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Chapter 1

Introduction

When we say that A communicates with B, it implies that the actions per-
formed by A have resulted in a desired physical state in B. This information
transfer is a physical process and is susceptible to uncontrollable ambient noise
and imperfections in the signaling process itself. The communication is con-
sidered successful when both the sender A and the receiver B agree on the
transmitted content. We will explore the maximum number of distinguishable
signals achievable through n uses of a communication channel. This number
increases exponentially with n, and the exponent is referred to as the channel
capacity. The central and most renowned achievement of information theory
is the characterization of channel capacity (represented as the logarithm of the
number of distinguishable signals) as the maximum mutual information.

A communication system that involves multiple senders and receivers in-
troduces new elements such as interference, cooperation, and feedback. These
elements fall within the domain of network information theory. The overarching
problem is straightforward: given numerous senders and receivers, along with
a channel transition matrix that describes interference and noise effects in the
network, the task is to determine whether the sources can be successfully trans-
mitted over the channel. This problem encompasses distributed source coding
(data compression) and distributed communication (identifying the capacity re-
gion of the network). Notable examples of communication networks include
computer networks, satellite networks, and the telephone system. Even within
a single computer, different components engage in communication with one an-
other. A comprehensive theory of network information would have significant
implications for the design of communication and computer networks.
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Chapter 2

Channel capacity

2.1 Communication system
Figure 2.1 illustrates a schematic representation of a physical signaling sys-

tem. Source symbols, originating from a finite alphabet, are mapped into a
sequence of channel symbols, which generates the output sequence of the chan-
nel. Although the output sequence is random, it follows a distribution that
depends on the input sequence. Our goal is to recover the transmitted message
based on the output sequence. Let us explain how communication system works.
The message will be modeled as a random variable W because the receiver does
not know in advance which message will be sent. It is some random message
selected from the set of all possible messages. When we want to transmit mes-
sages, we do not want to transmit them in their original form for the following
reason: the channel is going to introduce some noise, so the receiver on the
other side will not receive the same message and, if we want to prevent errors
from happening, first we will have to perform operations on that message and
transmit Xn instead. It is another random object which is obtained by encod-
ing the message. We are performing some function on the message and we are
producing sequence of symbols, sequence of n random variables. We encode
our message and we produce sequence of n random symbols. The sequence is
transmitted over communication channel. Now at the output of this channel
receiver obtains another sequence which is not necessarily equal to the trans-
mitted sequence and is denoted by Y n. The receiver will try to recover the
original message by applying reverse operation called decoding. The receiver’s
estimate of the message is denoted by Ŵ ; it is in general no equal to W , because
sometimes receiver will make a mistake. Our goal is to achieve the probability
of correct decoding, P (Ŵ = W ), as high as possible (ideally, it should be nearly
1).
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Figure 2.1: Communication system. (taken from [3])

2.2 Example of a communication system
If we simply send a sequence of bits of length n, approximately pn of them
will be received incorrectly and receiver does not know which ones are wrong.
Receiver has no way of recovering original message. What can we do? We can
do some encoding operation. Instead of sending individual bits we will send code
words. Let us give an example of sending code words, see Figure 2.2. Instead of
0 we will send through communication channel 000 and instead of 1 we will send
111, so each time we want to send a bit we will repeat 3 times. What happens
now? If we transmit 000, the receiver could attain 010. The only two possible
code words that can be transmitted are 000 which represents message 0 and
111 which represents message 1. If receiver gets 010 it knows that something is
wrong, because the sequence 010 could not have been transmitted, so it is going
to assume that 000 was sent. Channel is introducing some errors. The channel
could also have produced 010 from 111, but probability of this happening is
much smaller. We say that the 000 is more probable and we will decode it as
000. This is the whole point of coding. So we have list of all forbidden sequences,
these cannot be at the channel input and therefore when receiver obtains them
at the channel output he knows something is wrong.

Figure 2.2: Example of communication system sending code words. (taken from
[3])

This is the point of communication. We represent message W in some way
by using sequence of symbols Xn and this operation is called encoding. This
sequence Xn is always longer than the original message. We are adding symbols
which are not carrying information, but whose purpose is just to protect our
message. Then we transmit this over communication channel, something is
going to happen in the channel and the receiver is going to get another sequence
which is possibly different and then, based on what he received, it will produce
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estimate of message. It is going to produce best estimate which is not always
going to be correct, but it will be correct most of the time (and this is called
reliable communication).

2.3 Definition of channel capacity
Definition 2.3.1 (Channel capacity). The "information" capacity of a discrete
memoryless channel is defined by

C = max
p(x)

I(X;Y)

where the maximum is taken over all possible input distributions p(x).

The mutual information, denoted as I(X;Y ), is a fundamental measure in
information theory that measures the amount of information shared between two
random variables, X and Y . It provides insights into how much information X
reveals about Y (or vice versa), and it is defined by

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

Explanation: Channel capacity is the maximum of mutual information between
input and the output. The mutual information depends on the joint distribu-
tion. When we maximize the marginal distribution p(x), the resulting quantity
depends only on the conditional distribution p(y|x) (the channel). It is a cel-
ebrated result of Shannon – the so-called channel coding theorem – that C
represents the maximum number of bits per symbol that can be transmitted
through a given channel with arbitrarily small error probability.

2.4 Examples of channel capacity

2.4.1 Binary symmetric channel
Let us examine the binary symmetric channel (BSC), showed in Figure 2.3.

This channel operates with binary input symbols, which are flipped with a
probability denoted as p. Although it represents the simplest model of a channel
with errors, it captures most of the complexity of the general problem.

When an error arises, a received 0 is interpreted as 1, and vice versa. Notably,
the received bits do not disclose the error locations. In a way, all the received
bits lack reliability.

Suppose that there are only 2 possible messages. We are trying to send only
two possible messages through channel, 0 or 1. If we transmit 0 or 1 receiver on
the other side might not receive 0 or 1, so channel will introduce some distortion.
In the channel input we have 0 or 1 and on the output we can receive also 0
or 1. If 0 was transmitted, 0 will be received with some probability 1 − p, but
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Figure 2.3: Binary symmetric channel. C = 1−H(p) bits. (taken from [3])

1 will be received with some small probability p. Even if 0 was transmitted
that does not mean that 0 will be received all the time and vice versa. If we
transmit a bit, we can sometimes receive a wrong bit and this is what we call
noisy channel. This channel is one of the basic examples of noisy channel.

This diagram represents conditional distribution, how we describe commu-
nication channel, so we describe what is going to happen at the channel output
given the channel input. Capacity is 1 − H(p), where H(p) = −p log p − (1 −
p) log(1− p) is binary entropy function and it is less then one, because receiver
is confused sometimes and channel is noisy, we cannot send one bit per symbol.

2.4.2 Binary erasure channel
The analog to the binary symmetric channel, where certain bits are not

corrupted but lost, is the binary erasure channel. In this channel, a fraction α
of the bits are erased. The receiver possesses information about which bits have
been erased. The binary erasure channel has two inputs and has three outputs.

As said, binary erasure channel has binary input alphabet, output alphabet
has three symbols and it is called erasure for the following reason: If the symbol
0 was transmitted, 0 will be received with prob 1 − α and with probability α
symbol e will be received, so each input bit will be erased with probability α
and input will be received with probability 1−α. Capacity is 1−α < 1. When
receiver gets e it is confused.

2.5 Network information theory
Consider a scenario where m stations aim to communicate with a satel-

lite through a common channel. This scenario is referred to as a multiple-access
channel. How do the senders collaborate to transmit information to the receiver?
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Figure 2.4: Binary erasure channel. (taken from [3])

What communication rates can be achieved simultaneously? How does interfer-
ence among the senders limit the total communication rate? These questions are
well-understood in the context of the multiuser channel and have satisfactory
answers.

On the other hand, let us envision a scenario where one TV station trans-
mits information to m TV receivers, as depicted in Figure 2.5. How does the
sender encode information intended for different receivers in a unified signal?
What rates of information transmission are achievable for the various receivers?
Regarding this channel, answers are only known for specific cases. Several other

Figure 2.5: Broadcast channel. (taken from [8])

types of channels exist within network information theory. These include the
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relay channel, where there is a single source and destination, but intermediate
sender-receiver pairs act as relays to facilitate communication; the interference
channel, involving two senders and two receivers with crosstalk; and the two-
way channel, where two sender-receiver pairs exchange information. While some
answers regarding achievable communication rates and coding strategies exist
for these channels, they are not yet fully understood. All these channels can
be viewed as special cases of a communication network, as illustrated in Figure
2.6. In this network, m nodes attempt to communicate with each other. At any

Figure 2.6: Communication network. (taken from [3])

given time, the i node transmits a symbol xi based on the messages it intends to
send and the symbols it has previously received. The simultaneous transmission
of symbols (x1, x2, . . . , xm) results in random received symbols (Y1, Y2, . . . ,
Ym), which are drawn from a conditional probability distribution p(y(1), y(2),
. . . , y(m)|x(1), y(1), . . . , x(1)). This distribution accounts for the effects of noise
and interference present in the network. If p(·|·) can only take on the values 0
and 1, the network is deterministic.
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Chapter 3

Multiple-access channel

In this chapter we will begin by closely analyzing the multiple-access chan-
nel, where two or more senders transmit information to a shared receiver. The
channel is depicted in Figure 3.1. A typical instance of this channel is a satellite
receiver with many independent ground stations, or a group of cell phones com-
municating with a central base station. It is important to note that the senders
not only have to deal with receiver noise but also contend with interference
caused by each other.

Figure 3.1: Multiple-access channel. (taken from [3])

3.1 Some properties and examples of multiple ac-
cess channels

The code for the multiple-access channel, denoted as ((2nR1 , 2nR2), n),
involves two sets of integers: W1 =

{
1, 2, . . . , 2nR1

}
and W2 =

{
1, 2, . . . , 2nR2

}
,
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which are referred to as the message sets. It consists of two encoding functions:

X1 : W1 −→ Xn
1 (3.1)

X1 : W2 −→ Xn
2 (3.2)

Additionally, there is a decoding function:

g : Yn −→ W1 ×W2 (3.3)

In this setup, there are two senders and one receiver. Sender 1 randomly
selects an index from the set

{
1, 2, . . . , 2nR1

}
, transmits the corresponding

codeword through the channel, and Sender 2 does the same.
Assuming that the distribution of messages over the product set W1 × W2 is
uniform, meaning the messages are independent and equally likely, the average
probability of error for the ((2nR1 , 2nR2), n) code is defined as follows:

P(n)
e :

1

2n(R1+R2)

∑
(ω1,ω2)∈W1×W2

Pr {g(Y n) ̸= (ω1, ω2)|(ω1, ω2) sent} (3.4)

Definition 3.1.1. We consider a rate pair (R1, R2) to be achievable for the
multiple-access channel when a sequence of ((2nR1 , 2nR2), n) codes exists with

P (n)
e −→ 0. (3.5)

Definition 3.1.2. The capacity region of the multiple-access channel refers to
the closure of the set that includes all achievable rate pairs (R1, R2).

Figure 3.2: Capacity region for a multiple-access channel. (taken from [3])

An example of the capacity region for a multiple-access channel is shown
in Figure 3.2. We will illustrate the capacity region with an example after we
formally state theorem that presents capacity region.
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Theorem 3.1.1. The capacity of a multiple-access channel

(X1 ×X2, p(y|x1, x2),Y) (3.6)

that has two senders x1, x2 and a receiver y is given by the closure of the convex
hull of all (R1, R2) pairs that satisfy the following conditions:

R1 < I(X1;Y |X2) (3.7)
R1 < I(X2;Y |X1) (3.8)

R1 +R2 < I(X1, X2;Y ) (3.9)

These conditions must hold for some product distribution p1(x1)p2(x2) on
X1 ×X2.

Before we present the proof that this forms the capacity region of the
multiple-access channel, let us examine a few examples of multiple-access chan-
nels.

3.1.1 Independent binary symmetric channels
Let us consider a scenario where we possess two independent binary sym-

metric channels: one originating from sender 1 and the other from sender 2, as
illustrated in Figure 3.3. It is clear that in this situation, we can transmit infor-
mation at a rate of 1−H(p1) through the first channel and a rate of 1−H(p2)
through the second channel. Due to the independence of the channels, there
exists no mutual disruption between the senders. The capacity region in this
scenario can be observed in Figure 3.4.

3.1.2 Binary multiplier channel
Let us consider a multiple access channel equipped with binary inputs and

output
Y = X1X2 (3.10)

This channel is referred to as a binary multiplier channel. It is evident that by
setting X2 = 1, we can effectively transmit at a rate of 1 bit for each transmission
from sender 1 to the receiver. Similarly, with X1 = 1, we can attain a rate of
R2 = 1. Naturally, given that the output remains binary, the combined rates
R1+R2 for sender 1 and sender 2 must not exceed 1 bit. Through time division,
we have the capability to realize any combination of rates such that the sum of
R1+R2 equals 1. Consequently, the capacity region is illustrated in Figure 3.5.

3.1.3 Binary erasure multiple-access channel
This particular multiple-access channel is characterized by binary inputs,

where X1 and X2 can take values from the set {0, 1} and it generates a ternary

14



Figure 3.3: Independent binary symmetric channels. (taken from [3])

Figure 3.4: Capacity region for independent BSCs. (taken from [3])

output, Y , defined as the sum of X1 and X2,

Y = X1 +X2. (3.11)
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Figure 3.5: Capacity region for binary multiplier channel. (taken from [3])

There is no uncertainty in (X1 +X2) if Y = 0 or Y = 2 is received, but Y = 1
can result from either (0,1) or (1,0).

Now, we will investigate the achievable rates along the axes. By setting
X2 = 0, we can transmit at a rate of 1 bit per transmission from sender 1.
In a similar manner, with X1 = 0, we can achieve a rate of R2 = 1. This
gives us two extreme points of the capacity region. Can improvements be made
beyond these points? Let us assume R1 = 1, leading to X1 codewords must
include all conceivable binary sequences, essentially resembling a Bernoulli(1/2)
process. This behaves like noise during the transmission of X2. For X2, the
channel looks like the channel in Figure 3.6. Drawing from the findings, the
capacity of this channel amounts to 1/2 bit per transmission. Consequently,
when transmitting at the maximum rate of 1 for sender 1, we can concurrently
send an additional 1/2 bit from sender 2. Subsequently, once we derive the
capacity region, we can substantiate that these rates represent the optimum
achievable rates. The capacity region for a binary erasure channel is illustrated
in Figure 3.7.

3.2 Achievability of the capacity region for the
multiple-access channel

We are now going to establish the achievability of the rate region as stated in
Theorem 3.1.1. The converse proof will be deferred until the subsequent section.
The demonstration of achievability is very similar to the proof for the single-
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Figure 3.6: Equivalent single-user channel for user 2 of a binary erasure multiple-
access channel. (taken from [3])

user channel, with a focus on highlighting the deviations from the single-user
scenario. We start with proving the achievability that satisfy (3.9) for some
fixed product distribution p1(x1)p2(x2).

3.2.1 Achievability in theorem 3.1.1
Before we start with the proof, let us briefly explain what is asymptotic

equipartition property (AEP). The concept of entropy in information theory is
related to the concept of entropy in statistical. When we consider a sequence
of n independent and identically distributed (i.i.d.) random variables, we can
demonstrate that the likelihood of a "typical" sequence approximates 2−nH(X)

and there are approximately 2nH(X) such typical sequences.
Let us state two theorems that are going to be useful.

Definition 3.2.1. Let (X1, X2, . . . , Xk) denote a finite collection of discrete
random variables with some fixed joint distribution,

p(x(1), x(2), . . . , x(k)), (x(1), x(2), . . . , x(k)) ∈ X1 ×X2 × · · · × Xk.

Let S denote an ordered subset of these random variables and consider n copies
of S.

17



Figure 3.7: Capacity region for binary erasure multiple-access channel. (taken
from [3])

Definition 3.2.2. The set A
(n)
ϵ of ϵ-typical n-sequences (x1,x2, . . . ,xk) is de-

fined by

A(n)
ϵ (X(1), X(2), . . . , X(k))

= A(n)
ϵ

=

{
(x1,x2, . . . ,xk) :

∣∣∣∣∣− 1

n
log p(s)−H(S)

∣∣∣∣∣ < ϵ,∀S ⊆ {X(1), X(2), . . . , X(k)}

}

Definition 3.2.3. Let A(n)
ϵ (S) denote the restriction of A(n)

ϵ to the coordinates
of S. Thus, if S = (X1, X2), we have:

A(n)
ϵ (X1, X2) ={(x1,x2) :∣∣∣∣∣− 1

n
log p(x1,x2)−H(X1, X2)

∣∣∣∣∣ < ϵ,∣∣∣∣∣− 1

n
log p(x1)−H(X1)

∣∣∣∣∣ < ϵ,∣∣∣∣∣− 1

n
log p(x2)−H(X2)

∣∣∣∣∣ < ϵ}.

Theorem 3.2.1. For any ϵ > 0, for sufficiently large n,

• P (A
(n)
ϵ (S)) ≥ 1− ϵ, ∀S ⊆

{
X(1), X(2), . . . , X(k)

}

18



• s ∈ A
(n)
ϵ (S) ⇒ p(s) = 2n(H(S)±ϵ).

•
∣∣∣A(n)

ϵ (S)
∣∣∣ = 2n(H(S)±2ϵ).

• Let S1, S2 ⊆
{
X(1), X(2), . . . , X(k)

}
. If (s1, s2) ∈ A

(n)
ϵ (S1, S2), then

p(s1|s2) = 2n(H(S1|S2)±2ϵ).

Theorem 3.2.2. Let A(n)
ϵ denote the typical set for the probability mass func-

tion p(s1, s2, s3), and let

P (S
′

1 = s1, S
′

2 = s2, S
′

3 = s3) =

n∏
i=1

p(s1i|s3i)p(s2i|s3i)p(s3i). (3.12)

Then

P
{
(S

′

1, S
′

2, S
′

3) ∈ A(n)
ϵ

}
= 2n(I(S1;S2|S3)±6ϵ). (3.13)

Proof. Fix (p1, p2) = p1(x1)p2(x2).
Codebook Generation: Generate 2nR1 independent codewords X1(i), i ∈{1, 2,
. . . , 2nR1}, of length n. Generate each element independently and identically
distributed (i.i.d.) according to the distribution ∼

∏n
i=1 p1(x1i). Similarly,

produce 2nR2 independent codewords X2(j), where j ∈ {1, 2, . . . , 2nR2}, with
each codeword element being i.i.d. ∼

∏n
i=1 p2(x2i). These codewords collectively

form the codebook, which is disclosed to both senders and the receiver.
Encoding: For transmitting the index i, sender 1 sends the corresponding

codeword X1(i). Correspondingly, sender 2 transmits X2(j) to convey the index
j.

Decoding: Define A
(n)
ϵ as the set of typical x1,x2,y sequences. The receiver

Y n selects the pair (i, j) such that

(x1(i),x2(j),y) ∈ A(n)
ϵ (3.14)

if such a unique pair (i, j) exists; otherwise, an error is indicated.
Analysis of the probability of error: Due to the symmetry inherent in the

random code construction, the likelihood of error conditioned on specific index
pairs transmitted remains unaffected. Consequently, the conditional probability
of error coincides with the unconditional probability of error. Therefore, we
can presume, without any loss of generality, that the pair (i, j) = (1, 1) was
transmitted.

An error is observed when either the accurate codewords fail to exhibit
typicality with the received sequence, or when an erroneous pair of codewords
displays typicality with the received sequence. Let us define events:

Ei,j =
{
(X1(i),X2(j),Y) ∈ A(n)

ϵ

}
(3.15)
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Then by the union of events bound,

P (n)
ϵ = P

(
Ec

11

⋃
∪(i,j)̸=(1,1)Eij

)
(3.16)

≤ P (Ec
11) +

∑
i ̸=1

P (Ei1) +
∑
j ̸=1

P (E1j)

+
∑

i ̸=1,j ̸=1

P (Eij) (3.17)

where P is the conditional probability given that (1, 1) was sent. From the
AEP, P (Ec

11) −→ 0. By Theorems 3.2.1 and 3.2.2, for i ̸= 1, we have

P (Ei1) = P ((X1(i),X2(j),Y),∈ A(n)
ϵ ) (3.18)

=
∑

(x1,x2,y)∈A
(n)
ϵ

p(x1)p(x2,y) (3.19)

≤
∣∣∣A(n)

ϵ

∣∣∣ 2−n(H(X1)−ϵ)2−n(H(X2,Y )−ϵ) (3.20)

≤ 2−n(H(X1)+H(X2,Y )−H(X1,X2,Y )−3ϵ) (3.21)

= 2−n(I(X1;X2,Y )−3ϵ) (3.22)

= 2−n(I(X1;Y |X2)−3ϵ) (3.23)

where the equivalence of (3.22) and (3.23) follows from the independence of
X1 and X2, and the consequent I(X1;X2, Y ) = I(X1;X2) + I(X1;Y |X2) =
I(X1;Y |X2). Similarly, for j ̸= 1,

P (Ei1) ≤ 2−n(I(X2;Y |X1)−3ϵ) (3.24)

and for i ̸= 1, j ̸= 1
P (Ei1) ≤ 2−n(I(X1,X1;Y )−4ϵ) (3.25)

It follows that

P (n)
ϵ ≤ P (Ec

11) + 2nR12−n(I(X1;Y |X2)−3ϵ) + 2nR22−n(I(X2;Y |X1)−3ϵ)

+2n(R1+R2)2−n(I(X1,X1;Y )−4ϵ) (3.26)

As ϵ > 0 is arbitary, the theorem’s criteria lead to the conclusion that each
term tends to zero as n approaches infinity, n −→ ∞. Consequently, if the
theorem’s conditions are satisfied, the likelihood of error, contingent on a specific
codeword being transmitted, tends to zero. The earlier stated bound indicates
that the average probability of error, uniform due to symmetry and equal to the
probability concerning a single codeword, averages across all potential codebook
selections in the random code construction, is arbitrarily small. Therefore, there
exists at least one code C∗ with arbitrarily small probability of error.
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3.2.2 Comments on the capacity region for the multiple-
access channel

We have proved the achievability of the capacity region for the multiple-
access channel. This region represents the closure of the convex hull formed by
the collection of points R1, R2 that adhere to the conditions:

R1 < I(X1;Y |X2) (3.27)

R1 < I(X2;Y |X1) (3.28)

R1 +R2 < I(X1, X2;Y ) (3.29)

for some product distribution p1(x1)p2(x2) on X1×X2. Illustrated in Figure 3.8
is the region corresponding to a specific p1(x1)p2(x2). Now, let us analyze the

Figure 3.8: Achievable region of multiple-access channel for a fixed input distri-
bution. (taken from [3])

significance of the corner points within the region. Point A corresponds to the
maximum rate from sender 1 to the receiver under the condition that sender 2
is not transmitting any information. This corresponds to

maxR1 = max
p1(x1)p2(x2)

I(X1;Y |X2). (3.30)

Now, considering any given distribution p1(x1)p2(x2),

I(X1;Y |X2) =
∑
x2

p2(x2)I(X1;Y |X2 = x2) (3.31)

≤ max
x2

I(X1;Y |X2 = x2), (3.32)
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since the average is less than the maximum. The maximum value in (3.30)
is achieved by assigning X2 = x2, with x2 being value that maximizes the
conditional mutual information between X1 and Y . The distribution of X1 is
chosen to maximize this mutual information. Consequently, X2 needs to aid the
transmission of X1 by being set as X2 = x2.

Point B signifies the maximum rate at which sender 2 can transmit while
ensuring sender 1 operates at their maximum rate. If X1 is considered as noise
for the channel from X2 to Y , this is the rate that is obtained. In this scenario,
when using the results from single-user channels, X2 can transmit information
at a rate of I(X2;Y ). The receiver possesses knowledge about the specific X2

codeword employed, allowing for the "subtraction" of its influence from the
channel. This situation can be viewed as an assortment of single-user channels
indexed by the X2 symbol and in this case X1 rate achieved is the average
mutual information, where the average is conducted across these channels, with
each channel repeating as frequently as the corresponding X2 symbol emerges
in the codewords. Therefore, the rate achieved is∑

x2

p(x2)I(X1;Y |X2 = x2) = I(X1;Y |X2) (3.33)

Points C and D represent B and A, respectively, but with the positions of
the senders switched. The intermediary points can be realized through time-
sharing. Hence, we have provided an single-user interpretation and rationale for
the capacity region of a multiple-access channel.

The concept of treating additional signals as components of noise, decoding
one signal and "subtracting" it from the received signal is an exceptionally
valuable approach.

3.3 Convexity of the capacity region of
the multiple-access channel

We are currently reconfiguring the capacity region of the multiple-access
channel to incorporate the process of forming the convex hull, and this involves
the introduction of a new random variable. Our initial step involves demon-
strating the convexity of the capacity region through a proof.

Theorem 3.3.1. The capacity region C of a multiple-access channel is convex,
meaning that if R1, R2 ∈ C and R

′

1, R
′

2 ∈ C, then for any value of λ between 0
and 1, 0 ≤ λ ≤ 1, the point (λR1 + (1− λ)R

′

1, λR2 + (1− λ)R
′

2) ∈ C.

Proof. The concept involves employing time-sharing. With two sets of code
sequences operating at distinct rates, R = (R1, R2) and R

′
= (R

′

1, R
′

2), we have
the ability to create a third codebook operating at a mixed rate of λR+(1−λ)R

′
,

achieved by using the first codebook for the initial λn symbols and using to the
second codebook for the remaining (1−λ)n symbols. The count of X1 codewords
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present in the updated code can be expressed as

2nλR12n(1−λR
′
1) = 2n(λR1+(1−λ)R

′
1) (3.34)

Consequently, the rate of the new code equals to λR+(1−λ)R
′
. Given that the

collective likelihood of an error is lower than the total of the error probabilities
for each individual segment, the error probability of the new code approaches
zero. This signifies that the rate is achievable.

We can proceed to reformulate the expression of the capacity region con-
cerning the multiple-access channel by introducing a random variable Q that
involves time-sharing. However, before we establish the proof for this outcome,
it becomes necessary to prove a property of convex sets that are defined by linear
inequalities similar to those of the capacity region of the multiple-access chan-
nel. Specifically, our aim is to establish that the convex hull formed by two such
regions, defined by linear constraints corresponds to the region defined by the
convex combination of these conditions. While initially, the equivalence between
these two sets might appear apparent, upon closer analysis, a subtle complexity
arises due to the possibility of certain constraints not being actively involved.
This concept is most effectively demonstrated through the use of an example.
Consider these following two sets that are defined by linear inequalities:

C1 = {(x, y) : x ≥ 0, y ≥ 0, x ≤ 10, y ≤ 10, x+ y ≤ 100} (3.35)

C2 = {(x, y) : x ≥ 0, y ≥ 0, x ≤ 20, y ≤ 20, x+ y ≤ 20} (3.36)

The ( 12 ,
1
2 ) convex combination of the constraints, in this case, defines the region

C = {(x, y) : x ≥ 0, y ≥ 0, x ≤ 15, y ≤ 15, x+ y ≤ 60} (3.37)

It is easy to observe that any point within C1 or C2 adheres to the condition
x + y < 20. Therefore, any point situated within the convex combination of
the combined regions C1 and C2 fulfills this criterion. Consequently, the point
(15,15), which belongs to C, does not fall within the convex combination of
C1 ∪ C2. This example also hints at the cause of the problem and that is
definition of C1 where the constraint x + y ≤ 100 remains inactive. If this
constraint were substituted with a constraint x + y ≤ a, where a ≤ 20, the
previously mentioned equivalence between the two regions would hold true. We
will prove now that above result of the equality of the two regions would be
true.

We confine our focus to the pentagonal regions that emerge as constituents
within the capacity region of a two-user multiple-access channel. In this specific
instance, the capacity region for a fixed p(x1)p(x2) is characterized by three dis-
tinct mutual information values: I(X1;Y |X2), I(X2;Y |X1) and I(X1, X2;Y ),
which we shall denote as I1, I2 and I3 respectively. For every p(x1)p(x2) dis-
tribution, a corresponding vector I = (I1, I2, I3) is assigned, and a rate region
defined by:

CI = {(R1, R2) : R1 ≥ 0, R2 ≥ 0, R1 ≤ I1, R2 ≤ I2, R1 +R2 ≤ I3} (3.38)
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Moreover, as applicable to any given distribution p(x1)p(x2), the equation

I(X2;Y |X1) = H(X2|X1)−H(X2|Y,X1)

= H(X2)−H(X2|Y,X1)

= I(X2;Y,X1)

= I(X2;Y ) + I(X2;X1|Y )

holds. This implies that I(X2;Y |X1)+I(X1;Y |X2) ≥ I(X1;Y |X2)+I(X2;Y ) =
I(X1, X2;Y ). Consequently, for all vectors I, the relationship I1 + I2 ≥ I3
remains valid. This property will turn out to be critical for the theorem.

Lemma 3.3.1. Consider two vectors of mutual information, denoted as I1, I2 ∈
R3, defining rate regions CI1 , CI2 ∈ R3, respectively, as given in equation (3.38).
0 ≤ λ ≤ 1, define Iλ = λI1 + (1 − λ)I2, and let CIλ represent the rate region
determined by Iλ. Then

CIλ = λCI1 + (1− λ)CI2 (3.39)

Proof. Theorem will be proved in two parts. Firstly, let us show that any point
in the λ, (1−λ) mix of the sets CI1 and CI2 satisfies the constraints Iλ. It follows
that

λCI1 + (1− λ)CI2 ⊆ CIλ (3.40)

In order to establish the opposite inclusion, we examine the extreme points of
the pentagonal regions. It is evident that the rate regions, as defined in equation
(3.38), consistently take the shape of a pentagon. In the exceptional scenario
where I3 = I1 + I2, are in the form of a rectangle. Consequently, the capacity
region CI can also be described as the convex hull formed by five points:

(0, 0), (I1, 0), (I1, I3 − I1), (I3 − I2, I2), (0, I2). (3.41)

Let us consider the region defined by Iλ, which also consists of five defining
points. Select any one of these points, for instance, (I

(λ)
3 − I

(λ)
2 , I

(λ)
2 ). This

specific point can be expressed as a combination of the points (I
(1)
3 − I

(1)
2 , I

(1)
2 )

and (I
(2)
3 −I

(2)
2 , I

(2)
2 ) with weights (λ, 1−λ). Therefore, it falls within the convex

mixture of CI1 and CI2 . Consequently, all extreme points of the pentagon CIλ
lie in the convex hull of CI1 and CI2 , or

CIλ ⊆ λCI1 + (1− λ)CI2 (3.42)

Bringing together the two parts, we establish the theorem.

In the theorem’s proof, we have implicitly relied on the notion that every
rate region is delineated by five extreme points (in some cases, some points
could be identical). All five points outlined by the I vector fell within the rate
region. If the condition I3 ≤ I1 + I2 is not satisfied, a few points in (3.41) could
lie outside the rate region and the proof collapses.

As a direct result of the lemma mentioned above, we obtain the following
theorem:
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Theorem 3.3.2. The convex hull of the union of the rate regions defined by
individual I vectors is equal to the rate region defined by the convex hull of the
I vectors.

Theorem 3.3.3. The achievable rates in a discrete memoryless multiple-access
channel are defined by the closure of the set containing all pairs (R1, R2) that
meet the following conditions:

R1 ≤ I(X1;Y |X2, Q),

R2 ≤ I(X2;Y |X1, Q),

R1 +R2 ≤ I(X1, X2;Y |Q) (3.43)

for some choice of the joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2) with |Q| ≤
4.

Proof. We will show that each rate pair lying in the region specified in equation
(3.43) is achievable, meaning it falls within the convex closure of the rate pairs
that fulfill Theorem 3.1.1. Additionally, we will prove that every point within
the convex closure of the region described in Theorem 3.1.1 also belongs to the
region defined by equation (3.43).

Let us examine a rate point R that satisfy the inequalities stated in equa-
tion (3.43) of the theorem. We can rephrase the right-hand side of the initial
inequality as follows.

I(X1;Y |X2, Q) =

m∑
q=1

p(q)I(X1;Y |X2, Q = q) (3.44)

=

m∑
q=1

p(q)I(X1;Y |X2)p1q ,p2q
, (3.45)

where m is the cardinality of the support set of Q.
To simplify our notation, we treat a rate pair as a vector and label a pair that

fulfills the inequalities in equation (3.9) for a given input product distribution
p1q (x1)p2q (x2) as Rp1,p2

as Rq. In particular, let Rq = (R1q , R2q ) represent a
rate pair that meets these conditions.

R1q < I(X1;Y |X2)p1q (x1)p2q (x2), (3.46)

R2q < I(X2;Y |X1)p1q (x1)p2q (x2), (3.47)

R1q +R2q < I(X1, X2;Y )p1q (x1)p2q (x2). (3.48)

Subsequently, based on Theorem 3.1.1, Rq = (R1q , R2q ) is achievable. Given
that R satisfies the conditions in (3.43) and we can elaborate on the right-hand
sides as shown in (3.45), there exists a collection of pairs Rq that adhere to
(3.48), such that

R =

m∑
q=1

p(q)Rq. (3.49)
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As a convex combination of achievable rates is also achievable, this affirms the
achievability of R. Consequently, we have proven the achievability of the region
outlined in the theorem. A similar argument can be applied to show that any
point within the convex closure of the region described in (3.9) can be expressed
as a combination of points satisfying (3.48) and thus can be represented in the
form (3.43).

The following section provides the proof for the converse. The converse
shows that all achievable rate pairs are of the form (3.43), thus confirming it as
the capacity region for the multiple-access channel. The limit on the cardinality
of the time-sharing random variable Q is a result derived from Caratheodory’s
theorem on convex sets, as discussed further below.

Demonstration of the capacity region’s convexity in the proof illustrates that
achieving a convex combination of rate pairs also results in achievability. We
can extend this principle by taking convex combinations of additional points.
Do we need to use an arbitrary number of points? Will it expand the capacity
region? The subsequent theorem asserts otherwise.

Theorem 3.3.4 (Caratheodory’s Theorem). Every point within the convex clo-
sure of a compact set A in a d-dimensional Euclidean space can be expressed as
a convex combination of d+ 1 or fewer points from the original set A.

This theorem permits us to focus on a specific finite convex combination
when determining the capacity region. This is a crucial characteristic, as without
it, calculating the capacity region as outlined in (3.43) would be infeasible, since
we would never know whether using a larger alphabet Q would increase the
region.

Within the domain of the multiple-access channel, the bounds define a con-
nected compact set in three dimensions. As a result, any point within its closure
can be expressed as a convex combination of no more than four points. Thus,
we can restrict the cardinality of Q to a maximum of 4 in the provided definition
of the capacity region.

3.4 Converse for the multiple-access channel
Until now, we have proved the achievability of the capacity region. In this

section, we are going to prove the converse.

Proof. Converse to Theorems 3.1.1 and 3.3.3.
We will show that given any sequence of ((2nR1 , 2nR2), n) codes with P

(n)
e → 0,

the rates must satisfy

R1 ≤ I(X1;Y |X2, Q),

R2 ≤ I(X2;Y |X1, Q),

R1 +R2 ≤ I(X1, X2;Y |Q) (3.50)
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considering a random variable Q defined on {1, 2, 3, 4} with a specific joint
distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2). Let us fix n and consider the provided
code with a block length of n. The joint distribution on W1×W1×Xn

1 ×Xn
2 ×Yn

is clearly defined. The randomness arises from the uniform selection of indices
W1 and W2, along with the inherent randomness induced by the channel. The
joint distribution is

p(ω1, ω2, x
n
1 , x

n
2 , yn) =

1

2nR1

1

2nR2
p(xn

1 |ω1)p(x
n
2 |ω2)

n∏
i=1

p(yi|x1i, x2i), (3.51)

p(xn
1 |ω1) takes a value of either 1 or 0, based on whether xn

1 = x1(ω1), which
is the codeword corresponding to ω1 or not. Similarly, p(xn

2 |ω2) is either 1 or
0, depending on whether xn

2 = x2(ω2) or not. The subsequent calculations of
mutual information are based on this specified distribution.

Due to the way the code is contruction, we can accurately estimate (W1,W2)
from the received sequence Y n with a minimal probability of error. Conse-
quently, the conditional entropy of (W1,W2) given Y n should be minimal, as
indicated by Fano’s inequality,

H(W1,W2|Y n) ≤ n(R1 +R2)P
(n)
e +H(P (n)

e )
△
= nϵn (3.52)

It is clear that ϵn → 0, because P
(n)
e → 0. Then we have

H(W1|Y n) ≤ H(W1,W2|Y n) ≤ nϵn, (3.53)
H(W2|Y n) ≤ H(W1,W2|Y n) ≤ nϵn. (3.54)
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We can now bound the rate R1 as

nR1 = (3.55)
= I(W1;Y

n) +H(W1|Y n) (3.56)
(a)

≤ I(W1;Y
n) + nϵn (3.57)

(b)

≤ I(Xn
1 (W1);Y

n) + nϵn (3.58)
= H(Xn

1 (W1))−H(Xn
1 (W1)|Y n) + nϵn (3.59)

(c)

≤ H(Xn
1 (W1)|Xn

2 (W2))−H(Xn
1 (W1)|Y n, Xn

2 (W2)) + nϵn (3.60)
= I(Xn

1 (W1);Y
n|Xn

2 (W2)) + nϵn (3.61)
= H(Y n|Xn

2 (W2))−H(Y n|Xn
1 (W1), X

n
2 (W2)) + nϵn (3.62)

(d)

= H(Y n|Xn
2 (W2))−

n∑
i=1

H(Yi|Y i−1, Xn
1 (W1), X

n
2 (W2)) + nϵn (3.63)

(e)

= H(Y n|Xn
2 (W2))−

n∑
i=1

H(Yi|X1i, X2i) + nϵn (3.64)

(f)

≤
n∑

i=1

H(Yi|Xn
2 (W2))−

n∑
i=1

H(Yi|X1i, X2i) + nϵn) (3.65)

(g)

≤
n∑

i=1

H(Yi|X2i)−
n∑

i=1

H(Yi|X1i, X2i) + nϵn (3.66)

=

n∑
i=1

I(X1i;Yi|X2i) + nϵn, (3.67)

where
(a) can be derived using Fano’s inequality.
(b) can be derived using the data-processing inequality.
(c) can be deduced from the independence of W1 and W2, resulting in the in-
dependence of Xn

1 (W1) and Xn
2 (W2). This leads to H(Xn

1 (W1)|Xn
2 (W2)) =

Xn
1 (W1), and H(Xn

1 (W1)|Y n, Xn
2 (W2)) ≤ H(Xn

1 (W1)|Y n) through condition-
ing.
(d) follows from the chain rule.
(e) can be deduced from the fact that Yi depends only on X1i and X2i, by the
memoryless property of the channel.
(f) can be derived using the chain rule and removing conditioning.
(g) follows from removing conditioning.

Hence, we have

R1 ≤ 1

n

n∑
i=1

I(X1i;Yi|X2i) + ϵn (3.68)
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Similarly, we have

R2 ≤ 1

n

n∑
i=1

I(X2i;Yi|X1i) + ϵn (3.69)

To bound the sum of the rates, we have

n(R1 +R2) = H(W1,W2) (3.70)
= I(W1,W2;Y

n) + I(W1,W2|Y n) (3.71)
(a)

≤ I(W1,W2;Y
n) + nϵn (3.72)

(b)

≤ I(Xn
1 (W1), X

n
2 (W2);Y

n) + nϵn (3.73)
= H(Y n)−H(Y n|Xn

1 (W1), X
n
2 (W2)) + nϵn (3.74)

(c)

= H(Y n)−
n∑

i=1

H(Yi|Y i−1, Xn
1 (W1), X

n
2 (W2)) + nϵn (3.75)

(d)

= H(Y n)−
n∑

i=1

H(Yi|X1i, X2i) + nϵn (3.76)

(e)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|X1i, X2i) + nϵn (3.77)

=

n∑
i=1

I(X1i, X2i;Yi) + nϵn (3.78)

where
(a) is a result of applying Fano’s inequality.
(b) follows from the data-processing inequality.
(c) is a direct outcome of employing the chain rule.
(d) is result from the fact that Yi depends only on X1i and X2i and is condi-
tionally independent of everything else.
(e) is an outcome of the chain rule and of the removing of conditioning.

So, we have

R1 +R2 ≤ 1

n

n∑
i=1

I(X1i, X2i;Yi) + ϵn (3.79)

The expressions found in (3.98), (3.99) and (3.79) are the averages of the mu-
tual informations calculated at the empirical distributions in column i of the
codebook. We can reformulate these equations using a new variable Q, defined
as Q = i ∈ {1, 2, . . . , n} with a probability of 1

n .
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R1 ≤ 1

n

n∑
i=1

I(X1i;Yi|X2i) + ϵn (3.80)

=
1

n

n∑
i=1

I(X1q;Yq|X2q,Q = i) + nϵn (3.81)

= I(X1Q;YQ|X2Q,Q) + nϵn (3.82)
= I(X1;Y |X2,Q) + nϵn (3.83)

where X1
△
= X2Q, X2

△
=X1Q and Y

△
=YQ represents new random variables and

their distributions depend on Q in the same way as distributions of X1i, X2i

and Yi depend on i. We know that W1 and W2 are independent, that implies
that X1i(W1) and X2i(W2) are as well and hence we know that

P (X1i(W1) = x1, X2i(W2) = x2)

△
= P (X1Q = x1|Q = i)P (X2Q = x2|Q = i) (3.84)

When we take the limit, n → ∞, P (n)
e → 0, we have the following converse:

R1 ≤ I(X1;Y |X2, Q),

R2 ≤ I(X2;Y |X1, Q),

R1 +R2 ≤ I(X1, X2;Y |Q) (3.85)

for some choice of joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2). As demon-
strated in Section 3.4, the region is unchanged when we limit the size of Q to
4. This can conclude the proof of the converse.

We proved the achievability of the region of the Theorem 3.1.1 in the Section
3.2. In Section 3.3 we proved that every point within the region specified by
equation (3.50) is achievable. In the converse, we established that the region
outlined in (3.50) represents the optimal achievable performance, that was the
best we can do, confirming it as the capacity region of the channel. Hence, the
region defined in (3.9) for the multiple-access channel cannot be larger than the
region in (3.50), and this is the capacity region of the multiple-access channel.

3.5 m-User multiple-access channels
We will now extend the derived result for two senders to m senders, where

m ≥ 2. In this case, the multiple-access channel is shown in Figure 3.9. We
transmit distinct indices ω1, ω2, . . . , ωm over the channel, each corresponding to
the senders 1, 2, . . . ,m, respectively. The codes, rates, and achievability follow
the same definitions as in the case of two senders.

Let S ⊆ {1, 2, . . . ,m} and let us denote Sc as complement of S. Let R(S) =∑
i∈S Ri and let X(S) = {Xi : i ∈ S}. Now we will prove the following theorem.
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Figure 3.9: m-user multiple-access channel. (taken from [3])

Theorem 3.5.1. The capacity region of the multiple-access channel with m
users is represented by the closure of the convex hull of the rate vectors that
meet the following conditions:

R(S) ≤ I(X(S);Y |X(Sc)), ∀S ⊆ {1, 2, . . . ,m} (3.86)

for some product distribution p1(x1)p2(x2) . . . pm(xm).

Proof. The probability of error in the achievability proof has now 2m− 1 terms
and has an equal number of inequalities in the proof of the converse.

3.6 Gaussian multiple-user channels
Gaussian multi-user channels illustrate crucial aspects of network informa-

tion theory. Within this section, we will outline the fundamental concepts for
defining the capacity regions of Gaussian channels, including multiple-access,
broadcast, relay, and two-way channels, without presenting the proofs.

The basic discrete-time additive white Gaussian noise channel with input
power P and noise variance N is modeled by:

Yi = Xi + Zi, i = 1, 2, . . . , (3.87)

where the Zi are i.i.d. Gaussian random variables with mean 0 and variance N .
The signal X = (X1, X2, . . . , Xn) has a power constraint:

1

n

n∑
i=1

X2
i ≤ P. (3.88)
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The Shannon capacity C is derived by maximizing I(X;Y ) across all random
variables X satisfying EX2 ≤ P and it is given by:

C =
1

2
log

(
1 +

P

N

)
(3.89)

bits per transmission.

3.6.1 Gaussian multiple-access channel with m users
Let us consider m transmitters, each with a power P and let

Y =

n∑
i=1

Xi + Z. (3.90)

Let

C

(
P

N

)
=

1

2
log

(
1 +

P

N

)
(3.91)

denote as the capacity of a single-user Gaussian channel with signal-to-noise
ratio P/N. The achievable rate region for the Gaussian channel is expressed in
a simple form through the following equations:

Ri < C

(
P

N

)
(3.92)

Ri +Rj < C

(
2P

N

)
(3.93)

Ri +Rj +Rk < C

(
3P

N

)
(3.94)

...
m∑
i=1

< C

(
mP

N

)
. (3.95)

We can see that all the rates are the same. Inequality (3.95) dominates the
others.

In this scenario, we require m sets of codebooks, where the ith codebook
has 2nRi codewords with power P . The transmission process is simple: each
independent transmitter selects any codeword from its respective codebook.
These vectors are then sent simultaneously by the users. At the receiver, the
observed codewords are added together with the Gaussian noise Z. For optimal
decoding, the objective is to identify one codeword from each codebook (totaling
m codewords) in a way that the vector sum is closest to Y in terms of Euclidean
distance. And we can say that if (R1, R2, . . . , Rm) is in the capacity region given
above, the probability of error goes to 0 as n tends to infinity.
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Remarks: It is fascinating to observe in this scenario that the sum of user
rates, denoted by C(m P

N ), approaches infinity as m increases. Consequently, in
a cocktail party, where we have m celebrants of power P and where the presence
of ambient noise is N , we can say that intended listener receives an unbounded
amount of information as the number of people grows to infinity at the party.
It is also interesting to mention that each of the transmitters uses all of the
bandwidth all of the time.

3.6.2 Gaussian multiple-access channels
We can now discuss the Gaussian multiple-access channels.
Two senders, denoted as X1 and X2 are communicating with a single receiver

Y . Let us denote the received signal at time i:

Yi = X1i +X2i + Zi (3.96)

where {Zi} represents a sequence of independent, identically distributed Gaus-
sian random variables with zero mean and variance N . The channel is depicted
in Figure 3.10.

Figure 3.10: Gaussian multiple-access channel. (taken from [3])

We assume a power constraint Pj on sender j, implying that for each sender
and all messages, we must satisfy:

1

n

n∑
i=1

x2
ji(ωj) ≤ Pj , ωj ∈

{
1, 2, . . . , 2nRj

}
, j = 1, 2. (3.97)

As the proof of achievability of channel capacity was extended from the discrete
case to the Gaussian channel, we can further extend the proof from the discrete
multiple-access channel to the Gaussian multiple-access channel. The converse
can also be similarly extended. We expect the capacity region to be the convex
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hull of the set of rate pairs that satisfy the following conditions:

R1 ≤ I(X1;Y |X2), (3.98)
R2 ≤ I(X2;Y |X1), (3.99)

R1 +R2 ≤ I(X1, X2;Y ) (3.100)

for some input distribution f1(x1)f2(x2) that satisfies EX2
1 ≤ P1 and EX2

2 ≤
P2.

Definition 3.6.1. Let X be a random variable with a probability density func-
tion f whose support is a set X . The differential entropy h(X) or h(f) is defined
as

h(X) = E[− log(f(X))] = −
∫
X
f(x) log f(x)dx.

Now, we can express mutual information in terms of relative entropy, and
as a result we have:

I(X1;Y |X2) = h(Y |X2)− h(Y |X1, X2) (3.101)
= h(X1 +X2 + Z|X2)− h(X1 +X2 + Z|X1, X2) (3.102)
= h(X1 + Z|X2)− h(Z|X1, X2) (3.103)
= h(X1 + Z|X2)− h(Z) (3.104)
= h(X1 + Z)− h(Z) (3.105)

= h(X1 + Z)− 1

2
log(2πeN) (3.106)

≤ 1

2
log(2πe(P1 +N))− 1

2
log(2πeN) (3.107)

=
1

2
log

(
1 +

P1

N

)
, (3.108)

equation (3.104), follows from the independence of Z from both X1 and X2.
Equation (3.105) results from the independence of X1 and X2. Lastly, equation
(3.108) follows from the fact that the normal distribution maximizes entropy
for a given second moment. Consequently, the distribution that achieves the
maximum is where X1 ∼ N (0, P1), X2 ∼ N (0, P2) and X1 and X2 are inde-
pendent. This distribution simultaneously maximizes the mutual information
bounds given in equations (3.98)–(3.100).

Definition 3.6.2. Let us define the channel capacity function:

C(x)
△
=

1

2
log(1 + x), (3.109)

representing the channel capacity of a Gaussian white-noise channel with a
signal-to-noise ratio x (as shown in Figure 3.11). We then express the constraint
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on R1 as:

R1 ≤ C

(
P1

N

)
(3.110)

And similarly,

R2 ≤ C

(
P2

N

)
(3.111)

and

R1 +R2 ≤ C

(
P1 + P2

N

)
(3.112)

Figure 3.11: Gaussian multiple-access channel capacity region. (taken from [3])

These upper bounds are achieved when X1 ∼ N (0, P1), X2 ∼ N (0, P2),
defining the capacity region. What is astonishing about these inequalities is
that the sum of the rates can reach up to C

(
P1+P2

N

)
matching the rate achieved

by a single transmitter sending with a power equal to the sum of the powers.
The explanation of the corner points closely mirrors the interpretation of

achievable rate pairs in a discrete multiple-access channel for a fixed input dis-
tribution. In the context of the Gaussian channel, decoding can be viewed as a
two-step procedure. In the initial stage, the receiver decodes the second sender,
considering the first sender as part of the noise. This decoding process is likely
to have a low probability of error if R2 < C

(
P2

P1+N

)
.

Once the second sender has been decoded successfully, it can be removed
from consideration, allowing for successful decoding of the first sender if R1 <
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C
(
P1

N

)
. Thus, this argument demonstrates that the rate pairs at the corner

points of the capacity region can be realized through single−user sender oper-
ations. This method, known as onion−peeling can be applied and extended to
any number of users. When we extend this to m senders with equal power, the
total rate becomes C

(
mP
N

)
, which tends to ∞ as m → ∞. On average, the rate

per sender, 1
mC

(
mP
N

)
, goes to 0. Consequently, with large number of senders,

that are causing lot of interference, we can still transmit a total amount of in-
formation that is arbitrarily large despite the rate per individual sender goes
to 0. The capacity region described above corresponds to code-division multiple
access, or shortly CDMA. Here we say that separate codes are used for the dif-
ferent senders and the receiver decodes them one by one. However, in numerous
real-world scenarios, simpler techniques like frequency-division multiplexing or
time-division multiplexing are commonly used.

In frequency-division multiplexing, the achievable rates are contingent on
the bandwidth assigned to each sender. Let us consider a scenario involving two
senders, with powers P1 and P2 respectively, using nonintersecting frequency
bands with bandwidths W1 and W2 where W1 + W2 = W (representing the
overall bandwidth). Utilizing the capacity formula for a single-user bandlimited
channel, we can derive the following achievable rate pair:

R1 = W1 log

(
1 +

P1

NW1

)
, (3.113)

R2 = W2 log

(
1 +

P2

NW2

)
. (3.114)

By adjusting the values of W1 and W2, we generate the curve shown in Figure
3.12. This curve touches the boundary of the capacity region at a specific
point, where the bandwidth is allocated to each channel in proportion to the
power in that channel. In the context of time-division multiple access, shortly
TDMA, time is divided into distinct slots. Within each slot, a designated user
transmits while all other users remain inactive, quiet. If there are two users,
both operating at a power level of P , the rate at which each transmits when the
other is inactive is C

(
P
N

)
. Now if time is divided into equal-length slots, and

every odd slot is assigned to user 1, while every even slot is assigned to user 2,
the average rate achieved by each user is 1

2C
(
P
N

)
. This system is called naive

time-division multiple access, shortly TDMA.
Improved performance is achievable by recognizing that user 1 transmits only

half the time. This allows user 1 to utilize twice the power during transmissions
while adhering to the same average power constraint. With this modification,
each user can transmit information at a rate of 1

2C
(
2P
N

)
. By adjusting slot

lengths for each sender and their respective instantaneous power during these
slots, we can attain the same capacity region as FDMA with different bandwidth
allocations.

As shown in Figure 3.12, the capacity region is typically larger compared
to what can be achieved through time- or frequency-division multiplexing. It’s
important to observe that the multiple-access capacity region, as derived earlier,
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Figure 3.12: Gaussian multiple-access channel capacity with FDMA and
TDMA. (taken from [3])

is achieved by use of a common decoder for all the senders. However, it is also
feasible to achieve the capacity region through "onion-peeling" a technique that
eliminates the need for a common decoder and instead, uses a sequence of single-
user codes. CDMA fully achieves the capacity region and allows new users to be
added easily without changing the codes of the current users. But on the other
hand, when we speak about TDMA and FDMA systems, they are typically
designed for a predefined number of users. It is possible that in such systems
either some slots remain unoccupied (if the actual number of users is less than
the number of slots) or some users might be excluded (if the number of users
exceeds the available slots). In numerous real-world systems, design simplicity
holds significant weight, and the improvement in capacity resulting from the
multiple-access ideas may not justify the increased complexity.

In a Gaussian multiple-access system featuring m sources with respective
powers P1, P2, . . . , Pm and ambient noise power N , we can express the equivalent
of Gauss’s law for any set S as follows:∑

i∈S

Ri = total rate of information flow from S (3.115)

≤ C

(∑
i∈S Pi

N

)
. (3.116)
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Chapter 4

Gaussian vector channels

Gaussian vector channels represent models utilized in multiple-input multiple-
output (MIMO) wireless communication setups, enabling both transmitters and
receivers to employ more than a single antenna. The use of multiple antennas
confers several advantages in a wireless multipath environment. Within this
chapter, our focus is specifically on exploring and establishing the capacity of
the Gaussian vector point-to-point channel. Subsequently, we show the capacity
region of the Gaussian vector multiple access channel. Furthermore, we estab-
lish that the sum-capacity is achieved through iterative water-filling techniques.
The rest of this chapter is dedicated to examining Gaussian vector broadcast
channel.

4.1 Gaussian vector point-to-point channel
Consider the point-to-point communication system illustrated in Figure 4.1.

The sender aims to reliably transmit a message M to the receiver over a MIMO

Figure 4.1: MIMO point-to-point communication system. (taken from [4])

communication channel.
We represent the MIMO communication channel as a Gaussian vector chan-

nel, where the output Y of the channel corresponding to the input X is

Y = GX + Z.
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In this context, Y is an r-dimensional vector, X is a t-dimensional vector, Z ∼
N(0,KZ), where KZ ≻ 0 and G is an r × t constant channel gain matrix. The
elements Gjk represent the gain of the channel from transmitter antenna k to
receiver antenna j. The channel is discrete-time, and the noise vector process
{Z(i)} is independent and identically distributed (i.i.d.) with Z(i) ∼ N(0,KZ)
for every transmission i ∈ [1 : n]. We assume an average transmission power
constraint P on each codeword xn(m) = (x(m, 1), . . . ,x(m,n)), i.e.,

n∑
i=1

xT (m, i)x(m, i) ≤ nP, m ∈ [1 : 2nR].

Before we prove following theorem, we will state few points that will be
useful later for proof.

Lemma 4.1.1 (Maximum Differential Entropy Lemma). Let X ∼ f(xn) be a
random vector with covariance matrix KX = E[(X− E(X))(X− E(X))

T
] ≻ 0.

Then
h(X) ≤ 1

2
log((2πe)n|KX|) ≤

1

2
log((2πe)n|E(XXT )|),

where E(XXT ) represents the correlation matrix of Xn. The first inequal-
ity holds with equality if and only if X is Gaussian and the second inequal-
ity holds with equality if and only if E(X) = 0. In a broader context, if
(X,Y) = (Xn, Y k) ∼ f(xn, yk) is a pair of random vectors KX|Y = E[(X −
E(X|Y))(X − E(X|Y))T ] is the covariance matrix of the error vector of the
minimum mean squared error (MMSE) estimate of X given Y , then

h(X|Y) ≤ 1

2
log((2πe)n|KX|Y|).

If (X,Y) is jointly Gaussian, then equality holds.

Theorem 4.1.1. The capacity of the Gaussian vector channel is

C = max
KX⪰0:tr(KX)≤P

1

2
log |GKXG

T + Ir|.

Proof. Let us first note that the capacity with power constraint is upper bounded
as

C ≤ sup
F (x):E(XTX)≤P

I(X;Y)

= sup
F (x):E(XTX)≤P

h(Y)− h(Z)

= max
KX⪰0:tr(KX)≤P

1

2
log |GKXGT + Ir|,

where the last step follows by the Lemma 4.1. The supremum is reached when
X is a Gaussian variable with zero mean and covariance matrix KX. With this
specific choice of X, the output Y is also Gaussian and its covariance matrix is
given by GKXGT + Ir.
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The optimal covariance matrix K∗
X can be more explicitly defined. Assume

that G has a rank d and is decomposed into singular values as G = ΦΓΨT ,
where Γ = diag(γ1, γ2, . . . , γd). Then

C = max
KX⪰0:tr(KX)≤P

1

2
log |GKXGT + Ir|

= max
KX⪰0:tr(KX)≤P

1

2
log |ΦΓΨTKXΨΓΦT + Ir|

(a)

= max
KX⪰0:tr(KX)≤P

1

2
log |ΦTΦΓΨTKXΨΓ + Id|

(b)

= max
KX⪰0:tr(KX)≤P

1

2
log |ΓΨTKXΨΓ + Id|

(c)

= max
K̃X⪰0:tr(K̃X)≤P

1

2
log |ΓK̃XΓ + Id|,

where (a) follows since |AB+I| = |BA+I| with A = ΦΓΨTKXΨΓ and B = ΦT ,
(b) follows since ΦTΦ = Id (using the definition of singular value decomposition
in Notation) and (c) follows since the maximization problem is equivalent to
that in (b) through the transformations K̃X = ΨTKXΨ and KX = ΨK̃XΨT .
Utilizing Hadamard’s inequality, the optimal K̃∗

X is represented by a diagonal
matrix diag(P1, P2, . . . , Pd), satisfying the water-filling condition, i.e.,

Pj =

[
λ− 1

γ2
i

]+
,

where λ is chosen such that
∑d

j=1 Pj = P . Through the transformation between
KX and K̃X, the optimal K∗

X is determined as K∗
X = ΨK̃∗

XΨT . Therefore, the
transmitter is advised to align its signal direction with the singular vectors of
the effective channel and allocate an appropriate amount of in each direction to
satisfy the water-filling principle over the singular values.

4.2 Gaussian vector multiple access channel
Consider the MIMO multiple access communication system illustrated in 4.2,

where each sender aims to transmit a separate message to the receiver. This
scenario operates under the assumption of a Gaussian vector multiple access
channel (GV-MAC) model:

Y = G1X1 +G2X2 + Z

where Y is an r-dimensional output vector, X1 and X2 are t-dimensional input
vectors, G1 and G2 are r × t channel gain matrices, Z ∼ N(0,KZ) is an r-
dimensional noise vector and KZ ≻ 0 is an r-dimensional noise vector. We
assume without loss of generality that KZ = Ir. Let us further assume average
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power constraint P on each of X1 and X2, i.e.,
n∑

i=1

xT
j (mj , i)xj(mj , i) ≤ nP, mj ∈

[
1 : 2nRj

]
, j = 1, 2.

Figure 4.2: MIMO multiple access communication system. (taken from [4])

Theorem 4.2.1. The capacity region of the GV-MAC is the set of rate pairs
(R1, R2) such that

R1 ≤ 1

2
log

∣∣G1K1G
T
1 + Ir

∣∣ ,
R2 ≤ 1

2
log

∣∣G2K2G
T
2 + Ir

∣∣ ,
R1 +R2 ≤ 1

2
log

∣∣G1K1G
T
1 +G2K2G

T
2 + Ir

∣∣
for some K1,K2 ⪰ 0 with tr(Kj) ≤ P, j = 1, 2.

4.3 GV-MAC with more than two senders
The capacity region of the GV-MAC can be extended to any number of senders.
Let us take a look at the model of the GV-MAC involving k senders,

Y =

k∑
j=1

GjXj + Z,

where Z ∼ N(0,KZ) is the noise vector. Given an average power constraint P
on each Xj , it can be shown that the capacity region is the set of rate tuples
(R1, . . . , Rk) where

∑
j∈J

Rj ≤
1

2
log

∣∣∣∣∣∣
∑
j∈J

GjKjG
T
j + Ir

∣∣∣∣∣∣ , J ⊆ [1 : k] ,

for some K1, . . . ,Kk ⪰ 0 with tr(Kj) ≤ P, j ∈ [1 : k].
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4.4 Gaussian vector broadcast channel
Examining the MIMO broadcast communication system illustrated in Figure
4.3, the sender aims to transmit a common message M0 to the two receivers
and a private message Mj to receiver j = 1, 2. The channel is modeled by a
Gaussian vector broadcast channel (GV-BC)

Y1 = G1X + Z1,

Y2 = G2X + Z2,

where G1, G2 are r × t channel gain matrices and Z1 ∼ N(0, Ir) and Z2 ∼
N(0, Ir). Suppose the average transmission power constraint is given by:

n∑
i=1

xT (m0,m1,m2, i)x(m0,m1,m2, i) ≤ nP

for (m0,m1,m2) ∈ [1 : 2nR0 ]× [1 : 2nR1 ]× [1 : 2nR2 ].
Unlike the scalar Gaussian BC, it is important to note that the Gaussian

vector BC is not generally degraded, and the capacity region is only known in
special cases.

• If t = r and G1 and G2 are diagonal, then the channel is a product of
Gaussian BCs and the capacity region is known.

• If M0 = ∅, then the (private-message) capacity region is known.

• If M1 = ∅ (or M2 = ∅), then the (degraded message sets) capacity region
is known.

Figure 4.3: MIMO broadcast communication system. (taken from [4])
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Chapter 5

Wireless fading channels

As the channel gain information is typically available at each receiver (obtained
through training sequences) and potentially available at each sender (via feed-
back from receivers), wireless fading channels can be characterized as channels
with a random state. In this context, the state refers to the channel gain infor-
mation, which is available at the decoders and either fully or partially available
at the encoders. The definition of capacity for wireless fading channels depends
on factors such as the fading model and coding delay, and it may or may not
be well-defined. Furthermore, even when capacity is well-defined, it may not
serve as an accurate performance measure in practical scenarios. This can be
attributed to its overly pessimistic nature or the necessity for extensive coding
delays to achieve it.

We present various coding strategies considering both fast and slow fading
assumptions when the channel gain is available only at the decoder and when the
channel gain is available both at the encoder and the decoder, compound channel
coding, outage capacity approach, broadcast channel approach, adaptive coding
and adaptive coding with power control.

5.1 Gaussian fading model
Let us consider the Gaussian fading channel

Yi = GiXi + Zi, i ∈ [1 : n] ,

where Gi represents a channel gain process simulating fading in wireless com-
munication, while Zi denotes a WGN(1) process that is independent of Gi.

In practical scenarios, the channel gain typically exhibits variations over a
significantly longer time scale than the symbol transmission time. This moti-
vates the simplified block fading model illustrated in Figure 5.1. In this model,
the gain Gi is presumed to remain constant within each coherence time inter-
val [(l − 1)k + 1 : lk] of length k, where l = 1, 2, . . . . The block gain process

43



{Ḡl}∞l=1 = {Glk}∞l=1 is considered stationary ergodic. Under this model, we
explore two coding paradigms.

Figure 5.1: Wireless channel fading process and its block fading model. (taken
from [4])

In the context of fast fading, the code block length extends across numerous
coherence time intervals, rendering the channel ergodic with a clearly defined
Shannon capacity, often denoted as the ergodic capacity. Nevertheless, cod-
ing over a substantial number of coherence time intervals introduces significant
delays.

In the context of slow fading, the code block length aligns with the co-
herence time interval, resulting in a non-ergodic channel without Shannon ca-
pacity in general. We explore alternative coding approaches and associated
performance metrics for this case.

In the upcoming two sections, we explore coding under fast and slow fading
with channel gain availability only at the decoder or at both the encoder and
the decoder. In cases where the channel gain is available only at the decoder, we
assume an average power constraint P on X, denoted as

∑n
i=1 x

2
i (m) ≤ nP,m ∈

[1 : 2nR]. On the other hand, when the channel gain is available at both the
encoder and the decoder, we assume an expected average power constraint P
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on X, represented as

n∑
i=1

E(x2
i (m,Gi)) ≤ nP, m ∈ [1 : 2nR].

5.2 Coding under fast fading
In fast fading scenarios, we code over many coherence time intervals, i.e. n ≫ k.
In this context, the block gain process {Ḡl} is stationary ergodic, for instance,
it could be an i.i.d. process.
When the channel gain is available only at the decoder, we show that the
ergodic capacity for this case is

CGI−D = EG[C(G2P )]

For a DMC with stationary ergodic state p(y|x, s), the capacity when the state
information is available at the decoder is

CSI−D = max
p(x)

I(X;Y |S).

This outcome can be easily generalized to the Gaussian fading channel with
a stationary ergodic block gain process {Ḡl}, characterized by the marginal
distribution FG(gl) and adhering to a power constraint P , to obtain the channel
capacity.

CSI−D(P ) = sup
F (x):E(X2)≤P

I(X;Y |G)

= sup
F (x):E(X2)≤P

(h(Y |G)− h(Y |G,X))

= sup
F (x):E(X2)≤P

h(GX + Z|G)− h(Z)

= EG[C(G2P )],

where the supremum is attained by X ∼ N(0, P ). In the context of fast fading,
the Gaussian fading channel can be decomposed in time into k parallel Gaussian
fading channels. The first channel corresponds to transmission times 1, k +
1, 2k+1, . . . , while the second channel corresponds to transmission times 2, k+
2, . . . , and so on. All these channels share the same stationary ergodic channel
gain process and average power constraint P . As a result, CGI−D ≥ CSI−D(P ).
The converse of this statement can be easily proven using standard arguments.
When the channel gain is available both at the encoder and the decoder,
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the ergodic capacity under these conditions is given by:

CGI−ED = max
F (x|g):E(X2)≤P

I(X;Y |G)

= max
F (x|g):E(X2)≤P

(h(Y |G)− h(Y |G,X))

= max
F (x|g):E(X2)≤P

h(GX + Z|G)− h(Z)

(a)

= max
ϕ(g):E(ϕ(G))≤P

EG[C(G2ϕ(G))],

where F (x|g) represents the conditional cdf of X given {G = g}, and the expres-
sion (a) holds because the maximum is attained by X|{G = g} ∼ N(0, ϕ(g)).

5.3 Coding under slow fading
In the scenario of slow fading, we code over a single coherence time interval
(i.e., n = k), and notion of channel capacity is not universally well-defined.
As previously, we explore cases where the channel gain is available only at the
decoder and scenarios where it is available at both the encoder and the decoder.

5.3.1 Channel gain available only at the decoder
In scenarios where the encoder does not know the gain, various coding options
are available.

In the compound channel approach, we code against the worst channel to
guarantee reliable communication. The (Shannon) capacity under this coding
approach, following a straightforward extension of the capacity of the compound
channel to the Gaussian case, can be expressed as:

CCC = inf
g∈G

C(g2P ).

When fading results in extremely low channel gain, the compound channel ap-
proach, while effective, becomes less feasible. Therefore, we consider alternative
coding approaches that are more practical in such situations.

Outage capacity approach: In this strategy, we transmit at a rate higher
than the compound channel capacity (CCC) and accept some information loss
when the channel gain falls too low for message recovery. If the probability of
such an outage event is low, we can achieve reliable communication most of the
time. To be specific, if we can tolerate an outage probability pout, representing
an average loss of a fraction pout of messages, then we can communicate at any
rate below the outage capacity

Cout = max
g:P{G≤g}≤pout

C(g2P ).
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Broadcast channel approach: For simplicity, let us consider two fading states
g1 and g2 with g1 > g2. We view the channel as a Gaussian Broadcast Channel
(BC) with gains g1 and g2, using superposition coding to transmit a common
message to both receivers at a rate R̃0 < C(g22ᾱP/(1+αg22P )), where α ∈ [0, 1],
and a private message to the stronger receiver at a rate R̃1 < C(g21αP ). If the
gain is g2, the receiver of the fading channel can recover the common message
at a rate R2 = R̃0, and if the gain is g1, it can recover both messages at a total
rate R1 = R̃0 + R̃1. Assuming P{G = g1} = p and P{G = g2} = p̄ we can
calculate the broadcast capacity as:

CBC = max
α∈[0,1]

(
pC(g21αP ) + C

(
g22ᾱP

1 + αg22P

))
.

This strategy is most effective when transmitting multimedia content (such as
video or music) over a fading channel, using successive refinement. When the
channel gain is low, the receiver retrieves only the low-fidelity representation of
the source. Conversely, when the gain is high, it can recover the refinement,
obtaining the high-fidelity description as well.

5.3.2 Channel gain available at both the encoder and the
decoder

Compound channel approach: In cases where the channel gain is available at
the encoder, the compound channel capacity, denoted as CCC−E , is determined
by

CCC−E = inf
g∈G

C(g2P ) = CCC .

Consequently, the capacity remains unchanged compared to scenarios where the
encoder does not know of the state.

Adaptive coding: Rather than communicating at the capacity of the channel
with the worst gain, we adjust the transmission rate according to the channel
gain. We communicate at the maximum rate Cg = C(g2P ) when the gain is g.
The adaptive capacity is defined as:

CA = EG[C(G2P )].

It’s important to note that this is identical to the ergodic capacity when the
channel gain is available only at the decoder. However, the adaptive capacity is
convenient performance metric and does not represent a capacity in the Shan-
non sense.

Adaptive coding with power control: As the encoder possesses knowl-
edge of the channel gain, it can adapt both the power and transmission rate. In
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this scenario, we define the power-control adaptive capacity as

CPA = max
ϕ(g):EG(ϕ(G)))≤P

EG[C(G2ϕ(G))],

where the maximum is achieved through water-filling power allocation adhering
to the constraint EG(ϕ(G)) ≤ P . It is worth noting that the power-control
adaptive capacity is equivalent to the ergodic capacity when the channel gain
is available at both the encoder and the decoder. Once again, CPA does not
represent a capacity in the Shannon sense.

Let us compare the performance of the above coding schemes in the following
example. Consider two fading states, g1 and g2, with g1 > g2, and P{G = g1} =
p. In Figure 5.2, we evaluate the performance metrics CCC , Cout, CBC , CA and
CPA for various values of p ∈ [0, 1]. The broadcast channel approach is effective
when the better channel occurs more often (p ≈ 1), while power control is
particularly effective when the channel varies frequently (p ≈ 1

2 ).

Figure 5.2: Comparison of performance metrics. (taken from [4])
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Chapter 6

Conclusion

We analyzed multiple-access channel, properties and illustrations of several
different examples. It has been established the achievability of the rate region
and later on we reconfigured the capacity region of the multiple access chan-
nel so that we are able to incorporate the process of forming the convex hull.
That brought us introducing new random variable Q. After the achievabil-
ity of the capacity region has been proved, converse has been proved as well.
It has been proved that every point within the region specified by equation
R1 +R2 ≤ I(X1, X2;Y |Q) is achievable and in the converse and it has been es-
tablished that the region outlined in the same equation represents the optimal
achievable performance. We concluded that the region defined in the following
way R1 + R2 < I(X1, X2;Y ) for the multiple-access channel cannot be larger
than the region defined as R1 + R2 ≤ I(X1, X2;Y |Q), so this is the capac-
ity region of the multiple-access channel. After that, it has been shown what
Gaussian multiple-access channel is and explained what CDMA, TDMA and
FDMA systems are and which role they have. We talked about Gaussian vector
point-to-point channel and capacity of the Gaussian vector channel. Gaussian
vector multiple access channel has been mentioned, where each sender aims to
transmit a separate message to the receiver, model of the GV-MAC involving
k senders and at the end we introduced Gaussian vector broadcast channel. At
the end, in the last chapter, we analyzed Gaussian fading model in the context
of fast fading and coding under slow fading, where it has been explained what
is happening in the case when the channel gain available only at the decoder
and the channel gain available both at the encoder and the decoder.
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