective in capturing the relation-
ship between pollen concentrations and the type of symptoms experienced
by users.

In the regression tasks, the Random Forest Regressor and Gradient Boost-
ing Regressor emerged as the most reliable models, with the Random Forest
Regressor showing particularly strong performance when trained on cumu-
lative pollen data over a 15-day period. These models were able to predict
overall symptom intensity with relatively low error rates, indicating their
suitability for forecasting the severity of pollen allergy symptoms based on
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environmental data.
Interestingly, the evaluation of models on data from the user with the

most entries revealed that the absence of con�icting samples (where iden-
tical pollen concentrations were associated with di�erent symptoms) led to
signi�cantly improved model performance. Even with a smaller, user-speci�c
dataset, the models maintained high accuracy and low error rates, underscor-
ing the robustness and reliability of the chosen approaches.

Furthermore, extensive data analysis provided valuable insights, revealing
important correlations and statistical patterns that enhance our understand-
ing of pollen allergy symptoms. These �ndings contribute to the broader
goal of improving daily life for individuals a�ected by pollen allergies through
more accurate symptom prediction.
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Appendix A

Figure 33 shows concentrations of di�erent pollen species over the years.

Figure 33: Concentrations of di�erent pollen species over the years

Given that AMBR (Ambrosia - Ragweed) and URTI (Urticaceae - Net-
tles) consistently rank among the top 5 pollen concentrations each year, as
shown in the previous �gure, these two pollen species were speci�cally com-
pared with the symptoms reported by the top 10 pollen diary users. The
graphics depicting ragweed and nettle pollen concentrations alongside the
symptoms of the top 10 users are presented in Figure 34.
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Figure 34: AMBR and URTI pollen concentrations alongside the symptoms
of the top 10 users
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