
University of Novi Sad
Faculty of Sciences

Department of Mathematics
and Informatics

Application of Genetic Algorithms to
Optimization of Convolutional Neural

Network Architecture

Master Thesis

Milan Ignjić

Supervisor: dr Oskar Marko

Novi Sad, 2024

Abstract

This thesis explores neural network architecture design, a fundamental aspect of deep
learning. A common practice in this domain involves the adaptation of existing archi-
tectures to address specific problems. However, this approach, while convenient, comes
with an inherent risk of architectural bias, limiting the exploration of alternative, po-
tentially superior designs.

The central objective of this thesis is to propose an innovative methodology for
the automated generation of neural network architectures. This approach leverages
evolutionary algorithms, inspired by natural selection, to create novel neural network
structures. By iteratively evolving architectures using a predefined set of objectives,
this method systematically introduces and explores variations, ultimately unveiling
diverse, unexplored network structures.

The main advantage of this approach is in its ability to explore unexplored areas
of architecture design. While human intuition may gravitate toward familiar patterns,
the evolutionary algorithm explores unconventional configurations, possibly uncover-
ing innovative solutions. This work encourages the exploration of novel architectural
possibilities, reducing the risk of missing optimal solutions.

1

Acknowledgments

I extend my heartfelt gratitude to my thesis supervisor, Dr. Oskar Marko, for his
guidance and valuable assistance with evolutionary algorithms. Additionally, I want
to express my appreciation to Dr. Sanja Brdar for her unwavering motivation and
support throughout the research on this topic.

My sincere thanks go to my family for their enduring support and constant en-
couragement throughout my years of study.

My deepest gratitude is reserved for my fiancée, without whom I would not have
had the strength to see this research through to its conclusion. Her care and support
were indispensable throughout this journey.

Finally, I offer special thanks to my late father, whose inspiration and courage
continue to drive me to pursue my dreams.

2

Contents

1 Introduction 1
1.1 Artificial Neural Networks . 2
1.2 Convolutional Neural Network . 4
1.3 Neuroevolution . 5
1.4 Digit Recognition . 5

2 Background theory 9
2.1 Artificial Neural Networks . 9

2.1.1 Perceptron . 9
2.1.2 Multilayer perceptron . 13

2.2 Convolutional Neural Network . 14
2.2.1 Convolution . 14
2.2.2 Pooling . 22
2.2.3 Handling Input Channels in CNNs 23

2.3 Evolutionary algorithms . 24
2.3.1 Genetic algorithms . 26
2.3.2 NSGA-II . 27

3 Materials and methods 32
3.1 Hardware . 32
3.2 Dataset . 32
3.3 Baseline . 33
3.4 Key implementation components . 33

3.4.1 Modified NSGA-II . 33
3.4.2 Decoder . 34

3.5 Training loop . 37

4 Results 38
4.1 Benchmarking Results . 40

5 Discussion 41

6 Conclusion 42

Biography 46

Biography 47

3

List of Figures

1.1 Biological neuron . 2
1.2 Example of Convolutional Neural Network 4
1.3 Neural network evolution . 5
1.4 Handwritten digit recognition . 6

2.1 Weights and bias of the model are updated based on the error function 11
2.2 Examples of linearly and nonlinearly separable classes 11
2.3 Simple Multilayer Perceptron . 13
2.4 Sigmoid, Tanh and ReLU (respectively) 14
2.5 An example of 2-D convolution without kernel flipping 16
2.6 Example of interaction between input and output features in an MLP.

All outputs are affected by x3 . 17
2.7 Example of interaction between input and output features in a convo-

lution with a kernel of width 3. Only three outputs are affected by
x3 . 17

2.8 Receptive field of the units in the deeper layers 18
2.9 Parameter sharing in an MLP. The black arrow indicates the use of the

central element of the weight matrix 18
2.10 Parameter sharing in a convolution. The black arrows indicate uses of

the central element of a 3-element kernel 19
2.11 Example of a convolution with a stride of two 19
2.12 Example of a convolution with a unit stride followed by downsampling 20
2.13 The effect of convolution without padding on output size 21
2.14 The effect of convolution with same padding on output size 21
2.15 Example of a max pooling . 22
2.16 Example how pooling preserves invariance to translation 23
2.17 Convolutional layer followed by a pooling layer 24
2.18 A simple representation of the relationship between the search space and

the objective function space . 24
2.19 Example of binary crossover . 25
2.20 Example of SBX . 26
2.21 Example of mutation . 26
2.22 Solutions divided into Pareto fronts . 28
2.23 Manhattan Crowding distance . 30
2.24 NSGA-II . 31

3.1 Sample digits from MNIST Dataset . 32
3.2 First 15 values obtained by algorithm 35
3.3 Number of filters for first 15 convolutional layers 35
3.4 Number of units in last 15 hidden layers 35
3.5 Example of CNN represented by [2, 6] array 36
3.6 Simplest neural network . 36

4

LIST OF FIGURES 5

4.1 Model architecture after depth search 38
4.2 Accuracy vs training time across generations in depth search 38
4.3 Model architecture after width search 39
4.4 Accuracy vs training time across generations in width search 39

5

List of Abbreviations

ANN Artificial Neural Network
CNN Convolutional Neural Network
ReLU Rectified Linear Units
MLP Multilayer Perceptron
RGB Red, Green, Blue
SBX Simulated Binary Crossover
EA Evolutionary Algorithms
GA Genetic Algorithms
NSGA Non-dominated Sorting Genetic Algorithm
GPU Graphical Processing Unit

6

1. Introduction

When constructing neural network models by manually specifying network architec-
tures, a prevalent method involves the initial exploration of architectures implemented
to tackle similar problems [1]. This preliminary step involves exploring existing so-
lutions that have proven effective in addressing similar challenges, and subsequently
tailoring these architectures to address the unique prerequisites specific to the particu-
lar use case [2] [3]. This approach aims to speed up the network’s convergence towards
a viable solution by leveraging established patterns that have already demonstrated
efficacy in related domains.

However, there is a shortcoming in this approach. While adapting and fine-tuning
existing architectures can certainly yield promising outcomes, there remains a notable
drawback in the form of architectural bias. By predominantly focusing on pre-existing
solutions, researchers might miss an extensive array of alternative architectures that
could potentially outperform the modified designs [4].

In essence, the approach of borrowing and modifying architectures, while con-
venient, carries the potential to miss out on the optimal solutions. The domains of
neural network design and architecture hold a multitude of uncharted possibilities that
demand thorough exploration. By going beyond the familiar constructs, researchers
can increase their chances of crafting novel and superior architectures that align more
accurately with the problem they are trying to solve [5].

The central objective of this thesis revolves around the proposition of an innova-
tive methodology for the automated generation of neural network architectures. The
proposed solution involves the integration of evolutionary algorithms, a powerful com-
putational paradigm inspired by the principles of natural selection, to facilitate the
creation of novel neural network structures. This method is based on utilizing neural
network architectures that have proven to be top-performing solutions, guided by a
predefined set of objectives

In essence, this approach uses evolutionary algorithms to iteratively evolve and
refine neural network architectures. The initial step involves identifying neural net-
work configurations that have demonstrated exceptional performance according to the
specified objectives. These high-performing architectures serve as the seed population
for the evolutionary process. Through a series of generational iterations, the algo-
rithm systematically introduces and explores variations within the architecture space,
resulting in the emergence of diverse and unexplored neural network structures.

This approach stands out because it can explore new areas in architecture design.
Human intuition often sticks to what is known, but the evolutionary algorithm goes
beyond, investigating unusual designs that people might not consider. This ability to
venture into unconventional architectural territory can reveal innovative solutions that
might otherwise stay hidden [5].

1

1.1. ARTIFICIAL NEURAL NETWORKS 2

1.1. Artificial Neural Networks
The history of Artificial Neural Networks (ANN) [1] [6] [7] [8] traces back to the mid-
20th century, with roots firmly established in the field of neuroscience and early at-
tempts to replicate the functioning of the human brain. The development of ANNs has
been marked by several significant milestones.

In 1943 Warren McCulloch and Walter Pitts made a significant contribution to
the field of neural networks by introducing the McCulloch-Pitts neuron model [6]. This
model provided a fundamental understanding of how artificial neurons could mimic the
behavior of biological neurons.

In their groundbreaking work, McCulloch and Pitts proposed a computational
abstraction of a neuron, which they termed the McCulloch-Pitts neuron. This model
aimed to capture the basic functionality of a biological neuron by simplifying its be-
havior into mathematical operations.

Figure 1.1: Biological neuron [6]

At its core, the McCulloch-Pitts neuron operates on the concept of binary thresh-
olds [9]. It takes input signals, each with an associated weight, and processes them.
If the weighted sum of inputs surpasses a certain threshold value, the neuron ”fires,”
emitting an output signal. Otherwise, it remains inactive. This binary firing mecha-
nism mirrored the behavior of biological neurons, which either transmit an electrical
signal (a ”spike”) when a certain level of excitation is reached or remain dormant.

Expanding further upon the foundation laid by the McCulloch-Pitts neuron
model, in 1957 psychologist Frank Rosenblatt played a pivotal role in advancing the
field of neural networks with his development of the perceptron. The perceptron rep-
resents a significant step forward by introducing a single-layer neural network capable
of learning basic patterns [9].

Rosenblatt’s perceptron incorporates the principles of the McCulloch-Pitts neu-
ron while also adding a crucial element: the ability to learn and adapt. Unlike the
fixed-weight McCulloch-Pitts neuron, the perceptron’s algorithm allows it to adjust its
internal weights in response to input data. This innovation marks one of the earliest
instances of incorporating machine learning into neural networks [6].

The perceptron’s learning process is guided by the concept of supervised learning
[10]. During training, the perceptron is presented with input-output pairs, and it itera-
tively adjusts its weights to minimize the difference between its predicted outputs and

2

1.1. ARTIFICIAL NEURAL NETWORKS 3

the desired outputs. This weight adjustment process is driven by a mathematical algo-
rithm, specifically the perceptron learning rule, which aims to optimize the network’s
ability to classify and distinguish patterns.

While the perceptron demonstrated promising capabilities in handling simple
pattern recognition tasks, it has limitations. It can only effectively learn linearly sepa-
rable patterns [6], which limits its applicability to more complex problems that require
nonlinear decision boundaries.

Following the initial excitement and promising developments in the field of artifi-
cial intelligence, the AI winter [11] emerged as a significant setback during the late 20th
century. The AI winter refers to a period of diminished funding, dwindling interest,
and reduced progress in artificial intelligence research and applications. This downturn
was influenced by a combination of factors, including overhyped expectations, unmet
promises, and technological limitations.

One of the contributing factors to the AI winter was the ”hype cycle” that sur-
rounded artificial intelligence in its early stages. As expectations soared following
breakthroughs like the perceptron and other early AI achievements, there was a grow-
ing sense that AI systems could perform tasks at a level comparable to human intelli-
gence across a wide range of domains. However, as researchers encountered challenges
related to the complexity of cognition, language understanding, and reasoning, it be-
came evident that the initial optimism had been inflated.

Moreover, during the 1970s and 1980s, the limitations of existing computing
hardware became a significant hurdle. The computational power required for advanced
AI tasks far exceeded the capabilities of the available hardware at the time. As a result,
the practical realization of the ambitious goals set for AI systems remained elusive,
leading to disillusionment within the research community and funding bodies.

These factors converged to create a general skepticism about the feasibility of AI
applications, leading to a decline in funding for AI research projects and a decrease in
public interest. Despite the challenges and setbacks, however, the AI winter also served
as a valuable lesson for the field. It highlighted the need for more realistic expectations,
a focus on foundational research, and the development of practical applications that
could gradually demonstrate the value of artificial intelligence in specific domains. This
recalibration ultimately paved the way for the renaissance of AI that followed, driven
by advances in computing technology, the rise of big data, and the emergence of more
sophisticated machine learning algorithms.

The introduction of the backpropagation algorithm [12] in 1986 by David Rumel-
hart, Geoffrey Hinton, and Ronald Williams breathed new life into the study of neural
networks. This innovative algorithm revitalized interest in the field, sparking a renewed
enthusiasm for exploring the potential of neural networks. Backpropagation played a
pivotal role in enabling the training of multi-layer neural networks, allowing them to
learn complex patterns and features from data.

The significance of backpropagation was evident in its ability to address a long-
standing challenge in neural network research—training networks with multiple layers.
Prior to this breakthrough, the training of deep neural networks was fraught with
difficulties, making it challenging for these networks to effectively learn and generalize

3

1.2. CONVOLUTIONAL NEURAL NETWORK 4

from complex data. Backpropagation changed this landscape by providing a systematic
way to adjust the network’s internal parameters based on the discrepancies between
predicted and actual outputs. This mechanism allowed the network to iteratively fine-
tune its weights and biases, gradually improving its performance on the given task.

In the 21st century, neural networks experienced a renewed interest, owing to
various significant factors that breathed new life into the field. Key among these
were advancements in computational power, the accessibility of extensive datasets,
and the emergence of innovative architectural designs. This resurgence gave rise to
the paradigm of Deep Learning [7], marked by the utilization of deep neural networks,
which demonstrated remarkable achievements in tasks like image recognition [1], nat-
ural language processing [13], and strategic gaming (AlphaGo [14]).

1.2. Convolutional Neural Network
A Convolutional Neural Network (CNN) [1] [6] [7] [15] [16] [17] is a specialized type of
artificial neural network designed for processing and analyzing visual data, particularly
images and videos. CNNs are inspired by the visual processing mechanisms of the
human brain and are highly effective in tasks like image recognition, object detection,
image segmentation, and more.

Usually, CNNs are structured with a series of convolutional layers, followed by
one or more fully connected layers at the end. These fully connected layers essentially
form a Multilayer Perceptron.

A standard convolutional layer within a convolutional network consists of three
stages. In the first stage, the layer conducts multiple convolutions in parallel, resulting
in a collection of linear activations. In the second stage, each of these linear activations
is passed through a nonlinear activation function, often referred to as the ”detector
stage.” Finally, in the third stage, a pooling function is employed to further transform
the layer’s output.

Figure 1.2: Example of Convolutional Neural Network [6]

Early layers are responsible for extracting low-level features directly from raw
data, while the later layers utilize these extracted features for making predictions. This
characteristic distinguishes CNNs from traditional machine learning models, as they
can automatically learn and extract relevant features from the input data, reducing
the dependence on manually engineered features provided by domain experts.

4

1.3. NEUROEVOLUTION 5

1.3. Neuroevolution
The concept of neuroevolution [18] [19] in artificial intelligence draws inspiration from
the evolution of biological nervous systems. It applies abstractions of natural evolution,
such as evolutionary algorithms, to construct artificial neural networks mimicking bio-
logical neural networks. The ultimate and ambitious goal is to evolve complex artificial
neural networks capable of intelligent behavior. Therefore, neuroevolution serves both
as a means to explore how intelligence evolved in nature and as a practical method for
engineering artificial neural networks to perform specific tasks.

Much like natural selection in the domain of biology, which is influenced by feed-
back from reproductive success, neuroevolution relies on a measure of overall perfor-
mance as its guiding principle.

What sets neuroevolution apart is its adaptability to various network architec-
tures and neural models. To implement neuroevolution, it is necessary to evaluate
network performance over time and to be able to modify network behavior through
evolutionary processes. While many neural learning methods [20] primarily focus on
adjusting neural connection strengths (connection weights), neuroevolution goes a step
further by optimizing other parameters, such as network topology (e.g., adding neurons
or connections) and the computational functions performed by individual neurons.

In the typical neuroevolution process, a population of genetic encodings repre-
senting neural networks is evolved with the objective of finding a network capable
of solving a specific task. Most neuroevolution methods adhere to the conventional
generate-and-test loop [21] commonly seen in evolutionary algorithms.

Figure 1.3: Neural network evolution [22]

1.4. Digit Recognition
Digit recognition [1] [15], a fundamental challenge in computer vision, involves decipher-
ing and categorizing handwritten or printed digits into their corresponding numerical
values. This task has wide-ranging applications, from check processing in banking to

5

1.4. DIGIT RECOGNITION 6

digitizing postal codes. The aim is to develop a system that can automatically distin-
guish between different digits, regardless of variations in handwriting styles, sizes, and
orientations.

Figure 1.4: Handwritten digit recognition [23]

To tackle this problem, researchers and engineers employ various techniques to
extract distinctive features from the input images. These features capture essential
characteristics like lines, curves, and intersections that are common across different
instances of each digit. The process involves preprocessing the images to enhance con-
trast and remove noise, followed by feature extraction to pull out potentially meaningful
information.

After feature extraction, a classification algorithm comes into play. This algo-
rithm is designed to categorize the input images based on the extracted features. It
learns patterns from a labeled dataset containing examples of each digit. During the
training phase, the algorithm adjusts its internal parameters to minimize the difference
between predicted classifications and the true labels of the training data.

Once the algorithm is trained, it can be evaluated on new, unseen images. The
goal is to generalize its learning and accurately classify digits it has never encountered
before. Evaluating the model’s performance involves metrics such as accuracy, preci-
sion, recall, and F1-score, which quantify its ability to correctly classify different digits
and handle potential errors [6] [9].

In the history of number recognition, significant strides were made in the late 20th
century to develop efficient methods for automatic digit recognition. In the 2000s, the
Viola-Jones algorithm [24] emerged as a landmark technique for object detection and
facial recognition. While primarily designed for detecting faces, it laid the groundwork
for subsequent advancements in recognizing digits and patterns. The Viola-Jones al-
gorithm exploited Haar-like features [25] and utilized a cascading approach to quickly
discard non-relevant regions of an image, making it computationally efficient.

During the 1980s and 1990s, researchers began exploring the use of neural net-
works for pattern recognition tasks like digit recognition. However, these early attempts
were hindered by several drawbacks. Neural networks of that era struggled with vanish-
ing gradients [26], limited computational resources, and insufficient training data. The
models were often shallow and lacked the depth needed to capture intricate features.
As a result, the performance of these networks was not on par with expectations.

The turning point came with the mainstream adoption of the internet. The
internet brought about an explosion of digitized data, with numerous handwritten

6

1.4. DIGIT RECOGNITION 7

digit datasets becoming widely accessible. This influx of data proved to be a benefit
for training machine learning models, as it allowed for more comprehensive and diverse
training sets. Furthermore, the increased availability of computing power, coupled
with advancements in graphics processing units (GPUs), revolutionized the training
of neural networks. GPUs offered parallel processing capabilities that significantly
accelerated training times, enabling the training of deeper and more complex models.

The combination of abundant data and improved computational infrastructure
set the stage for a neural network resurgence. Researchers revisited the concept of
deep neural networks, giving rise to deep learning architectures. CNNs brought about
a breakthrough in digit recognition and computer vision tasks in general. CNNs demon-
strated exceptional performance in recognizing digits due to their ability to automati-
cally learn hierarchical features from raw pixel values.

AlexNet [27] marked a pivotal moment in the history of neural networks, specif-
ically in the field of computer vision. Developed by Alex Krizhevsky, Ilya Sutskever,
and Geoffrey Hinton, AlexNet was a deep convolutional neural network that achieved
groundbreaking results in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012.

The ImageNet [28] competition, part of the ILSVRC, focused on classifying im-
ages into a vast number of categories, with a massive dataset containing millions of
labeled images. AlexNet was a game-changer in this competition due to its remarkable
performance. It consisted of multiple convolutional and fully connected layers, intro-
ducing key architectural innovations that laid the foundation for modern deep neural
networks.

What set AlexNet apart were several factors:
1. Depth: AlexNet was considerably deeper than previous neural networks, al-

lowing it to learn complex features and hierarchical representations of the input images.
This depth was made possible by the combination of convolutional and pooling layers.

2. Convolutional Layers: The architecture utilized convolutional layers that au-
tomatically learned features like edges, textures, and basic shapes directly from the
raw pixel data. This reduced the need for manual feature engineering, which was a
common practice before deep learning.

3. ReLU Activation [29]: AlexNet employed ReLU as the activation function.
ReLU improved training by addressing the vanishing gradient problem, enabling faster
and more stable convergence during training.

4. Data Augmentation [30]: The team employed aggressive data augmentation
techniques during training, such as cropping, flipping, and adjusting brightness. This
helped the network generalize better to different variations of the same image.

5. Dropout [31]: AlexNet incorporated dropout, a regularization technique that
randomly deactivated some neurons during each training iteration. This prevented
overfitting and improved generalization performance.

AlexNet’s innovative architecture and techniques allowed it to achieve a top-5
error rate of around 15.3% on the challenging ImageNet dataset, significantly outper-
forming the competition. This demonstrated the power of deep neural networks for

7

1.4. DIGIT RECOGNITION 8

large-scale image recognition tasks and signaled a resurgence of interest in neural net-
work research, inspiring the development of even more sophisticated architectures.

8

2. Background theory

2.1. Artificial Neural Networks
In this segment, we present the concept of the ANN. We then delve into the explana-
tion of the perceptron, which is the most elementary form of a neural network. We
subsequently explore the convergence of the perceptron algorithm and the multilayer
perceptron.

2.1.1 Perceptron
A perceptron is one of the fundamental building blocks of artificial neural networks and
machine learning. It is a type of artificial neuron that models a simplified version of
a biological neuron. The perceptron takes multiple input values, multiplies each input
by a corresponding weight, sums up the weighted inputs, and then passes the result
through an activation function to produce an output.

Mathematically, the output of a perceptron can be represented as:

y(x) = f(wT x + w0) (2.1)

where x ∈ Rn, w ∈ Rn, w0 ∈ R, and f is a step function.

f(a) =
{

1, a ≤ 0
−1, a > 0 a ∈ R (2.2)

It was designed for binary classification tasks [9], where it could learn to separate
data points into two classes based on the learned weights and biases. These classes are
denoted as C1 and C2.

Define g(x) = wT x + w0. The function g can be rewritten as:

g(x) = wT x + w0 =
[
wT w0

] [
x
1

]
= w′T x′ (2.3)

In further notation we can simply use g(x) = wT x. The aim is to find a vector
w such that:

wT x = 0 and
wT x > 0, ∀x ∈ C1

wT x < 0, ∀x ∈ C2
(2.4)

To simplify the process, we change the sign of every sample in class C2:

x → −x, ∀x ∈ C2 (2.5)

9

2.1. ARTIFICIAL NEURAL NETWORKS 10

after which optimization problems becomes:

wT x > 0, ∀x (2.6)

To find a solution, it is mandatory to establish the objective function J(w) [9].
A suitable choice for this function is what is commonly referred to as the perceptron
criterion function:

Jp(w) = −
∑

wT x (2.7)

where M is a set of all misclassified samples. Given that wT x < 0 holds true for
all x ∈ M, it follows that Jp(w) is always nonnegative. The minimum value of this
function is 0, and it is attained when there are no incorrectly classified samples. Due
to the continuous and piecewise linear nature of the perceptron criterion function, we
can utilize the stochastic gradient descent algorithm to search for its minimum.

Gradient is defined as

∇wJp(w) = −
∑

x∈M
x (2.8)

therefore:

wk+1 = wk − ηk∇wJp(w) = wk + ηk

∑
x (2.9)

where ηk is the learning rate parameter.

Perceptron learning algorithm

Perceptron algorithm [6] can be summarized by the following steps:
1. Initialize the weights and bias unit to 0 or small random numbers.
2. For each training example, x:

(a) Compute the output value, ŷ.
(b) Update the weights and bias unit.

3. Go to step 2 until there are no misclassified samples.
The output value is the class label predicted by the step function previously

defined.

10

2.1. ARTIFICIAL NEURAL NETWORKS 11

Figure 2.1: Weights and bias of the model are updated based on the error function [6]

Convergence of Perceptron rule

Convergence of the perceptron is only guaranteed if the two classes are linearly separa-
ble. However, in cases where two classes are not linearly separable, there is no vector
w∗ that can accurately classify every sample, therefore the updates in perceptron algo-
rithms will never end. Figure 2.2 shows a difference between linearly and nonlinearly
separable classes.

Figure 2.2: Examples of linearly and nonlinearly separable classes [6]

Assume that classes C1 and C2 are linearly separable. Let w∗ be the solution of a
problem and α ∈ R. Therefore, based on 2.9 follows:

wk+1 − αw∗ = wk − αw∗ + ηk

∑
x (2.10)

Applying the square of Euclidean norm from both sides gives:

11

2.1. ARTIFICIAL NEURAL NETWORKS 12

∥wk+1 − αw∗∥2 = ∥wk − αw∗∥2 + η2
k

∥∥∥∥∥ ∑
x∈M

x

∥∥∥∥∥ + 2ηk

∑
x∈M

(wk − αw∗)T x (2.11)

Since ∑
x∈M wT x < 0:

∥wk+1 − αw∗∥2 ≤ ∥wk − αw∗∥2 + η2
k

∥∥∥∥∥ ∑
x∈M

x

∥∥∥∥∥
2

− 2ηkα
∑

x∈M
w∗T x (2.12)

We define:

β2 = max
M̃⊆C1∪C2

∥∥∥∥∥∥
∑

xn∈M̃

x

∥∥∥∥∥∥
2

(2.13)

γ = min
M̃⊆C1∪C2

∑
xn∈M̃

w∗T x (2.14)

β2 represents the maximum value of a vector norm among all possible subsets of
the given data and that γ is always negative based on 2.7. Therefore, equation can be
rewritten as:

∥wk+1 − αw∗∥2 ≤ ∥wk − αw∗∥2 + η2
kβ2 − 2ηkαγ (2.15)

If we set α = β2

2γ
and subsequently apply the upper inequality for k, k − 1, . . . , 0,

we can derive the following:

∥wk+1 − αw∗∥2 ≤ ∥w0 − αw∗∥2 + β2(
k∑

i=0
η2

i −
k∑

i=0
ηi) (2.16)

Selecting the sequence {ηi}k
i=0, ηi ∈ R, such that it meets the following conditions:

1. lim
k→∞

k∑
i=0

ηi = ∞ (2.17)

2. lim
k→∞

k∑
i=0

η2
i < ∞ (2.18)

means that there exists k0 such that for all k > k0, k ∈ N, the right side of the
inequality is nonpositive. Since the left side of the inequality is nonnegative, it follows:

∥wk0 − αw∗∥ (2.19)

In other word:

12

2.1. ARTIFICIAL NEURAL NETWORKS 13

wk0 = αw∗ (2.20)

Thus, we have demonstrated the convergence of the perceptron algorithm when
these conditions are met.

2.1.2 Multilayer perceptron
The simple perceptron is effective for binary classification tasks when dealing with two
linearly separable classes. However, it faces challenges when confronted with multiple
classes, and even by adding more perceptrons to the layer, it struggles with nonlinear
cases. This limitation is where the Multilayer Perceptron (MLP) [32] steps in.

The MLP consists of three types of layers: an input layer, hidden layers, and
an output layer, as shown in Figure 2.3. Perceptrons within each layer receive inputs
from neurons in the preceding layer, multiply these inputs by corresponding weights,
and sum them up. The result then undergoes an activation function, introducing non-
linearity to capture complex relationships.

Figure 2.3: Simple Multilayer Perceptron [32]

In the MLP, each activation function is replaced with a differentiable non-linear
function to facilitate the calculation of derivatives. Interestingly, if all the activation
functions in the hidden layer of a network are linear, then the entire network can be
reduced to an equivalent network without hidden units. This is due to the fact that
the composition of successive linear transformations remains a linear transformation.

Common functions with this property include sigmoid, tanh, and ReLU [33].
These functions are defined as follows:

Sigmoid:
f(x) = 1

1 + e−ax
(2.21)

13

2.2. CONVOLUTIONAL NEURAL NETWORK 14

where a is the slope parameter.
Tanh:

f(x) = sinh x

cosh x
= ex − e−x

ex + e−x
(2.22)

ReLU:
f(x) = max{0, x} (2.23)

Sigmoid and tanh functions constrain inputs to specific ranges, while ReLU acti-
vates for positive inputs.

Figure 2.4: Sigmoid, Tanh and ReLU (respectively) [33]

The MLP operates as a feedforward network, which means information flows in
only one direction, from one node to another. There are no cycles or loops between
nodes, ensuring a clear forward progression of information through the network.

2.2. Convolutional Neural Network
Convolutional neural networks (CNNs) are simply neural networks that use convolution
in place of general matrix multiplication in at least one of their layers [6]. The name
“convolutional neural network” indicates that the network employs a mathematical
operation called convolution.

2.2.1 Convolution
Convolution is an operation on two functions of a real-valued argument [7].

s(t) =
∫

x(a)w(t − a) da (2.24)

where t ∈ R. In CNN terminology, the function x is frequently referred to as the
input, the function w as the kernel, and the output as the feature map. The convolution
operation is typically denoted with an asterisk:

s(t) = (x ∗ w)(t) (2.25)

In practice, input data is usually not continuous, but discrete. Discrete convolu-
tion is defined as:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t − a) (2.26)

14

2.2. CONVOLUTIONAL NEURAL NETWORK 15

In machine learning applications, the input is typically represented as a multidi-
mensional array of data, and the kernel is often a multidimensional array of parameters
that are adjusted by the learning algorithm. Since each element of both the input and
the kernel must be individually stored, it’s generally assumed that these functions are
zero everywhere except for the finite set of points for which we store values. In practice,
this means that we can compute the infinite summation as a summation over a finite
number of array elements.

In digit recognition we use a two-dimensional image I as our input and two-
dimensional kernel K:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(m, n)K(i − m, j − n) (2.27)

or
S(i, j) = (K ∗ I)(i, j) =

∑
m

∑
n

I(i − m, j − n)K(m, n) (2.28)

because convolution is a commutative operation. In neural networks, the commutative
property of convolution is not a crucial consideration. Instead, cross-correlation is
commonly employed. Cross-correlation is essentially the same as convolution, with the
key distinction that it doesn’t involve flipping the kernel:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i + m, j + n)K(m, n) (2.29)

This choice simplifies the implementation and interpretation of operations in
many neural network frameworks.

15

2.2. CONVOLUTIONAL NEURAL NETWORK 16

Figure 2.5: An example of 2-D convolution without kernel flipping [7]

Two important properties of convolutional operations in neural networks are
sparse interactions and parameter sharing.

In contrast to MLP, where each output feature (neuron) is connected to every
input feature, convolutional layers exhibit a different pattern of connectivity. In con-
volutional layers, each output feature is connected only to a small subset of the input
features. This sparse connectivity [34] reduces the number of connections and com-
putations, making it computationally efficient. It also captures local patterns in the
data, which is particularly useful for tasks where local relationships are essential, such
as image processing.

16

2.2. CONVOLUTIONAL NEURAL NETWORK 17

Figure 2.6: Example of interaction between input and output features in an MLP. All
outputs are affected by x3[7]

Figure 2.7: Example of interaction between input and output features in a
convolution with a kernel of width 3. Only three outputs are affected by x3[7]

In deep convolutional networks, units in the deeper layers can indirectly interact
with a more extensive portion of the input data. This expanded reach of input influence
on a unit’s behavior is what we refer to as the receptive field [35] of that unit. If the
network incorporates architectural features like strided convolution or pooling [36],
this receptive field can grow even larger. Therefore, while the direct connections in
a convolutional network start with limited local influence, units in deeper layers can
establish indirect connections that encompass a significant portion of the input image.
This characteristic allows the network to effectively process and recognize complex
patterns and relationships in the data.

17

2.2. CONVOLUTIONAL NEURAL NETWORK 18

Figure 2.8: Receptive field of the units in the deeper layers [7]

Parameter sharing [34] means that the same set of weights (kernel) is used for
multiple locations in the input data. This sharing of weights enables the network to
learn and recognize the same features or patterns at different positions in the input.
It not only reduces the number of parameters in the model but also encourages the
network to learn translation-invariant features. This is a critical property for tasks like
image recognition, where the same object or pattern can appear at different positions
in an image.

Figure 2.9: Parameter sharing in an MLP. The black arrow indicates the use of the
central element of the weight matrix [7]

18

2.2. CONVOLUTIONAL NEURAL NETWORK 19

Figure 2.10: Parameter sharing in a convolution. The black arrows indicate uses of
the central element of a 3-element kernel [7]

In certain cases, we might choose to skip over some positions of the convolutional
kernel to reduce computational expenses, although at the cost of obtaining less detailed
features. This can be conceptualized as a form of downsampling applied to the output
produced by the full convolution operation. This can be achieved by moving a kernel
more than one pixel at a time. We refer to the number of rows and columns traversed
per slide as the stride. Additionally, it is feasible to define distinct strides for each
direction of motion as needed.

Figure 2.11: Example of a convolution with a stride of two [7]

19

2.2. CONVOLUTIONAL NEURAL NETWORK 20

Figure 2.12: Example of a convolution with a unit stride followed by downsampling [7]

With each application of a convolution operation, it’s common for the dimension
of the representation to decrease. This reduction in dimensionality is a consequence
of how convolution operates and the size of the convolutional kernels. That’s why one
of the critical features in any convolutional network implementation is the ability to
implicitly zero-pad the input, effectively expanding its width. Zero-padding [37] grants
us the flexibility to independently control the kernel width and the size of the output.
Without zero-padding, we would be forced to choose between either rapidly shrinking
the spatial extent of the network or resorting to small kernels — both of which would
significantly constrain the network’s expressive power and capabilities.

Three special cases of the zero-padding setting are worth mentioning:
1. Valid Convolution: In this extreme case, no zero-padding is used. Each output

pixel is influenced by the same number of pixels in the input, resulting in relatively
regular behavior. However, the size of the output shrinks with each layer. If the
input image has a width of m and the kernel has a width of k, the output will
have a width of m−k+1. This shrinkage can be significant, especially when large
kernels are used. The limit on the number of convolutional layers that can be
added is determined by this shrinkage, and the spatial dimensions can eventually
be reduced to 1x1.

2. Same Convolution: In this case, just enough zero-padding is added to maintain
the size of the output equal to the size of the input. This allows for as many
convolutional layers as the hardware can support, as convolution operations do

20

2.2. CONVOLUTIONAL NEURAL NETWORK 21

not alter the architectural possibilities for the next layer. However, input pixels
near the border influence fewer output pixels compared to those near the center.

3. Full Convolution: In this other extreme case, enough zeroes are added to ensure
that every pixel is visited k times in each direction. This results in an output
image with a width of m + k − 1. However, the output pixels near the border
are influenced by fewer input pixels compared to those near the center. This can
make it challenging to learn a single kernel that performs well at all positions in
the convolutional feature map.
The optimal amount of zero-padding often lies between ”valid” and ”same” convo-

lution, striking a balance between retaining spatial information and avoiding excessive
shrinkage of the feature maps.

Figure 2.13: The effect of convolution without padding on output size [7]

Figure 2.14: The effect of convolution with same padding on output size [7]

21

2.2. CONVOLUTIONAL NEURAL NETWORK 22

2.2.2 Pooling
A pooling function serves to substitute the output of a neural network at a specific
location with a summary statistic derived from nearby outputs. For instance, the widely
used max pooling operation reports the maximum output within a defined rectangular
neighborhood. Other popular pooling functions encompass computing the average
within a rectangular neighborhood, evaluating the L2 norm within such a region, or
deriving a weighted average based on the distances from the central pixel.

Figure 2.15: Example of a max pooling [36]

Pooling helps to make the representation become approximately invariant to small
translations in the input data. Invariance to translation implies that if we shift the
input data by a small margin, most of the pooled output values remain unaltered. This
property proves highly valuable when the precise location of a feature is less relevant
than determining its presence. For instance, when identifying a digit in an image,
the exact position of the digit in the image is less significant. However, in scenarios
where preserving the spatial location of a feature is more critical, it’s advisable to avoid
pooling operations.

22

2.2. CONVOLUTIONAL NEURAL NETWORK 23

Figure 2.16: Example how pooling preserves invariance to translation [36]

2.2.3 Handling Input Channels in CNNs
In a convolutional layer, the input can consist of one or more 2D arrays or matrices, each
with dimensions N1xN2. These individual N1xN2 matrices are referred to as channels.
We denote the input as a three-dimensional array, X, with dimensions N1xN2xCin,
where Cin represents the number of input channels.

For example, when images are used as input in the first layer of a CNN, the value
of Cin depends on the nature of the input image:

• For colored images in the RGB color mode, Cin = 3, corresponding to the three
color channels (red, green, and blue).

• However, for grayscale images, Cin = 1, because there is only one channel con-
taining grayscale pixel intensity values.
When processing such input, the convolution operation is performed separately

for each channel. In other words, each channel c has its own kernel matrix represented
as W [:, , c]. After the convolution operation is applied to each channel, the results
are combined using matrix summation to produce the final output of the convolutional
layer. This approach allows the network to capture different features or aspects present
in each channel of the input data.

In most cases, a convolutional layer of a CNN has more than one feature map.

23

2.3. EVOLUTIONARY ALGORITHMS 24

If we use multiple feature maps, the kernel tensor becomes four-dimensional: width×
height×Cin×Cout. In this context, width×height represents the kernel size, Cin denotes
the number of input channels, and Cout indicates the number of output feature maps.

Figure 2.18 illustrates a convolutional layer followed by a pooling layer. In this
instance, there are three input channels and a four-dimensional kernel tensor. Each
kernel matrix is denoted as m1xm2 , and there are three of them, one for each input
channel. Additionally, there are a total of five such kernels, corresponding to five
output feature maps. Lastly, a pooling layer is included to perform subsampling on
the feature maps.

Figure 2.17: Convolutional layer followed by a pooling layer [6]

2.3. Evolutionary algorithms
Evolutionary algorithms (EA) [38] [39] [40] play a crucial role in global optimization.
They are grounded in several principles that are inherent to most of them. First and
foremost, it’s essential to define two concepts - the search space and the objective
function space.

Figure 2.18: A simple representation of the relationship between the search space and
the objective function space [22]

24

2.3. EVOLUTIONARY ALGORITHMS 25

The search space encompasses a set of variables, often defined by users, typically
representing some physical entities. On the other hand, the objective function space,
also known as the criterion function space, consists of variables that correspond to the
quality of a particular solution.

The process unfolds by constructing a series of potential solutions, subsequently
subjecting them to evaluation. Following Darwinian principles, the fittest solutions
survive, and their genetic makeup (or parameters in a non-biological context) are passed
onto the next generation. When generating a new population, techniques such as
mutation [41], recombination (crossover) [42], and selection [43] are employed to guide
the algorithm towards global optimization rather than getting stuck in local optima.

Crossover aims to spread the genetic sequences of well-performing solutions within
the population. In binary problems, two parents are chosen, and their sequences are
divided at specific positions. These segments are then shuffled to produce offspring.
In the generalized case of crossover, known as simulated binary crossover (SBX) [44],
”hard” cuts are replaced with a probabilistic approach. Each offspring inherits specific
probability density functions, with the maxima of these distributions corresponding to
the values of the parents. Consequently, offspring tend to resemble one of the parents,
but there’s still a chance of divergence.

Figure 2.19: Example of binary crossover

25

2.3. EVOLUTIONARY ALGORITHMS 26

Figure 2.20: Example of SBX [6]

Mutation involves randomly altering variables. It’s typically defined with 1 a
mutation probability Pm , where Pm = 1/n, with n representing the population size.
On average, only one variable is changed. Mutation primarily serves the purpose of
preventing the optimization algorithm from converging to local optima and allows it
to explore different areas of the solution space.

Figure 2.21: Example of mutation

As mentioned earlier, evolutionary algorithms are optimization algorithms based
on creating new populations. This characteristic allows for the parallel exploration
of a broader search space, providing diversity in solutions. Diverse solutions are vital
because they help the algorithm escape local optima and continue the optimization
process in areas where better solutions may be found. The concept of a population
initially faced criticism for its potential time consuming nature and allowing inferior
individuals to persist. However, it has become evident that these inferior solutions are
pivotal. Their genetic material can prevent the algorithm from converging prematurely
to a local optimum, thereby enabling the pursuit of superior solutions in different
regions of the solution space.

2.3.1 Genetic algorithms
In the evolutionary process described thus far, individuals perish only when they are
substituted by younger individuals with superior fitness. This leads to a convenient

26

2.3. EVOLUTIONARY ALGORITHMS 27

characteristic where local population statistics, such as maximum, minimum, and av-
erage fitness, progressively improve over time, resulting in favorable mathematical con-
vergence properties. However, allowing individuals to persist and reproduce indefinitely
can result in a substantial reduction in population diversity and an increased risk of
getting stuck in local optima.

To tackle this issue, two common approaches are employed. One approach is
to occasionally introduce new individuals to replace existing ones with higher fitness
levels, injecting fresh genetic diversity into the population. The other method involves
allowing parents to survive for only one generation and then replacing them with their
offspring, a strategy typically implemented in genetic algorithms (GAs). Furthermore,
GAs rely on objective fitness values to determine which parents are eligible for repro-
duction.

GAs are some of the earliest, most renowned and widely utilized EAs. The key
steps of a GA can be summarized as follows:

1. Generate a population of m parents randomly
2. Establish selection probabilities (p(i)) for each parent i, usually based on their

fitness
3. Create m offspring by probabilistically selecting parents for reproduction
4. Retain only the offspring to continue, replacing the previous generation

These steps enable GAs to effectively explore the search space, ultimately uncov-
ering optimal or near-optimal solutions across a range of problem domains.

2.3.2 NSGA-II
NSGA-II (Non-dominated Sorting Genetic Algorithm) [45] follows the general outline of
a genetic algorithm with a modified mating and survival selection. NSGA,the precursor
to NSGA-II, faced criticism due to its high computational complexity in non-dominated
sorting and its lack of elitism. NSGA-II addresses these challenges.

To clarify the concept of domination, it means that one solution outperforms
another if it achieves superior values for all objective functions. If this isn’t the case,
we refer to the solutions as non-dominated.

27

2.3. EVOLUTIONARY ALGORITHMS 28

Figure 2.22: Solutions divided into Pareto fronts [46]

For instance, in Figure 2.22, we can assert that solution A dominates solutions
F and J because it exhibits better values across all objective functions. However,
solutions A and I are considered non-dominated because while solution A excels in one
objective function, I dominates in the direction of the other function.

The criticism faced by the initial version of NSGA, as mentioned earlier, primar-
ily stemmed from the method used to sort non-dominated solutions. In this algorithm,
each solution within the population is individually compared to all other solutions,
leading to the sorting of solutions into different Pareto fronts. This process becomes
exceptionally complex when dealing with a large number of individuals within the pop-
ulation and a higher number of objective functions. NSGA-II significantly addressed
this complexity by introducing a modification that streamlined and expedited the al-
gorithm.

In this modified approach, every solution within the population is compared to a
partially populated set of solutions, denoted as P ′. For instance, as new solutions are
added to this set, each solution, such as p, is evaluated for dominance concerning the
previously recorded solutions within P ′. To illustrate, when adding a new solution p, it
is compared only to the first solution recorded in P ′. Subsequently, the third solution
is compared to the preceding two, and so forth. If solution p is found to dominate
another solution, let’s say q, which is one of the previously recorded solutions, then q is
removed from the set P ′. Conversely, if certain solutions in the set dominate p, it is not
included in P ′. If neither of these conditions is met, p is included in P ′. This approach
enables the set to expand and become populated with non-dominated solutions.

28

2.3. EVOLUTIONARY ALGORITHMS 29

Following the assessment of all solutions in the population, the solutions present
in P ′ collectively form the non-dominated front. This process is then reiterated with
the remaining solutions, excluding those previously placed in P ′, until all remaining
fronts are established.

Solution Sp np

A F, J 0
B F, G, J, K, L, M 0
C G, H, I, J, K 0
D H, I, K, L, M 0
E I, M 0
F J 2
G K, L 2
H L, M 2
I M 3
J 4
K 4
L 5
M 6

Solution Sp np

F J 0
G K, L 0
H L, M 0
I M 0
J 1
K 1
L 2
M 2

Solution Sp np

J 0
K 0
L 0
M 0

Table 2.1: Partitioning Solutions into Pareto Fronts: The first column represents
solutions within the population, the second column depicts solutions dominated by

the solutions in the first column, and the third column indicates the number of
dominant solutions [46]

The sorting of non-dominated solutions is the main step in this algorithm. Other
steps are identical to those in the standard EA. The first step of NSGA-II involves
randomly creating a population P0 , of size n, which is then used to create a new
population, i.e., offspring, Q0 , also of size n, through mutation and crossover. These
two populations are combined into R0 = P0 ∪ Q0 , a population that now contains 2n

29

2.3. EVOLUTIONARY ALGORITHMS 30

individuals. From these 2n individuals, it is necessary to select the top n, thus cre-
ating a new population P1 . This is achieved by applying the aforementioned sorting
algorithm. All Pareto fronts that can fit entirely into the new population of n individ-
uals propagate and thus populate the new population. This property of propagating
optimal solutions to a new generation is called elitism. The last Pareto front that can-
not entirely fit into the new population is analyzed from the perspective of preserving
diversity of solutions. Solutions that maximize diversity are propagated to the extent
necessary to fill the new population. In NSGA-II, a parameter called Crowding dis-
tance, illustrated in Figure 2.23, is used to determine population density, which in turn
helps in evaluating diversity. The crowding distance is the Manhattan Distance in the
objective space. However, the extreme points are desired to be kept every generation
and, therefore, get assigned a crowding distance of infinity. In this way, solutions with
a larger Crowding distance are propagated, while those that are densely ”populated”
are discarded, thus increasing the diversity of solutions in the new population.

Figure 2.23: Manhattan Crowding distance [46]

30

2.3. EVOLUTIONARY ALGORITHMS 31

Figure 2.24: NSGA-II [46]

31

3. Materials and methods

3.1. Hardware
The entire implementation was carried out using the Python programming language
within the Anaconda environment, utilizing the PyCharm integrated development en-
vironment (IDE). The machine configuration used for performing the experiment is as
follows:

• CPU: Ryzen 5 3600, 3.6 GHz, 6 cores/12 thread
• RAM: 24 GB, 2400 MHz DDR4
• GPU: GTX 1070, 8 GB GDDR5, with 1920 CUDA cores

3.2. Dataset
The dataset used for this experiment was MNIST [47]. Comprising 28x28 pixel grayscale
images representing handwritten digits from 0 to 9, MNIST is a benchmark dataset
for machine learning tasks. Each image was treated as an array of pixel intensities,
ranging from 0 (black) to 255 (white). The dataset features 10 classes, one for each
digit, and was divided into a training set of 60,000 images and a test set of 10,000
images. Importantly, the dataset splits remained consistent across all model training
sessions.

Figure 3.1: Sample digits from MNIST Dataset [6]

32

3.3. BASELINE 33

3.3. Baseline
The models referenced in [48], [49], and [50], referred to as Model 1, Model 2, and Model
3 respectively, were employed to establish a baseline for classification performance on
the MNIST dataset. Model 1 achieved an accuracy of 99.124% with a training time of
123.6 seconds. Model 2 attained an accuracy of 98.904% with a training time of 156
seconds. Model 3 reached an accuracy of 99.27% with a training time of 207.8 seconds.
To ensure robustness and account for any potential variations due to the train/test
split, each model was trained five times.

Accuracy [%] Training time [s]
Model 1 99.124 123.6
Model 2 98.904 156
Model 3 99.270 207.8

Table 3.1: Performance of Baseline Models

3.4. Key implementation components
This experiment involved the training and evaluation of over 1000 models, requiring
a significant time investment of over 6 days. Although even better results could po-
tentially be achieved with more extended execution time. The primary metrics for
comparison in this study were accuracy and training speed. The experiment relied on
two key libraries: NumPy and PyTorch.

Key Components of the Algorithm:
• Modified NSGA-II

• Decoder

The experiment was divided into two distinct stages:
1. Depth Search: During this stage, the objective was to determine the opti-

mal depth for the model. This required defining default convolutional and fully
connected layers and assessing how their quantity influenced the objectives.

2. Width Search: Following the determination of the optimal depth for the CNN,
the focus shifted to exploring the width of these layers.
The decision to split the process was made for practicality and to enable a more

targeted search. While this approach may have sacrificed optimality to some extent, it
considerably accelerated convergence. The primary distinction between the two stages
lay in the decoder and population generation.

3.4.1 Modified NSGA-II
The NSGA-II algorithm used here is a slight modification of the standard NSGA-II. In
the standard NSGA-II, the only source of diversification in the population is through
mutation. Mutation is controlled by a ’mutation probability parameter’, but there’s a

33

3.4. KEY IMPLEMENTATION COMPONENTS 34

tradeoff in choosing the size of this parameter. If the ’mutation probability parameter’
is too small, mutations will occur in only a small number of samples, which will not
introduce much diversity. On the other hand, a large ’mutation probability parameter’
will result in too many mutations, creating large steps between generations.

To address this dilemma, a small parameter is used, but in every generation, 5%
of the population members are replaced with freshly created members. This step is
inspired by controlled immigration and aims to introduce new members with completely
different characteristics from the current population members.

In the depth search stage, the population comprised 20 members and underwent
50 generations, resulting in the training of over 90 unique models. A primary challenge
encountered here was hardware limitations, particularly concerning larger models that
could not fit within GPU memory. To circumvent this issue, these larger models
were assigned unfavorable objective values, effectively excluding them from the next
generation.

In the width search stage, the population size remains the same as in the depth
search stage, and it’s allowed to evolve also for 50 generations. This process resulted in
the creation of 1000 unique models. However, a challenge encountered during this step
was the significant amount of time required to train models in the later generations,
with some of them requiring up to an hour to complete.

3.4.2 Decoder
Population members were represented as NumPy arrays, necessitating a decoding step
to transform these arrays into PyTorch models. A custom decoder was tailored to suit
both stages of the experiment.

In the depth search stage, population members are represented by arrays with
a size of 2. The first value represented the number of convolutional layers, while the
second indicated the number of fully connected layers. Since this stage does not focus
on width of the layers, the layers had to be predefined. The convolutional layers are
characterized by a 3x3x2ni kernels, where i is i − th convolutional layer and ni is i − th
value in a array obtained by this algorithm:

1. Create an empty list a

2. Initialize an integer j to 0
3. ∀i ∈ [0, num of convolutional layers-1]

if i ≡ 0 (mod 3) and i ̸= 0 increment j by 2
4. Append the value i + min order − j to the list a

This algorithm is introduced to slow down the exponential growth of the number
of filters for deeper networks. Algorithm operates on the pattern of increasing by three
orders before decreasing by one order, which can be seen in Figure 3.2

Minimal order is set to 4, as 24 is a sufficient number of filters to learn basic
shapes, but it’s not too large for a starting point. For example, without this algorithm,
the number of filters in the 15 − th layer would be 32768, but with it it’s 1024. Since
we are hardware limited, this approach allows us to test deeper networks than it would

34

3.4. KEY IMPLEMENTATION COMPONENTS 35

Figure 3.2: First 15 values obtained by algorithm

Figure 3.3: Number of filters for first 15 convolutional layers

be possible otherwise.
Number of hidden units in fully connected layer is determined using the same

algorithm, but resulting array is reversed, i.e., if k is the number of fully connected
layers and li is i − th hidden layer, then number of hidden units in li is 2ni . Important
to emphasize, the output layer with 10 neurons that gets appended to each model does
not contribute to the values in the array.

Figure 3.4: Number of units in last 15 hidden layers

Population size in the width search stage depends on the model depth selected in
the previous stage. Parameters that get explored in this stage are x and y dimensions
of the filters, their number and activation function in convolutional layers and number
of hidden units and activation function in fully connected layers. This implies that for
every convolutional layer we have four parameters, two for each fully connected layer
and one extra for the activation function in the output layer. Therefore, population size,
if for example model depth is represented by array [2, 5], is 19 (2 ×4 + 5 × 2 + 1 = 19).

In the depth search stage, we exclusively employed the ReLU activation function.
However, in the width search stage, we offer a choice among four distinct activation
functions:

1. Relu
2. Softmax
3. Sigmoid
4. Tanh

Due to the modest dimensions of the input, we have applied the same zero padding
in both stages. Additionally, we have omitted the utilization of strided convolution and
pooling layers in our approach.

35

3.4. KEY IMPLEMENTATION COMPONENTS 36

Figure 3.5: Example of CNN represented by [2, 6] array

The simplest model (shown in the Figure 3.6) generated by this experiment was
represented by [0, 0], effectively an ANN devoid of convolutional layers.

Figure 3.6: Simplest neural network

36

3.5. TRAINING LOOP 37

3.5. Training loop
All the models undergo training for 30 epochs, which is deemed sufficient given the
relatively modest complexity of the task. For comparison purposes, we evaluate the
models based on two key metrics: accuracy and training time.

The data is divided into batches, with each batch comprising 16 data points.
Given that this is a multiclass classification task, we employ the Cross-Entropy Loss as
the loss function. In terms of parameter optimization, we utilize the Adam optimizer
with a fixed learning rate of 0.001.

37

4. Results

In this section, we showcase the results we achieved through the utilization of NSGA-II
and proceed to make a comparison between the models obtained in depth and width
stages.

During the search for an appropriate model depth, it was determined that the
most suitable configuration for this task consists of a single convolutional layer followed
by a hidden layer, with the output layer positioned at the end. Visual representation
of this model architecture is shown in the Figure 4.1. The model achieved an accuracy
of 97.78% and underwent training in a mere 110 seconds.

Figure 4.1: Model architecture after depth search

Figure 4.2: Accuracy vs time across generations in depth search

38

39

Given that the model derived from the depth search already displayed a high level
of accuracy and rapid training times, there was limited scope for further enhancement.
Nonetheless, by adjusting the width of the layers and experimenting with different
activation functions, were observed improvements of 1% in accuracy. Final model
architecture is illustrated in Figure 4.3.

Figure 4.3: Model architecture after width search

Figure 4.4: Accuracy vs time across generations in width search

Figures 4.2 and 4.4 display changes in accuracy and time of training across var-
ious generations. Figure 4.2 reveals that the algorithm quickly identified the optimal
network depth for the problem. This is attributed to the problem’s relatively low
complexity, making a shallow network sufficient for its resolution. Deeper insight is
provided in Figure 4.4, where it becomes evident that the algorithm is willing to trade
off small accuracy gains to reduce training time and vice versa.

39

4.1. BENCHMARKING RESULTS 40

4.1. Benchmarking Results
When compared to the baseline models referenced in [48], [49], and [50], the per-
formance of the models obtained through the utilization of NSGA-II demonstrate a
competitive trade-off between accuracy and computational efficiency. Model derived
from the depth search achieved an accuracy of 97.78% with a training time of 110
seconds. Although this accuracy is slightly lower than that of the baseline models, it
is notable that the training time was significantly reduced compared to Models 2 and
3. Model derived from the width search further improved accuracy to 98.78% while
also reducing the training time to 107 seconds. While the baseline Model 3 achieved
the highest accuracy at 99.27%, the models obtained through this process offer a more
efficient training process. This efficiency could be particularly advantageous in applica-
tions where computational resources or time are limited, thereby providing a balanced
alternative to the higher accuracy of the baseline models.

Accuracy [%] Training time [s]
Model 1 99.124 123.6
Model 2 98.904 156
Model 3 99.270 207.8

Depth Search Model 97.78 110
Width Search Model 98.78 107

Table 4.1: Comparison with Baseline Models

40

5. Discussion

The results obtained from the application of the NSGA-II algorithm indicate that the
derived models provide a viable and efficient alternative to the baseline models refer-
enced in [48], [49], and [50]. Although the models derived through depth search exhibit
slightly lower accuracy rates, 97.78% and 98.78%, compared to the highest baseline
accuracy of 99.27%, they offer significant improvements in training time, with reduc-
tions to 110 seconds and 107 seconds, respectively. This trade-off between accuracy
and computational efficiency is particularly noteworthy, as it highlights the potential
of these models in environments where computational resources are constrained or
where faster model training is essential. The efficiency gains achieved by the NSGA-II
derived models suggest that they could be highly suitable for real-world applications
where time and resource management are critical considerations. Moreover, the results
demonstrate the effectiveness of NSGA-II in optimizing model performance across mul-
tiple objectives, reinforcing its value as a tool for developing balanced solutions that
meet both accuracy and efficiency requirements. While the baseline models set a high
standard in terms of accuracy, the solutions obtained through NSGA-II provide a com-
pelling alternative, particularly when computational efficiency is a priority.

Future enhancements could encompass conducting the experiment on more robust
hardware, particularly GPUs with larger memory capacities. This would allow for
training of much larger models.

In this scenario, larger models were unnecessary due to the relatively simple task
of digit recognition. Such a task does not demand deep networks, and the dimensions
of the input images are relatively small. While the MNIST dataset served as a suitable
demonstration for this project, future endeavors could involve testing on larger datasets
like ImageNet. The ImageNet dataset comprises over a million samples categorized into
1000 classes, making the classification task significantly more challenging. Addition-
ally, ImageNet inputs are typically scaled to a size of 224x224, which is 81 times larger
than the MNIST input size. This increase in size would enable the utilization of pool-
ing operations and strided convolutions, introducing much greater variability among
population members.

Another avenue for improvement involves the merger of both stages, enabling
the simultaneous exploration of depth and width. This integrated approach could
lead to the exploration of a more extensive model space and potentially yield superior
solutions.

41

6. Conclusion

In this thesis, an NSGA-II-based algorithm was developed to identify optimal CNN ar-
chitectures for multiclass classification, demonstrated using the MNIST dataset. The
selected CNN achieved both high accuracy and simplicity. This work offers a practi-
cal tool for efficient network development, emphasizing the potential of evolutionary
algorithms in deep learning.

The primary limitation of the presented algorithm is the extended execution
time, which spanned a total of six days. It took one day to identify the optimal
depth of the network and an additional five days to fine-tune the parameters of its
layers. However, upon closer examination, it becomes apparent that the fine-tuned
network improvements are relatively modest when compared to the network without
layer parameter tuning.

In practical work settings where expedited time-to-production is a critical factor,
it is advisable to consider omitting the tuning phase. This observation underscores the
need for a balanced approach, weighing the benefits of parameter tuning against the
time and computational resources it demands.

To extend the research on the proposed algorithm, it would be interesting to
assess its performance across diverse datasets, particularly those featuring larger image
dimensions. This choice would enable the use of pooling layers and convolution without
padding, thereby enhancing the flexibility to construct more complex neural networks.

42

Bibliography

[1] Mohamed Elgendy. Deep Learning for Vision Systems. 1st ed. Manning Publica-
tions, 2020. isbn: 1617296198,9781617296192.

[2] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde. “Designing neural net-
works using genetic algorithms”. In: Proceedings of the Third International Con-
ference on Genetic Algorithms. George Mason University, USA: Morgan Kauf-
mann Publishers Inc., 1989, pp. 379–384. isbn: 1558600063.

[3] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture
Search: A Survey. 2019. arXiv: 1808.05377 [stat.ML]. url: https://arxiv.
org/abs/1808.05377.

[4] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde. “Designing neural net-
works using genetic algorithms”. In: Proceedings of the Third International Con-
ference on Genetic Algorithms. George Mason University, USA: Morgan Kauf-
mann Publishers Inc., 1989, pp. 379–384. isbn: 1558600063.

[5] Lingxi Xie and Alan L. Yuille. “Genetic CNN”. In: CoRR abs/1703.01513 (2017).
arXiv: 1703.01513. url: http://arxiv.org/abs/1703.01513.

[6] Sebastian Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Machine Learning
with PyTorch and Scikit-Learn. Packt Publishing, 2022.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http :
//www.deeplearningbook.org. MIT Press, 2016.

[8] Zsolt Nagy. Artificial Intelligence and Machine Learning Fundamentals: Develop
real-world applications powered by the latest AI advances. Packt Publishing, 2018.

[9] Vladimir Crnojevic. Prepoznavanje oblika za inzenjere (Serbian), Pattern Recog-
nition for engineers. University of Novi Sad, Faculty of Technical Sciences, 2014.

[10] A. Burkov. The Hundred-page Machine Learning Book. Andriy Burkov, 2019.
isbn: 9781777005474. url: https://books.google.rs/books?id=Gc5WzwEACAAJ.

[11] Pamela McCorduck. Machines who think : a personal inquiry into the history and
prospects of artificial intelligence. 2nd ed. A K Peters/CRC Press, 2004. isbn:
1-56881-205-1,9781568812052.

[12] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: Nature 323 (1986), pp. 533–536.
url: https://api.semanticscholar.org/CorpusID:205001834.

[13] Jacob Eisenstein. Natural Language Processing. 2018. url: https://github.
com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-
notes.pdf.

[14] Google DeepMind. AlphaGo. url: https://deepmind.google/technologies/
alphago/.

[15] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

43

https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1703.01513
http://arxiv.org/abs/1703.01513
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://books.google.rs/books?id=Gc5WzwEACAAJ
https://api.semanticscholar.org/CorpusID:205001834
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://deepmind.google/technologies/alphago/
https://deepmind.google/technologies/alphago/
https://doi.org/10.1109/5.726791

BIBLIOGRAPHY 44

[16] Yann LeCun and Yoshua Bengio. “Convolutional networks for images, speech,
and time series”. In: The Handbook of Brain Theory and Neural Networks. Cam-
bridge, MA, USA: MIT Press, 1998, pp. 255–258. isbn: 0262511029.

[17] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Net-
works”. In: CoRR abs/1511.08458 (2015).

[18] Dario Floreano and Claudio Mattiussi. “Neuroevolution: From architectures to
learning”. In: Evol Intell 1 (Mar. 2008). doi: 10.1007/s12065-007-0002-4.

[19] Kenneth Stanley et al. “Designing neural networks through neuroevolution”. In:
Nature Machine Intelligence 1 (Jan. 2019). doi: 10.1038/s42256-018-0006-z.

[20] Xin Yao. “Evolving artificial neural networks”. In: Proceedings of the IEEE 87.9
(1999), pp. 1423–1447. doi: 10.1109/5.784219.

[21] Arthur Baars et al. Search–Based Testing, the Underlying Engine of Future In-
ternet Testing. Jan. 2011.

[22] Joel Lehman and Risto Miikkulainen. Neuroevolution. 2013. url: http://www.
scholarpedia.org/article/Neuroevolution.

[23] Carl Fredriksson. Digit Recognition. 2018. url: https://cfml.se/blog/digit_
recognition/.

[24] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of simple
features”. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. 2001, pp. I–I.
doi: 10.1109/CVPR.2001.990517.

[25] Mahdi Rezaei, Hossein Ziaei Nafchi, and Sandino Morales. “Global Haar-Like
Features: A New Extension of Classic Haar Features for Efficient Face Detection
in Noisy Images”. In: Image and Video Technology. Ed. by Reinhard Klette, Mar-
iano Rivera, and Shin’ichi Satoh. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 302–313. isbn: 978-3-642-53842-1.

[26] Antônio H. Ribeiro et al. Beyond exploding and vanishing gradients: analysing
RNN training using attractors and smoothness. 2020. arXiv: 1906.08482 [cs.LG].
url: https://arxiv.org/abs/1906.08482.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification
with deep convolutional neural networks”. In: Commun. ACM 60.6 (May 2017),
pp. 84–90. issn: 0001-0782. doi: 10.1145/3065386. url: https://doi.org/
10.1145/3065386.

[28] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–
255. doi: 10.1109/CVPR.2009.5206848.

[29] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). 2019.
arXiv: 1803.08375 [cs.NE]. url: https://arxiv.org/abs/1803.08375.

[30] Alhassan Mumuni and Fuseini Mumuni. “Data augmentation: A comprehensive
survey of modern approaches”. In: Array 16 (2022), p. 100258. issn: 2590-0056.
doi: https://doi.org/10.1016/j.array.2022.100258. url: https://www.
sciencedirect.com/science/article/pii/S2590005622000911.

44

https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1109/5.784219
http://www.scholarpedia.org/article/Neuroevolution
http://www.scholarpedia.org/article/Neuroevolution
https://cfml.se/blog/digit_recognition/
https://cfml.se/blog/digit_recognition/
https://doi.org/10.1109/CVPR.2001.990517
https://arxiv.org/abs/1906.08482
https://arxiv.org/abs/1906.08482
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://doi.org/https://doi.org/10.1016/j.array.2022.100258
https://www.sciencedirect.com/science/article/pii/S2590005622000911
https://www.sciencedirect.com/science/article/pii/S2590005622000911

BIBLIOGRAPHY 45

[31] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[32] Pankaj Mathur. A Simple Multilayer Perceptron with TensorFlow. 2016. url:
https://medium.com/pankajmathur/a-simple-multilayer-perceptron-
with-tensorflow-3effe7bf3466.

[33] Artem Oppermann. Activation Functions in Deep Learning: Sigmoid, tanh, ReLU.
url: https : / / artemoppermann . com / activation - functions - in - deep -
learning-sigmoid-tanh-relu/.

[34] Laith Alzubaidi et al. “Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions”. In: Journal of Big Data 8 (2021).
url: https://api.semanticscholar.org/CorpusID:232434552.

[35] Wenjie Luo et al. Understanding the Effective Receptive Field in Deep Convo-
lutional Neural Networks. 2017. arXiv: 1701.04128 [cs.CV]. url: https://
arxiv.org/abs/1701.04128.

[36] Computer Science Wiki. Max-pooling / Pooling. url: https://computersciencewiki.
org/index.php/Max-pooling_/_Pooling.

[37] Zhi Han et al. Deep Convolutional Neural Networks with Zero-Padding: Feature
Extraction and Learning. 2023. arXiv: 2307.16203 [cs.LG]. url: https://
arxiv.org/abs/2307.16203.

[38] Zbigniew Michalewicz Thomas Bäck David B. Fogel. Handbook of Evolutionary
Computation (Computational Intelligence Library). Lslf. Computational Intelli-
gence Library. Published in cooperation with the Institute of Physics, 1997. isbn:
9780750303927,0750303921.

[39] Dan Simon. Evolutionary optimization algorithms. Biologically-Inspired and Population-
Based Approaches to Computer Intelligence. Wiley, 2013. isbn: 0470937416,9780470937419.

[40] Kenneth A. De Jong. Evolutionary computation: a unified approach. 1st. The
MIT Press, 2002. isbn: 9780262041942,0262041944.

[41] Otman Abdoun, Jaafar Abouchabaka, and Chakir Tajani. Analyzing the Perfor-
mance of Mutation Operators to Solve the Travelling Salesman Problem. 2012.
arXiv: 1203.3099 [cs.NE]. url: https://arxiv.org/abs/1203.3099.

[42] Dr. Anantkumar Umbarkar and P. Sheth. “CROSSOVER OPERATORS IN GE-
NETIC ALGORITHMS: A REVIEW”. In: ICTACT Journal on Soft Computing
(Volume: 6 , Issue: 1) 6 (Oct. 2015). doi: 10.21917/ijsc.2015.0150.

[43] Khalid Jebari. “Selection Methods for Genetic Algorithms”. In: International
Journal of Emerging Sciences 3 (Dec. 2013), pp. 333–344.

[44] Kalyanmoy Deb and Ram Bhushan Agrawal. “Simulated Binary Crossover for
Continuous Search Space”. In: Complex Syst. 9 (1995). url: https: // api.
semanticscholar.org/CorpusID:18860538.

[45] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In:
IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–197. doi:
10.1109/4235.996017.

45

http://jmlr.org/papers/v15/srivastava14a.html
https://medium.com/pankajmathur/a-simple-multilayer-perceptron-with-tensorflow-3effe7bf3466
https://medium.com/pankajmathur/a-simple-multilayer-perceptron-with-tensorflow-3effe7bf3466
https://artemoppermann.com/activation-functions-in-deep-learning-sigmoid-tanh-relu/
https://artemoppermann.com/activation-functions-in-deep-learning-sigmoid-tanh-relu/
https://api.semanticscholar.org/CorpusID:232434552
https://arxiv.org/abs/1701.04128
https://arxiv.org/abs/1701.04128
https://arxiv.org/abs/1701.04128
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://arxiv.org/abs/2307.16203
https://arxiv.org/abs/2307.16203
https://arxiv.org/abs/2307.16203
https://arxiv.org/abs/1203.3099
https://arxiv.org/abs/1203.3099
https://doi.org/10.21917/ijsc.2015.0150
https://api.semanticscholar.org/CorpusID:18860538
https://api.semanticscholar.org/CorpusID:18860538
https://doi.org/10.1109/4235.996017

BIBLIOGRAPHY 46

[46] K. H. Chen H. S. Wang C. H. Tu. Supplier Selection and Production Planning by
Using Guided Genetic Algorithm and Dynamic Nondominated Sorting Genetic
Algorithm II Approaches. url: https://www.hindawi.com/journals/mpe/
2015/260205/.

[47] Li Deng. “The MNIST Database of Handwritten Digit Images for Machine Learn-
ing Research [Best of the Web]”. In: IEEE Signal Processing Magazine 29.6
(2012), pp. 141–142. doi: 10.1109/MSP.2012.2211477.

[48] Nutan. PyTorch Convolutional Neural Network With MNIST Dataset. url: https:
//medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-
network-with-mnist-dataset-4e8a4265e118.

[49] Jason Brownlee. How to Develop a CNN for MNIST Handwritten Digit Classi-
fication. url: https://machinelearningmastery.com/how-to-develop-a-
convolutional-neural-network-from-scratch-for-mnist-handwritten-
digit-classification/.

[50] Data Tech Notes. MNIST Image Classification with PyTorch. url: https://
www.datatechnotes.com/2024/04/mnist- image- classification- with-
pytorch.html.

46

https://www.hindawi.com/journals/mpe/2015/260205/
https://www.hindawi.com/journals/mpe/2015/260205/
https://doi.org/10.1109/MSP.2012.2211477
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://www.datatechnotes.com/2024/04/mnist-image-classification-with-pytorch.html
https://www.datatechnotes.com/2024/04/mnist-image-classification-with-pytorch.html
https://www.datatechnotes.com/2024/04/mnist-image-classification-with-pytorch.html

Biography

Milan Ignjic was born on the 12th of November 1993 in
Novi Sad. In 2012 he started a Bachelor of Teaching in
Mathematics at Faculty of Sciences, University of Novi Sad
and finished in 2017 with a GPA of 7.83. In the same year
he continued with master studies of Data Science at the
same faculty and passed all exams in 2022 with a GPA of
9.23.

47

	Introduction
	Artificial Neural Networks
	Convolutional Neural Network
	Neuroevolution
	Digit Recognition

	Background theory
	Artificial Neural Networks
	Perceptron
	Multilayer perceptron

	Convolutional Neural Network
	Convolution
	Pooling
	Handling Input Channels in CNNs

	Evolutionary algorithms
	Genetic algorithms
	NSGA-II

	Materials and methods
	Hardware
	Dataset
	Baseline
	Key implementation components
	Modified NSGA-II
	Decoder

	Training loop

	Results
	Benchmarking Results

	Discussion
	Conclusion
	Biography
	Biography

