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1 Abstract
In recent years, innovations in Artificial Intelligence (AI) have profoundly im-

pacted various domains, with healthcare being one of the most significant benefi-
ciaries. The rapid advancements in AI, particularly in the field of Deep Learning
(DL), have opened new opportunities for improving diagnostic accuracy and effi-
ciency in medicine.

This thesis focuses on the diagnostic application of Convolutional Neural Net-
works (CNNs) for detecting pediatric wrist joint fractures. The goal is to train
and fine-tune several models on X-ray images in order to enable them to make ac-
curate predictions on previously unseen images, specifically to determine whether
a patient has a visible fracture or not. The aim is to enhance the model’s abil-
ity to accurately identify the presence or absence of fractures, thereby improving
diagnostic precision.

Three well-established CNNs architectures were used: ResNet18, ResNet50 and
ResNet101. There are 20,327 X-Ray images, 9,730 of which were used, sourced
from the Department of Pediatric Surgery of the University Hospital in Gratz,
Austria. They consist of both cases where fractures are visible and cases where
no fracture is present. In addition to the images, a patient dataset is at our
disposal. It contains patient information including a column that links each image
to a corresponding label, where 1 indicates a visible fracture and 0 indicates the
absence of a fracture. The images and their corresponding labels are fed into
the CNNs models to train them to accurately classify the presence or absence of
fractures. These images and labels are used as input to develop a model that
is capable of predicting whether a fracture is present, based solely on the visual
information in the image. The model that showed the best performance in this
study is ResNet50, achieving an accuracy of 94,76% and F1 Score of 95,93% on
the unseen images, demonstrating its strong ability to generalize. This research
not only demonstrates the potential of CNNs in automating and improving the
diagnostic process, but also provides a comparative analysis of the performance
of different network architectures with varying complexities in medical imaging
tasks.



2 Introduction
Artificial Intelligence (AI) plays a key role in transforming the way medical

industry works. Diagnostics is one of the most important areas for applying AI in
medicine. Different branches of AI are used as a modern tools in medicine due to
the large amount of available data that can be analyzed and interpreted in a very
effective way. It benefits both doctors and patients.

As stated in [1], AI can be defined as the effort to automate intellectual tasks
that usually require human intelligence. AI is any technique that enables comput-
ers to mimic, simulate, or replicate human-like cognitive abilities such as learning,
reasoning, problem-solving and decision making. According to [2], there are vari-
ous domains where AI techniques are applied:

1. Theorem proving: this activity traces back to the earliest days of AI and
has produced significant results despite no new theorems being proven by
machines;

2. Natural Language Processing (NLP): this term covers AI abilities, such as
interpreting and generating sentences, accessing databases, retrieving docu-
ments as well as computer-aided translation, requiring extensive knowledge
and reasoning techniques;

3. Speech recognition and understanding: this domain deals with decoding
speech signals, presenting challenges due to inherent indeterminism, but com-
mercial products are available for tasks like dictation and transcription;

4. Image interpretation and vision: early image processing systems focused on
simple tasks, but more advanced applications involve interpreting images for
diagnosis or guiding robots, requiring knowledge-based reasoning;

5. Robotics: while early robots repeated learned movements, modern ones in-
corporate AI for perception, reasoning, planning and dynamic replanning of
actions to reach a certain goal;

6. Expert systems: these knowledge-based systems, developed since the 1970s,
demonstrate the power of small amounts of knowledge for intelligent decision-
making in various domains, evolving beyond strict logical deduction to in-
clude reasoning modes like analogy and model-based reasoning;

7. Machine Learning (ML).



Figure 2.1: AI branches

ML algorithms play a major role in the analysis and later prediction of pre-
dispositions to genetically transmitted diseases, which allows the adaptation of
therapy at an adequate preventive time for each patient individually. The concept
of ML, as discussed in [2], comes from the curiosity of whether a computer can go
beyond simply following explicit instructions and instead learn to autonomously
perform tasks, including those it has never encountered before. In other words,
ML provides intelligence to machines with the ability to automatically learn from
experiences without being explicitly programmed. The goal of learning is not
only memorization but also the ability to generalize on new, unseen situations.
As mentioned in [3], there are two main approaches: Supervised Learning and
Unsupervised Learning.

Supervised Learning, involves training a model on labeled data, where each
example has a known outcome. The model learns to predict the outcome for new,
unseen data based on patterns learned from the training set.

Unsupervised Learning operates on unlabeled data, aiming to uncover hidden
patterns or structures within the data. Without predefined outcomes, algorithms
cluster similar data points together or reduce the dimensionality of the data.

Over the past decade, Deep Learning (DL) has become one of the most popular
topics in the field of ML. The history of DL is a journey over several decades,
marked by numerous milestones that have shaped its development and success.
The idea of DL and Artificial Neural Networks (ANNs) comes from an attempt to
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build a computer system that can behave like a human brain. It is necessary to
understand the functionality of human cognitive system in order to build such an
artificial system.

As stated in [4], the idea came from Aristotle (384 B.C – 322 B.C) and his
attempts to understand the brain around 350 B.C. He examined the processes of
memory and recall and presented them with four laws of associations:

1. Contiguity: Things or events with spatial or temporal proximity tend to
be associated in the mind.

2. Frequency: The number of occurrences of two events is proportional to the
strength of association between these two events.

3. Similarity: Thought of one event tends to trigger the thought of a similar
event.

4. Contrast: Thought of one event tends to trigger the thought of an opposite
event.

Aristotle described the implementation of these laws in our mind as common sense.
For example, the feel, the smell or the taste of an apple should naturally lead to
the concept of an apple, as common sense. These laws still serve, 2000 years later,
as the fundamental assumptions of ML methods.

DL, especially Convolutional Neural Networks (CNNs), allow accurate analysis
of medical images such as CT, MRI and X-ray. Newly created algorithms can
identify pathologies, tumors or bone fractures more precisely than the traditional
methods we are used to, resulting in early disease detection.

Nowadays, digital radiography is widely available, representing a modern tech-
nology of imaging in medical diagnostic procedures. Unlike better-known X-ray
films, this method uses digital sensors which allow more efficient and faster X-
ray images of the patients. Therefore, the process of diagnosis is much faster.
This combination of technologies brings a number of advantages. Primarily, the
automation of result analysis reduces waiting time for results, enabling rapid di-
agnostics and emergency medical intervention. Additionally, the application of
Neural Networks (NNs) improves the accuracy of problem identification, reducing
the possibility of human error. Digital radiography contributes to the efficiency
of the entire health care system since the sharing of X-ray images has never been
faster and therefore communication and exchange of information between different
medical experts can be much better and more efficient.

The availability of large-scale medical datasets, like the one used for the purpose
of this thesis [5], has enabled further advancements in AI-driven diagnostics. These
datasets have made it possible to train complex ML models and NNs to analyze a
variety of medical data with remarkable precision.
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In [6] the authors developed CheXNet, a DL model designed to detect pneu-
monia from chest X-rays. Trained on over 100,000 labeled X-ray images with 14
diseases, CheXNet surpassed the diagnostic accuracy of radiologists, providing a
significant contribution to the field of radiology.

A study [7], illustrated the huge potential of AI in dermatology. The authors
successfully trained a Deep Neural Network(DNN) to classify skin cancer using
a dataset of 129,450 clinical images. The model demonstrated high accuracy in
identifying both benign and malignant skin lesions, highlighting the capability of
AI to enhance diagnostic precision in dermatology.

Following the steps of related papers, this thesis first covers the data and mate-
rials. The results and discussion include the process of image preprocessing, model
training and final performance results in fracture detection of three architectures:
ResNet18, ResNet50 and ResNet101.

ResNet was first introduced by Microsoft Research researchers in [8]. ResNet
has been widely used in the classification of medical images across various stud-
ies due to its powerful feature extraction capabilities and ability to handle deep
architectures effectively.

In [9] ResNet was applied to classify diabetic retinopathy stages from retinal
fundus images and achieved accuracy of 98.32% for APTOS and 98.71% for Kaggle
datasets.

In [10] ResNet-50 significantly improved the classification accuracy of different
types of brain tumors from MRI images.

10



3 Materials and Methods

3.1 Data

As previously mentioned, automated fracture detection has become a topic of
intense research, offering the potential to speed up the diagnosis process and ease
the workload of medical professionals. In order to support research in this area, the
publicly available GRAZPEDWRI-DX dataset is presented to encourage computer
vision research [5].

3.1.1 Dataset Description
This dataset contains an extensive collection of X-rays of childrens’ wrist joint
fractures, collected over a period of ten years, between 2008 and 2018, at the
Department of Pediatric Surgery of the University Hospital in Gratz, Austria.

20,327 images are available for analysis and research. They are spread over
four folders of around 4GB each. All X-rays were de-identified and converted to
16-bit grayscale PNG images.

Figure 3.1: Five projections from the dataset

A dataset, with 20,327 rows × 17 columns, that contains information about
patients, is also at the disposal. The columns are as follows: ‘filestem’, ‘pa-
tient_id’, ‘study_number’, ‘timehash’, ‘gender’, ‘age’, ‘laterality’, ‘projection’,
‘initial_exam’, ‘ao_classification’, ‘cast’, ‘diagnosis_uncertain’, ‘osteopenia’, ‘frac-
ture_visible’, ‘metal’, ‘pixel_spacing’, ‘device_manufacturer’.

The first column ‘filestem‘ contains the names of the images, connecting the
information from the dataset with the available images.



3.1 Data

Figure 3.2: Gender distribution of the dataset

The majority of dataset patients are male, while one person defined herself/himself
as a third gender, presented in figure 3.2.

Figure 3.3: Fracture distribution of the dataset

Figure 3.4: Projection distribution of the dataset

The most significant column for the thesis is the ‘fracture_visible’ column,
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3.1 Data

providing a label by which the NNs are trained. Distirbution of label 1 (fracture
is visible) and label 0 (fracture is not visible) is presented in figure 3.3.

The ‘projection’ column contains values 1, 2 and 3 providing an information
from which angle the X-rays were taken 3.5.

Figure 3.5: Projections of the patient ID=578

Prior to training, several preprocessing steps were applied to ensure that the
input data was properly formatted for the learning process.

3.1.2 Data Preprocessing and Transformation
The first step involved the creation of a data loader, which was responsible for
efficiently managing and feeding the images and their corresponding labels into
the network during training. As a guide, the code available on GitLab [11] was
utilized. Specific transformations, suggested by PyTorch documentation, were
applied to each image in the dataset in order to standardize the input images and
enhance the model’s robustness.

The following transformations were implemented:

1. Random Affine Transformation: was applied to the images with a ro-
tation range of -5 to 5 degrees, a translation range of 5% in both directions
and a scaling factor between 0.95 and 1.05. This augmentation was applied
with a probability of 70% to introduce variability and help the model become
more robust to changes in image orientation, position and scale.

2. Resizing to a Uniform Dimension: all images were resized to a fixed
dimension of 224×224 pixels to ensure consistency of the input data.

3. Normalization: the mean and standard deviation were computed across all
dataset image pixels, after resizing to 224×224 pixels, resulting in a mean of
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3.1 Data

0.2987 and a standard deviation of 0.1566, which were then used to normalize
the dataset for consistent model training.

4. Random Horizontal Flip: random horizontal flipping was applied to the
images to augment the dataset and improve the generalization of the model.
It artificially increased the diversity of the training data.

Figure 3.6: Image before transformations Figure 3.7: Image after transformations

Images labeled with value 1 in column ’projection’ and with value 0 in column
’metal’ were selected and used for more accurate results, reducing dataset to 9,730
rows × 17 columns.

The dataset is split into: a training set (80%-7,788 images), a validation set
(10%-973 images) and a test set (10%-973 images).

A significant characteristic of the dataset is its class imbalance. This imbalance
could potentially lead to biased training, where the model might favor the more
frequent class, resulting in suboptimal performance on the minority class. To
address this issue, a class balancing strategy was employed during the training
phase. Custom sampler was implemented to balance the classes by ensuring that
each batch contained a roughly equal number of images from both the fracture and
non-fracture classes. A batch size of 64 was chosen for the training, validation and
testing set offering a good balance between computational efficiency and model
performance. For the training process, the Binary Cross-Entropy was selected,
being the loss function to handle the binary classification task, AdamW optimizer
to update the model’s weights, with a learning rate of 0.0001 and a weight decay of
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3.2 Artificial Intelligence Algorithms

0.001 to prevent overfitting. Additionally, a learning rate scheduler was employed
to adjust the learning rate dynamically based on the model’s performance, reducing
it by a factor of 0.1 if the validation performance plateaued for 5 consecutive
epochs. All models were trained for a total of 20 epochs.

3.2 Artificial Intelligence Algorithms

In [12], in the chapter Capacity, Overfitting and Underfitting, it is presented
that in ML algorithms, the biggest obstacle is making sure that models work well,
not just on the data they have seen before, but also on brand-new data they have
never encountered before. This ability to handle new situations and perform well
on unseen data is called generalization.

When a model is trained, the goal is to make it better by adjusting its settings
to reduce errors on the existing data. The aim is not only to reduce errors on the
training data-the training error, but also to have the model make smallest possible
errors on the new, unseen data. This is what it is call generalization error or the
test error.

Thus, a trial environment is created and predicts how the model will perform
in the real-world where it encounters different situations.

This process suggests to divide the input data into three sets: train, validation
and test.

Figure 3.8: Splitting data into train validation and test subsets

The training set is used to fine-tune the model’s parameters in order to mini-
mize errors specific to the training data. The test set is used to evaluate how the
model generalizes on new, unseen data. In this process, the expected error on the
test set is typically equal to or greater than the expected error on the training set.
This is because the model is optimized based on the training data and may not
perform as well on data it has not seen before.

A validation set is introduced, consisting of examples that the training algo-
rithm does not see. A separate test set, comprised of examples from the same data
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3.2 Artificial Intelligence Algorithms

distribution as the training set, is crucial for estimating the model’s generalization
error after training.

The efficacy of learning algorithms often depends on a multitude of adjustable
parameters that regulate their behavior. These adjustable parameters, hyperpa-
rameters play a pivotal role in shaping the learning process and ultimately influ-
encing the performance of the model. Unlike the internal parameters of the model,
such as weights and biases, which are iteratively refined during the training pro-
cess, hyperparameters remain constant throughout the training phase and are not
adapted by the learning algorithm itself.

It is essential that the test set examples are not utilized in any way to make
decisions about the model, including its hyperparameters. Therefore, none of the
test set examples are included in the validation set. Instead, the validation set is
created from the training data by splitting it into two distinct subsets. One subset
is used for learning the model’s parameters, while the other serves as the validation
set for estimating the model’s generalization error during or after training. This
allows the update of the hyperparameters accordingly.

When the test set is small, it is hard to confidently compare algorithms. With
large datasets, this is not a problem, but with small ones, k-fold cross-validation
can be used. This involves splitting the data into k subsets, rotating which one is
the test set in each iteration to get a more reliable estimate of performance.

Regularization is another important term which should be mentioned.
As stated in [13], regularization is any supplementary technique that aims at

enhancing the model’s ability to generalize, i.e. aims at producing better results on
the test set. It encompasses various techniques aimed at reducing test error without
significantly increasing training error. These techniques can include adjustments
to the loss function, the optimization algorithms, or other supplementary methods.

There are two main factors that determine the success in the performance of a
ML algorithm:

1. The ability of the algorithm to minimize errors on the training data, ensuring
it learns the patterns present in the training set accurately.

2. The ability of the algorithm to generalize well to new, unseen data, which
means minimizing the difference between the error on the training data and
the error on the test data. It ensures that the model performs well in real-
world applications beyond the training set.

At this point, it is important to mention core challenges in ML: Underfitting
and Overfitting.

Underfitting arises when the model fails to achieve a sufficiently low error rate
on the training set, indicating that it has not adequately captured the underlying
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3.2 Artificial Intelligence Algorithms

patterns in the data. On the other hand, overfitting occurs when the model be-
comes too complex and captures noise or irrelevant details present in the training
data, resulting in a large gap between the training error and test error. 3.9

Underfitting and overfitting can be prevented by adjusting the model’s capacity.
Informally, a model’s capacity refers to its ability to represent a wide range of
functions or patterns in the data. Models with low capacity may struggle to
capture the complexity of the underlying data distribution, leading to underfitting.
Conversely, models with high capacity possess the flexibility to fit the training data
extremely well, often by memorizing specific instances or noise present in the data.
However, this increased capacity can also lead to overfitting, where the model fails
to generalize effectively to new, unseen data.

Therefore, finding the right balance in model’s capacity is crucial in ML. It
involves selecting a model complex enough to capture the underlying patterns in
the data while avoiding the pitfalls of both underfitting and overfitting.

Figure 3.9: Underfitting and Overfitting

Dropout is an important and widely used regularization method to prevent
overfitting.

The main idea behind dropout is to randomly “drop” or deactivate a percentage
of neurons during training, ensuring the network does not depend on any neuron
or a specific subset of neurons resulting in more reliable feature extraction and
generalization.

17



3.2 Artificial Intelligence Algorithms

3.2.1 Deep Learning
The first model of neuron was developed by neurophysiologist Warren McCulloch
(1898–1969) and a mathematician Walter Pitts (1923–1969) in 1943. They spec-
ulated the inner workings of neurons and modeled a primitive electrical circuits’
neural network based on their findings.

The model aimed to describe how individual neurons in the brain might work as
binary logic gates, laying the foundation for ANNs. Key aspect of the McCulloch-
Pitts neuron model is that the neuron is represented as a binary unit with a simple
threshold activation function. It could be either “firing” (active or outputting a
signal) or “not firing” (inactive or outputting no signal). Also the neuron received
a fixed binary inputs from other neurons or external sources.

Figure 3.10: Biological vs Artificial Neuron

A simple single neuron is called percepton.

3.2.1.1 Perceptron Learning

The perceptron, a fundamental unit in NNs, functions as a scalar function of var-
ious variables, determined by weight coefficients representing the linear discrimi-
nant function. Mathematically, it operates by applying weights and bias to inputs,
creating a new variable, which is then passed through an activation function to
predict the final output.

Rosenblatt’s perceptron model involves taking multiple binary inputs and pro-
ducing a single binary output based on weighted sums of these inputs, compared
with a predefined threshold value. This simple yet powerful concept forms the ba-
sis of how perceptrons work, where the weights assigned to each input determine
their importance in influencing the final output.

Weights in NNs indicate the importance of each input x in the decision-making
process, determining the amount of influence with which each input affects the
neuron’s output. Weights are also sometimes called the parameters of a layer.
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3.2 Artificial Intelligence Algorithms

Bias is an additional parameter, a constant, added to the weighted sum of
inputs before passing it through the activation function. It allows the model to
shift the activation function left or right, providing more flexibility in fitting and
adapting to different patterns in the data.

The importance of Activation Functions (AFs) in NNs is emphasized in [14].

3.2.1.2 Activation Functions

AF enable NNs to learn abstract features through nonlinear transformations. The
authors highlight several essential properties that AFs should possess, such as
adding nonlinear curvature to the optimization landscape, without increasing com-
putational complexity or hindering gradient flow during training. Some of the most
crucial activation functions employed in NNs are: Logistic Sigmoid, Tanh and Rec-
tified Linear Unit (ReLU) functions. These activation functions play a pivotal role
in introducing non-linearity into NNs, each with its unique characteristics and im-
plications for model performance. By understanding their properties, a valuable
insights are gained into their suitability for various applications and their impact
on network behavior.

The Logistic Sigmoid function maps inputs to the range [0, 1], which is
defined by the formula:

σ(x) = 1
1 + e−x

However, it suffers from vanishing gradient issues due to saturation at higher and
lower inputs. The vanishing gradient problem occurs when the gradients become
extremely small during the training of NNs, impeding effective learning by causing
earlier layers to receive minimal updates. The Sigmoid function is mainly used in
binary classification problems, but its output is not zero-centered.

The Tanh function maps inputs to the range [−1, 1], and is defined by the
formula:

tanh(x) = ex − e−x

ex + e−x

This function addresses the zero-centered property, which helps in centering the
data and potentially speeds up convergence. Despite this advantage, the Tanh
function still faces vanishing gradient problems. Its derivatives are steeper than
those of the Sigmoid function, which can help mitigate the issue to some extent,
but does not entirely eliminate the vanishing gradient problem.

Addressing the limitations of Sigmoid and Tanh activation functions, the Rec-
tified Linear Unit (ReLU ) has emerged as a popular choice due to its simplicity
and improved performance. This function is defined as:

ReLU(x) =

 x if x > 0
0 otherwise
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ReLU overcomes the saturation problem and computational complexity associated
with Sigmoid and Tanh functions. It produces outputs in the range [0, ∞). ReLU
activates only those neurons with positive values, making it computationally effi-
cient. However, it faces the Dying ReLU problem, where units may consistently
output zero due to negative inputs, which hinders learning by preventing weight
updates during training. Several variants have been developed to address the Dy-
ing ReLU problem, one of them being Leaky ReLU. This variant allows a small,
non-zero gradient for negative inputs, defined as:

Leaky ReLU(x) =

 x if x > 0
αx if x ≤ 0

where α is a small constant (e.g. 0.01). This modification helps maintaining the
flow of information and preventing units from becoming inactive.

Figure 3.11: Activation Functions:Formulas and Slopes

20



3.2 Artificial Intelligence Algorithms

Nonlinearity is crucial in NNs because it allows the network to model com-
plex relationships between data points. To illustrate this, a hypothetical scenario,
inspired by [15], should be considered. Dataset consisting of 100 points, some
of which are red and others are green is shown in figure 3.12. With natural hu-
man intelligence, distinguishing and classifying these points based on color is a
straightforward task. However, when it comes to machines, this process is not as
intuitive.

Figure 3.12: Dataset of 100 dots

If it is assumed that the NNs function is linear, the only option available to
the network is to place a straight line at a position where it believes the division
between the red and green points is most accurate. While this might provide some
level of classification, it is inherently limited. A linear function can only create
a simple, straight boundary, which might not effectively separate the points, as
illustrated in figure 3.13. This limitation arises because linear functions can only
capture linear relationships, which might not be sufficient for the task at hand.

On the other hand, by introducing nonlinearity into the network, we enable it
to model more complex relationships between the data points. Nonlinear activa-
tion functions allow the network to create more sophisticated decision boundaries,
potentially resulting in a classification that is closer to the true distribution of
the data, as shown in figure 3.14. This enhanced capability is why the choice
of activation function is critical in designing NNs. The right activation function
can significantly improve the network’s ability to learn and generalize, ultimately
leading to more accurate and meaningful classifications.
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Figure 3.13: Linear Separation

Figure 3.14: Nonlinear Separation

3.2.1.3 Multilayer Perceptrons

Activation functions are crucial in building NNs, particularly Deep Feedforward
Networks (DFNs) or Multilayer Perceptrons (MLPs), which are the core of many
deep learning models. These models are called feedforward because information
flows through the function being evaluated from input x, through the computations
in which we add weights to the input and bias, used to define function f and finally
to the output y. There are no feedback connections where outputs loop back into
the network, meaning the output of each neuron does not affect the neuron itself.
This network defines a mapping y = f(x; θ) and learns the value of the parameters
θ that results in the best function approximation.

When feedforward, NNs are extended to include feedback connections back into
the network, they are called Recurrent Neural Networks.
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3.2.1.3.1 Architecture
As stated in [1] the DL focuses on gradually building up different levels of un-
derstanding, each layer diving deeper into the underlying patterns present in the
data, with the number of layers determining the depth of the model. Each layer
processes information and passes it to the next layer, creating a stack of layers that
work together to understand complex data. The simplest graphical representation
is shown in figure 3.15.

Figure 3.15: MLP Layers

The Input layer is the first layer of the multilayer perceptron. It serves as the
entry point for the data into the network. Each neuron in this layer represents
one feature of the input data, and it simply passes the data to the following layers
without applying any transformations. The number of neurons in the input layer
corresponds to the dimensionality of the input data.

Hidden layers are layers between the input and output layers. These layers
consist of neurons that apply transformations to the input data by performing
weighted sums followed by mentioned activation functions and finally passes it on
the next layer. The purpose of the hidden layers is to enable the network to learn
complex patterns and representations in the data.

The Output layer is the final layer of the MLP, responsible for producing the
model’s predictions. The number of neurons in this layer corresponds to the num-
ber of classes in a classification problem or the number of outputs in a regression
problem. The output from this layer is typically passed through an activation
function, to generate the final output probabilities or values.
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3.2.1.3.2 Learning Process

Since the input data is parameterized by its weights, learning in NNs can be
defined as finding a set of values for the weights of all layers in a network, such
that the network will correctly assign optimal values to the input data and filter
out the information that is crucial for making the final output decision. First, it is
needed to compute how big the gap is between the network output and true output
in order to adjust the values of the weights. This is accomplished by using the
loss function of the network, also called the objective function or a cost function.
The loss function is used as a feedback to adjust the value of the weights and
biases, in a direction that will minimize the loss score. This adjustment is the task
of the optimizer, which implements the Backpropagation algorithm: the central
algorithm in DL. This iterative algorithm, during every epoch, adapts the weights
and biases to minimize the loss by moving down toward the gradient of the error.
Some of the most popular loss functions are MSE, MAE, Cross-Entropy Loss and
Hinge Loss 3.16. These functions take true value y and a predicted value ŷ as
inputs.

1. Mean Squared Error (MSE):

MSE = 1
n

n∑
i=1

(yi − ŷi)2

2. Mean Absolute Error (MAE):

MAE = 1
n

n∑
i=1

|yi − ŷi|

3. Cross-Entropy Loss:

Cross-Entropy = − 1
n

n∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

4. Hinge Loss:
Hinge Loss =

n∑
i=1

max(0, 1 − yi · ŷi)

Figure 3.16: Common Loss Functions
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3.2.2 Convolutional Neural Networks
CNNs [12] are a specific type of NNs designed to efficiently process data that has
a structured, grid-like arrangement, such as images. These networks are partic-
ularly well-suited for tasks involving image recognition and classification due to
their ability to automatically and adaptively learn spatial hierarchies of features
from input data. The term convolutional refers to mathematical operation convo-
lution, performed within these networks. Unlike general NNs that rely on matrix
multiplication to process data, CNNs replace this operation with convolution in
at least one of their layers. This substitution is significant because convolution
enables the network to focus on local patterns in the data, such as edges, textures,
or more complex features as it moves deeper into the layers, mirroring how humans
often recognize objects, first by identifying basic shapes and then understanding
them as parts of a whole.

The CNNs architecture includes several building blocks, mentioned in [16], such
as convolution layers, pooling layers and fully connected layers.

3.2.2.1 Convolution layer

Convolution layer plays a crucial role in feature extraction, which is the process
of identifying important patterns and details in the input data. This layer com-
bines both linear and nonlinear operations, specifically through convolution and
activation functions, to transform and analyze the input data.

First, the input image is converted into pixels, where each pixel is represented
by a numerical value between 0 and 255, indicating its brightness or darkness as
shown in figure 3.17.

Figure 3.17: Example of pixel representation [16].

In mathematical terms, convolution is an operation that combines two functions
to produce a third function, representing how the shape of one is modified by the
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other:

h(t) = (f ∗ g)(t) =
∫

f(τ) · g(t − τ) dτ

In CNNs, convolution is used to extract features from this grid of numbers
(the pixel values in our case). It involves using a small matrix of numbers called
a kernel or filter, which is applied across the entire image. The kernel slides over
the grid, and at each position, it performs an element-wise multiplication with
the corresponding pixels, followed by summing these products to produce a single
value. This value represents a specific feature detected at that position, such as
an edge or a texture. The resulting grid of these values forms what is known as a
feature map, presented in 3.18.

Figure 3.18: An example of convolution operation with a kernel size of 3x3, no
padding [16]

Multiple kernels can be applied to the same input image to generate several
feature maps, each highlighting different aspects of the image. Different kernels act
as different feature extractors, allowing the network to capture various character-
istics of the input data. Two critical hyperparameters that define this convolution
process are the size of the kernels and the number of kernels used. The kernel size
determines the area of the image that is analyzed at each step, while the number
of kernels dictates how many different features the layer will attempt to extract.

Feature maps are passed through nonlinear activation function, usually ReLU,
to introduce nonlinearity into the network.

The center of each kernel typically cannot overlap the outermost elements of
the input tensor, which leads to a reduction in the height and width of the output
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feature map compared to the input tensor. In [17] it is shown that the borders
and corners of an image can have a substantial impact on model performance and
so padding should be introduced. Padding involves adding extra data around the
borders of an input image, before performing the convolution, enabling the orig-
inal borders to be considered. Traditional padding techniques include replication
padding, reflection padding and the most popular zero padding (figure 3.19), where
rows and columns of zeros are added on each side of the input tensor, as to fit the
center of a kernel on the outermost element and keep the same in-plane dimen-
sion through the convolution operation. The importance of padding is explained
in [18] where the authors introduce the Padding Module, which can optimize itself
without requiring or influencing the model’s entire loss function.

Figure 3.19: An example of convolution operation with zero padding [16]

3.2.2.2 Pooling layer

The resulting feature maps are typically processed by pooling layers. Pooling serves
to downsample the feature maps, which helps in reducing their spatial dimensions
while retaining essential information by focusing on small grid regions within the
feature maps and produces a single value for each region. This value is usually
derived using one of two common methods:

1. Max Pooling: selects the maximum value from each grid region 3.20

2. Average Pooling: computes the average value of the elements in each grid
region
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Figure 3.20: Max Pooling operation with filter size of 2x2 [16]

Pooling reduces the feature map size and introduces a degree of translational
invariance to small shifts by summarizing each region into a single number. It
means that small shifts or distortions in the input image result in minimal changes
in the feature maps, helping the network become more robust to variations in the
input, which brings it closer to generalization.

3.2.2.3 Fully Connected layer

Once the final convolution or pooling layer is reached, the common practice is to
transform the output feature maps into vectorised feature maps and connect it
to one or more fully connected layers, also known as dense layers, in which every
input is connected to every output, adding learnable weight and passed through
an activation function. By executing this final step, the extracted features are
transformed to final outputs such as the probabilities for each class in classification
tasks, having the same number of output nodes as the number of classes.

The process is captured in the figure 3.21
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Figure 3.21: An overview of CNNs learning process [19]

Following the discussion on the fundamental principles of learning in CNNs,
attention is now directed towards visualizing technique called Grad-CAM.

3.2.2.4 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM, proposed in [24], is introduced as a method for visualizing the im-
portance of different parts of an image in the decision-making process of a model.
The technique leverages feature maps with activation functions from CNNs lay-
ers to identify the regions of an image that most significantly contribute to the
model’s decision. During the backpropagation process, Grad-CAM uses gradients
associated with a specific class to weight the feature maps with activation func-
tions, thereby highlighting the critical regions of the image that influence the final
decision, pesented in 3.22.
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Figure 3.22: Grad-CAM overview: Given an image and a class of interest (e.g.
‘tiger cat’ or any other type of differentiable output) as input, we forward propagate
the image through the CNNs part of the model and then through task-specific
computations to obtain a raw score for the category. The gradients are set to zero
for all classes except the desired class (tiger cat), which is set to 1. This signal is
then backpropagated to the rectified convolutional feature maps of interest, which
we combine to compute the coarse Grad-CAM localization (blue heatmap) which
represents where the model has to look to make the particular decision. Finally,
we pointwise multiply the heatmap with guided backpropagation to get Guided
Grad-CAM visualizations which are both high-resolution and concept-specific [24]

This method has shown particular utility in the analysis of medical images, as
demonstrated in [6]. In this study, Grad-CAM was employed to identify crucial
regions on chest X-rays for the detection of pneumonia which is essential in medical
applications where algorithm transparency is vital for clinical deployment.

Building upon the foundational concepts of CNNs discussed earlier, this section
delves into the architecture and application of CNNs used for image recognition
tasks: Residual Networks.

3.2.2.5 Residual Neural Networks (ResNets)

Residual Networks, commonly known as ResNet [8], are a type of CNNs archi-
tecture introduced to address the challenges associated with training very DNNs
which present significant challenges, often making it difficult to optimize them
effectively.

The architecture are mainly inspired by the philosophy of VGG nets, but in-
stead of directly learning the desired underlying function at each layer, this archi-
tecture introduced the concept called Residual Blocks.

ResNet layers learn the residual function, which is the difference between the
input to a layer and the desired output.

30



3.2 Artificial Intelligence Algorithms

Figure 3.23: ResNet Structure [8]

Mathematically, if the desired output is H(x), ResNet layers learn the function
F (x) = H(x) − x. The original mapping then becomes H(x) = F (x) + x.

The core innovation in ResNet is the use of skip (or shortcut) connections,
which bypass one or more layers by directly connecting the input of a block to its
output. This allows the network to carry forward information from earlier layers,
making it easier to train deeper networks.

Experiments on the ImageNet dataset showcase the effectiveness of this method,
where authors successfully trained ResNets with up to 152 layers making them
eight times deeper than the popular VGG networks, yet with lower computational
complexity. ResNet achieved a 3.57% error rate on the ImageNet test set, securing
first place in the ILSVRC 2015 classification challenge. The primary variants of
ResNet include ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152 with
the number in the name indicating the depth of the network(i.e. the number of
layers). ResNet18 and ResNet34 are relatively simpe networks with 18 and 34 lay-
ers, respectively. They use basic residual blocks that consist of two convolutional
layers, making them less complex and faster to train. ResNet50, ResNet101 and
ResNet152 are deeper networks with 50, 101 and 152 layers, respectively. The com-
plexity of their design allows them to have greater representational power, making
them capable of capturing more intricate patterns in the data, but at the cost of
increased computational complexity and training time. The key difference between
these models lies in their depth and complexity, with deeper models generally of-
fering better performance on complex tasks at the cost of higher computational
demands.
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3.3 Performance Metrics

Since this is a binary classification task, where the labels are represented as 0
and 1, the model’s predictions can be categorized into four possible outcomes [23]:

1. True Positive (TP): the model correctly predicts a label 1-visible fracture
when the actual label is 1-fracture is visible.

2. True Negative (TN): the model correctly predicts a label 0-nonvisible
fracture when the actual label is 0-there is no fracture.

3. False Positive (FP): the model incorrectly predicts a label 1-visible frac-
ture when the actual label is 0-there is no fracture present.

4. False Negative (FN): the model incorrectly predicts a label 0-no fracture
when the actual label 1-the fracture is present.

False negatives, known as a “Type II error”, are typically the most dangerous
among these outcomes, especially in medical diagnostics, as they represent cases
where a condition or disease is present but it is not detected by the model. On the
other hand, false positives, known as a “Type I error”, are often less dangerous but
still undesirable, as they lead to the incorrect identification of a condition when it
is not present, resulting in unnecessary stress and treatment.
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The following metrics provide a comprehensive evaluation of the model’s per-
formance, offering insights into its ability to correctly classify both positive and
negative instances using the above-mentioned terms: Accuracy, Sensitivity, Speci-
ficity, Precision and F1 Score.

Accuracy measures the overall correctness of the model by calculating the pro-
portion of true results (both TP and TN) among the total number of cases [23]:

Accuracy = TP + TN

TP + TN + FP + FN

Sensitivity assesses the model’s ability to correctly identify positive instances.
It is calculated as the proportion of true positives out of the total actual positives:

Sensitivity = TP

TP + FN

Specificity measures the model’s ability to correctly identify negative instances.
It is the proportion of true negatives out of the total actual negatives:

Specificity = TN

TN + FP

Precision evaluates how many of the predicted positive instances were actually
correct. It is calculated as the proportion of true positives out of all predicted
positives:

Precision = TP

TP + FP

F1 Score provides a balance between Precision and Sensitivity (Recall). It is
particularly useful when there is an uneven class distribution, as it considers both
false positives and false negatives:

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity
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4 Results and Discussion
The results of the experiments are presented using CNNs. The experiments

evaluate the performance of three ResNet architectures: ResNet-18, ResNet-50
and ResNet-101.

The first convolutional layer was modified to adapt ResNet models for grayscale
images with a single channel. The original weights of the layer, which were designed
for three-channel RGB images, were averaged across the channel dimension to
create weights suitable for a single-channel input. The modified convolutional
layer retains the same kernel size, stride and padding as the original, ensuring
compatibility with the rest of the network.

Modifying only the first layer is sufficient for this adaptation, as the subsequent
layers in the network operate on feature maps produced by the first layer, not
directly on the input image.

Figure 4.1, presents the loss values on both the training and validation sets for
three different ResNet architectures across all 20 epochs. The solid lines represent
the training loss for each model, while the dashed lines represent the validation
loss.

Figure 4.1: Training Loss vs Validation Loss over 20 epochs

All three models successfully learned the training data, as indicated by the
steadily decreasing training loss curves. However, in terms of validation perfor-
mance, ResNet50 achieves the lowest final validation loss (0.2867) and the highest
validation accuracy (93.53%). ResNet101 follows closely with a similar valida-
tion loss (0.2872) and accuracy (93.01%). In contrast, ResNet18 has a noticeably



higher final validation loss (0.3667) and a slightly lower accuracy (92.29%), sug-
gesting that it may not generalize as effectively as the other models.

The fluctuations in the validation loss curves, especially for ResNet18, suggest
potential overfitting or sensitivity to the validation dataset, which could be linked
to the lower complexity of the ResNet18 architecture compared to the deeper
ResNet50 and ResNet101 models.

All training results, from figure 4.1 and figure 4.2, have been summarized in
table 4.1 for better clarity and readability.

Model Train loss Train Accuracy Validation loss Validation Accuracy
ResNet101 0.0363 98.75% 0.2872 93.01%
ResNet18 0.0515 98.09% 0.3667 92.29%
ResNet50 0.0301 99.01% 0.2867 93.53%

Table 4.1: Training and Validation metrics at Epoch 20 for different models.

Figure 4.2: Training Accurracy vs Validation Accuracy over 20 epochs

Figure 4.2 presents the training and validation accuracies. All three models
reached high training accuracy, with ResNet50 attaining the highest (99.01%),
followed closely by ResNet101 (98.75%) and ResNet18 (98.09%). ResNet50 con-
sistently maintains the highest validation accuracy, indicating its superior gener-
alization to unseen data.

Confusion matrices for each model are presented in figure 4.3, figure 4.4 and
figure 4.5.

ResNet50 demonstrated the best performance in avoiding the most danger-
ous “Type II error”-the false negatives (incorrectly classifying images with visible
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fractures as no fracture visible label), with 33 such errors, compared to 46 for
ResNet101 and 58 for ResNet18. All three matrices indicate that the models clas-
sify ”no fracture” label well, with less than 20 misclassifications each.

Figure 4.3: Confusion Matrix of Resnet 101

Figure 4.4: Confusion Matrix of Resnet 18
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Figure 4.5: Confusion Matrix of Resnet 50
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The following images are presented for better understanding of the visual pat-
terns that contributed to both correct and incorrect model predictions.

Figure 4.6: X-ray images where none of the models predicted visible fracture while
the fracture was visible

Figure 4.7: X-ray images where all the models predicted visible fracture while the
fracture was visible

In both images in figure 4.6, all three models failed to predict the presence
of a fracture, even though a fracture was present. It suggests that the indicative
features fractures in this X-rays were either subtle or atypical, leading to a misclas-
sification by the models. The misalignment or unusual presentation of the fracture
could have contributed to this oversight. In contrast, as shown in figure 4.7, a sce-
nario is presented where all three models correctly identified the presence of a
fracture. It indicates that the features of the fracture in this X-rays were clear and
aligned well with the patterns the models were trained to recognize. The fracture
might have been more prominent, with clear discontinuity or displacement of a
bone thus easily detectable by the models. The consistent success across all three
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models indicates that the fracture characteristics in images are well-represented in
the training data, leading to accurate predictions.

Subtle or complex fractures, as the one shown in figure 4.6, present a greater
challenge for CNNs models, potentially due to a lack of similar examples in the
training set. On the other hand, fractures that are more noticable, are easier for
the models to detect, leading to consistent and accurate predictions.

Figure 4.8 presents heatmaps of five images generated using Grad-CAM, in
order to gain a deeper understanding on how the CNNs models made its decision.
These images illustrate how the ResNet18, the least complex CNN architecture in
this study, detected the fracture across its layers.

In the first three rows, the model successfully identified the fracture, as indi-
cated by the concentrated attention in the relevant areas of the images. In con-
trast, the last two rows present cases where the model did not detect the fracture,
resulting in a broader and less focused distribution of attention. By examining
the visualizations from figure 4.8, it becomes possible to observe which regions
of the image were most influential in the model’s decision-making process. The
progression through the layers reveals how the model shifts its focus from low-level
features, such as edges and textures, to higher-level, more abstract features, ul-
timately leading to the identification of the fracture. This visualization provides
valuable insight into the internal workings of the model, highlighting the specific
image regions that contributed to the final prediction.
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Figure 4.8: Heatmap visualizations of five images across different layers of
ResNet18
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Figure 4.9: Heatmap visualizations across different layers of ResNet101

Figure 4.10: Heatmap visualizations across different layers of ResNet50

Figure 4.11: Heatmap visualizations across different layers of ResNet18

The heatmap visualizations for ResNet101 (figure 4.9), ResNet50 (figure 4.10)
and ResNet18 (figure 4.11) demonstrate how each model processes and emphasizes
different regions of the X-ray image across various layers. The last convolutional
layer in each of the four main blocks was used in all three models to generate these
visualizations.

In the first layers, all three models show scattered attention across the image,
focusing on basic structures like edges and textures. As the models move to deeper
layers, their attention becomes more focused on complex patterns, particularly
those related to fractures. ResNet101, with its deeper architecture, begins to
refine its focus earlier than ResNet50 and ResNet18.

By the third layer, both ResNet101 and ResNet50 show clear attention on
the critical areas of the image that likely indicate fractures, with ResNet18 also
identifying these regions, but with slightly less precision.
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In the final, deepest layer, ResNet101 exhibits the most concentrated and ac-
curate focus, capturing more abstract, high-level features. ResNet50 also shows
strong focus, though slightly less pronounced, while ResNet18, while still effective,
shows a broader and less sharp focus.

Presentation of training, validation and testing results of the models are shown
in the tables bellow.

Model Train Accuracy Validation Accuracy Test Accuracy
Resnet101 98.75% 93.01% 93.83%
Resnet18 98.09% 92.29% 93.83%
Resnet50 99.01% 93.53% 94.76%

Table 4.2: Models Accuracy on Train, Validation and Test set

ResNet50 achieves the highest test accuracy of 94.76%, as presented in ta-
ble 4.2. ResNet101 and ResNet18 both achieve a test accuracy of 93.83%, slightly
lower than ResNet50, suggesting that while they perform well, in this task, they
are not as effective as ResNet50.

Model Accuracy for class fracture Accuracy for class no fracture
Resnet101 92.90% 95.58%
Resnet18 92.74% 95.87%
Resnet50 94.79% 94.69%

Table 4.3: Accuracy of class fracture visible and no fracture visible for different
models

Table 4.3 offers more detailed insights into the models’ performance on detect-
ing specific classes. For the ”fracture” class, ResNet50 again demonstrates the best
performance, with an accuracy of 94.79%, outperforming ResNet101 (92.90%) and
ResNet18 (92.74%). For the ”no fracture” class, ResNet18 slightly edges out the
others, achieving an accuracy of 95.87%, followed closely by ResNet101 at 95.58%
and ResNet50 at 94.69%. Table 4.4 present the models’ overall performance using
metrics such as accuracy, sensitivity, specificity, precision and F1 Score.
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Results presented in table 4.4, showcase that all three models demonstrate
high performance across various metrics, with ResNet50 showing a slight advan-
tage. Due to an uneven class distribution, F1 Score provides the most significant
performance metric, where ResNet50 achieves the highest value of 95.93%, indi-
cating its superior balance between precision (97.09%) and sensitivity (94.79%).

Model TN FP FN TP Acc Sens Spec Prec F1 Score
ResNet101 324 15 45 589 93.83% 92.90% 95.58% 97.52% 95.15%
ResNet18 325 14 46 588 93.83% 92.74% 95.87% 97.67% 95.15%
ResNet50 321 18 33 601 94.76% 94.79% 94.69% 97.09% 95.93%

Table 4.4: Performance metrics of different ResNet models on the 9,730 image
dataset

An additional table is presented with results using images from only the first
folder from [5], for comparison. Originally this folder contained around 5,000 im-
ages. However after applying the same selection criteria used in the main training
process (utilizing only projection 1 and excluding images with visible metal im-
plants) a total of 2,407 images were used.

The resulting performance metrics are as follows:

Model TN FP FN TP Acc Sens Spec Prec F1 Score
ResNet101 74 8 32 126 83.33% 79.75% 90.24% 94.03% 86.30%
ResNet18 73 9 15 143 90.00% 90.51% 89.02% 94.08% 92.26%
ResNet50 78 4 28 130 86.67% 82.28% 95.12% 97.01% 89.04%

Table 4.5: Performance metrics of different ResNet models on the 2,407 image
dataset

The table 4.5 shows that ResNet18 achieved the highest F1 Score of 92.26%
on this smaller dataset. ResNet50 followed with an F1 Score of 89.04%, while
ResNet101 obtained an F1 Score of 86.30%. These results emphasize the role of
dataset size in determining the optimal model architecture for a given task. In
such cases, simpler architectures, such as ResNet18, are able to achieve superior
performance on smaller datasets, likely due to their lower complexity. On the
other hand, more complex models like ResNet50 and ResNet101 perform better
with larger datasets, as they take advantage of the additional data to fully leverage
their deeper layers and extract more detailed features.
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5 Summary
In today’s rapidly advancing medicine, Artificial Intelligence (AI) is becoming

an indispensable tool for enhancing diagnostic accuracy and efficiency. The appli-
cation of AI, particularly through Convolutional Neural Networks (CNNs), holds
immense potential for transforming patient care by assisting doctors in making
swift, precise decisions.

This master’s thesis delves into the critical role of AI in medicine, focusing
on the use of Neural Networks to recognize pediatric wrist joint fractures. The
primary objective was to enable these networks to accurately identify and cate-
gorize unseen images - 0 for no visible fracture and 1 for visible fracture, thereby
improving diagnostic processes and outcomes in pediatric care.

The dataset used was challenging, as it consisted of pediatric X-ray images of
children aged 2 to 18 years. Due to the variations within this age group, careful
and extensive parameter tuning was necessary to ensure that the models could
generalize well across different cases.

The CNNs selected for this task were ResNet101, ResNet50 and ResNet18.
The models were trained over 20 epochs, during which a subset of 9,730 images

out of the available 20,000 was utilized. This selection was made by applying only
projection 1 and excluding images that displayed any metal implants to maximize
precision and accuracy.

When trained on the dataset of 9,730 images, all models showed promising
results. ResNet50 showed the best performance with an F1 Score of 95.93%,
followed by ResNet101 and ResNet18 with F1 Scores of 95.15%

The results obtained from a smaller dataset of 2,407 images, resulted in slightly
different performance metrics, with the F1 Score being the most telling metric.

In the smaller dataset, ResNet18 achieved the highest F1 Score of 92.26%,
suggesting it is more robust when dealing with limited data due to its simpler
architecture. In contrast, ResNet50 and ResNet101 demonstrated lower F1 Scores
of 89.04% and 86.30% respectively, on the smaller dataset.

These results highlight the importance of dataset size in selecting the appropri-
ate model. Simpler architectures like ResNet18 perform well on smaller datasets,
while more complex models like ResNet50 and ResNet101 demonstrate superior
results when more data is available. Additionally, the improved performance of all
models on the larger dataset indicates that, with appropriate training, more data
generally leads to better results.

Future research could benefit from incorporating age-specific data selection,
considering that the appearance of children’s joints varies significantly across dif-
ferent age groups.
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