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"The first rule of an investment is don’t lose (money). And the second rule of an investment is 

don’t  forget the first rule. And that's all the rules there are." 

Warren Buffett 

Chapter 1  

 

Introduction 
 

In 1956, a pair of Bell Labs scientists brought to light the scientific recipe for achieving wealth. 

One of them was Claude Shannon, often regarded as the Einstein of the digital era, MIT 

professor and inventor of information theory. The second scientist was John L. Kelly Jr., best 

known as the creator of The Kelly criterion. Together, they applied the science of information 

theory to the problem of the wealth maximization in the long run. Afterwards, Shannon and 

scientist Edward O. Thorp, besides co-creating the first wearable computer, they applied the 

"Kelly formula" in Las Vegas, and it proved to be effective. They did not just formulate 

theoretical concepts, but also tested them in a real life situation, earning money along the way. 

Inspired by their experiences in casino, it had led them to believe that there are some other 

spheres where potential financial gains can be realized in a similar manner, and the stock market 

was a logical and natural progression. The mathematics used in casino is surprisingly similar to 

the mathematics used on Wall Street. With a good risk and goal assessment, if used in a right 

way, it can give nice and successful results. Also, it is not exclusive to gambling and Stock 

Markets, it has a wide range of applications in various fields. 

This study will explore fascinating connections between seemingly unrelated topics such as 

gambling, information theory, stock investing, portfolio theory and applied mathematics. 

The thesis is organized into 7 chapters, where the first chapter is the introduction and the last is 

the conclusion. Chapter 2 introduces us to the basics concepts and properties of information 

theory and betting. The third chapter will provide us with application of utility function 

regarding wealth maximization and defining and applying Kelly criterion in order to determine 

the optimal portion of capital for investment. A couple of different cases will be shown. In the 

fourth chapter we face more serious tasks, considering the application of information theory 

concepts to horse racing betting, which are more sophisticated and require more conditions that 

must be taken into account. We deal with crucial concepts of information theory such as relative 

and conditional entropy and mutual information. Chapter 5 brings us to dynamic field of 

portfolio theory that offers a comprehensive framework for optimizing investment strategies. We 

will explore basic and key concepts such as modern portfolio theory which will yield us to 
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demonstrate models that use entropy as a good substitute to traditional models. Practical 

application and achievements on real data will be addressed. In the final chapter we draw 

attention to generalization of Shannon’s entropy, named Rényi Entropy. We delve into 

innovative ways in which Rényi entropy can be integrated into portfolio analysis, offering a new 

perspective on risk assessment and diversification. Through empirical examples and practical 

insights, we illustrate benefits of incorporating Rényi entropy into this field.  

Generally, the thesis highlights the potential for improving traditional investment and gambling 

strategies through the lens of information theory. 
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Chapter 2  

 

Overview of the basic concepts 

2.1 Overview of basic concepts from information theory 
 

This section relies mostly on [7].  

First, let us explain the term information theory itself, also known as the mathematical theory of 

communication (Shannon, 1948). It is easy to conclude that without communication there is no 

information either. The essential problem of communication is to ensure that a message from one 

point can be either exactly or approximately reproduced at another point. Practically, when one 

person sends a message, person who receives it needs to understand it as sender intended.  

Information theory does not have a single definition, but it can be explained as mathematical 

representation of the concepts, parameters and conditions affecting the transmission of messages 

through communication systems.  The techniques used in information theory are described using 

probability theory, therefore, prior knowledge of that field is assumed. 

We are interested in quantifying how much information a message is carrying. The answer will 

give a central notion of information theory – Entropy.  

o Entropy - a concept that has countless definitions. It was first mentioned in the field of 

thermodynamics in the 19th century. Many define it as a measure of disorder in a system.  

However, in terms of information theory, we will start with a quite intuitive definition. Entropy 

attempts to measure the amount of information contained and conveyed within a probability 

distribution. Events with low probability are more surprising, hence, carry more information than 

those that are frequent. We can think of the amount of information as a surprisal of some event, 

for example E. Therefore, 𝐼(𝐸) = log
1

𝑃(𝐸)
= −log𝑃(𝐸). If probability that event will happen is 

1, i.e. it will surely happen, 𝐼(1) = 0, and conversely 𝐼(0) = +∞. Intuitively we see that an 

unlikely event carries much more information. According to that, we can define entropy as 

expected or average amount of information (surprising). A formal definition follows.  

Definition 1: The entropy 𝐻(𝑋) can be calculated for a discrete random variable 𝑋 as follows: 

𝑯(𝑿) = −∑𝒑(𝒙) 𝐥𝐨𝐠 𝒑(𝒙)

𝒙∈𝑿

 
2.1 
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Note:  Logarithm function uses base 2 and the units are bits. Henceforth it will be assumed that 

the logarithm is base 2 unless otherwise stated.  

Also, entropy is measure of uncertainty. The lowest entropy is obtained when event is certain, 

with probability 1. Conversely, the largest entropy will be if all events are equally likely. In order 

to represent it graphically, we will introduce a special case of a discrete probability distribution, 

and also the simplest case of a random variable - the Bernoulli distribution. Bernoulli random 

variable can take only two possible outcomes, 1 for success and 0 for failure, where probability 

of success is 𝑝 and probability of failure is 1 − 𝑝 = 𝑞. Because of its nature, it forms the basis 

for understanding entropy. Formal definition follows. 

Definition 2: The entropy of a Bernoulli random variable is defined as follows: 

𝐻(𝑝) = −𝑝 log𝑝 − 𝑞 log𝑞 
 

2.2 

  

The entropy reaches maximum for 𝑝 = 𝑞 =
1

2
. It can be clearly seen in Figure 1.  

 

Figure 1 - Entropy of a Bernoulli random variable 

 

In case of a continuous distribution, the so-called differential entropy is defined as follows.  
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Definition 3 (Continuous Entropy): If X is a continuous random variable and 𝑝(𝑥) is its 

probability density function (pdf), entropy is calculated as: 

 

𝐻(𝑋) = ∫ 𝑝(𝑥) log
1

𝑝(𝑥)
𝑑𝑥 =  −∫𝑝(𝑥) log𝑝(𝑥) 𝑑𝑥

𝑋𝑋

 

 
 

 
2.3 

  

o Joint and conditional entropy 

The joint entropy of a pair of random variables (𝑋, 𝑌) is defined as: 

𝐻(𝑋, 𝑌) = −∑∑𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦) = −𝐸 log𝑝(𝑋, 𝑌)

𝑦∈𝑌𝑥∈𝑋

 

 

2.4 

  

 Intuitively, conditional entropy quantifies uncertainty about 𝑋 when 𝑌 is known, i.e. we use 

knowledge about 𝑌 to update our knowledge of 𝑋. 

Mathematically, it is presented as: 

𝐻(𝑋|𝑌) = −∑∑𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑦)
= −𝐸 log𝑝(𝑋|𝑌)

𝑦∈𝑌𝑥∈𝑋

 
 

2.5 

  

where 𝑋 and 𝑌 are random variables, 𝑝(𝑥, 𝑦) joint probability, 𝑝(𝑥), 𝑝(𝑦) marginal probabilities. 

o Informational diagram 

The connection between joint, conditional and marginal entropy is presented by chain rule.  

Chain rule is defined as follows: 

𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌|𝑋) 
 

2.6 

  

Graphically, it is graphically presented by so-called informational diagram as we can see in 

Figure 2. 

Another concept is introduced here, and that is mutual information 𝐼(𝑋; 𝑌). We can calculate it 

in different ways, depending on the given data. One way is for example: 

𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐼(𝑋; 𝑌) 
 

2.7 
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Figure 2 - Venn diagram of the relationships between information measures 

 

o Relative entropy  

Definition 4:  The relative entropy is defined as follows: 

𝐷(𝑝||𝑞) =∑𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑥∈Χ

 

 

 
2.8 

  

The relative entropy answers the question how different two probability distributions are, i.e. 

measure of distance between two probabilities. 

The following properties of relative entropy hold: 

𝐷(𝑝||𝑞) ≥ 0 2.9 

  

 𝐷(𝑝||𝑞) = 0  iff  𝑝 = 𝑞 2.10 
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o Law of large numbers (Asymptotic equipartition property) 

In terms of information theory, the law of large numbers states that observed frequencies of 

events converge to their true probability as sample size grows. Additionally, patterns in the data 

can be better used, leading to more efficient compression.  

Formal statement: Let  𝑋1, 𝑋2, … , 𝑋𝑛  be a sequence of independent and identically distributed 

random variables with mean 𝐸[𝑋𝑖] = 𝜇. The sample mean of the first n observations is defined 

as: 

𝑋𝑛̅̅̅̅ =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

 

 
2.11 

  

Then, the weak law of large numbers states: 

Theorem 1: For any 𝜖 > 0 ∶   lim
𝑛→∞

𝑃(|𝑋𝑛̅̅̅̅ − 𝜇| ≥ 𝜖) = 0.  

Many proofs of theorems are based on the use of this concept. 

The law of large numbers has an impact on expected values and our understanding of the long-

term behavior of random events, which in our case are related to gambling. In short, it suggests 

that over a large number of trials, observed outcomes are likely to approach theoretical 

probabilities and expected values. 

Now, we transition to a slightly broader and more general description of entropy. 

o Stochastic process and entropy rate 

A stochastic process is an indexed sequence of random variables. In other words, it quantifies 

randomness in time in the context of evaluation or change. Family of such random variables for a 

stochastic process and can be denoted by {𝑋𝑡}, where 𝑡 represents time.   

Stochastic process is a Markov process if: 

𝑃(𝑋𝑡+1 = 𝑥𝑛+1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑡 = 𝑥𝑛) = 𝑃(𝑋𝑡+1 = 𝑥𝑛+1|𝑋𝑡 = 𝑥𝑛) 
 

2.12 

  

Formula 2.3 tells us that prediction of the future requires only knowledge of the present, i.e., 

nothing that happened in the past is relevant for the probability what will happen in the future. 

Only what matters is present state. 

One of the classes of stochastic processes is stationary process. It is a process where the 

distributions are invariant under time translations, so we can translate all of them with arbitrary 

shift a, nothing will happen with distribution function. If stochastic process is denoted by 𝑋𝑡: 
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𝑃(𝑋𝑡1 , … , 𝑋𝑡𝑛) = 𝑃(𝑋𝑡1+𝑎 , 𝑋𝑡2+𝑎 , … , 𝑋𝑡𝑛+𝑎) 

Now we are wondering what is the entropy of that random process. If we have 𝑛 random 

variables, we want to know how does the entropy of sequence grow with 𝑛. Answer will 

give us the definition of entropy rate. 
 

2.13 

  

Definition 5:   The entropy rate 𝐻(𝜒) of a stochastic process {𝑋𝑖} is defined as follows: 

𝐻(𝜒) = lim
𝑛→∞

𝐻(𝑋1, … , 𝑋𝑛)

𝑛
 

 

 
2.14 

  

when the limits exist.  

Now we will define related quantity for entropy rate: 

𝐻′(χ) = lim
𝑛→∞

𝐻(𝑋𝑛|𝑋1, … , 𝑋𝑛−1) 

 

2.13 

  

From this definition, we can observe the amount of randomness that 𝑋𝑛 gives, given the past 

observations. Dependence between random variables reduces total amount of uncertainty. 

For a stationary stochastic process holds: 

𝐻(χ) = 𝐻’(χ) 
 

2.14 

  

o Channel capacity 

Shannon developed the idea of reliable information transmission, introducing the channel 

capacity concept. It is the upper limit, below which communication rates could be approached 

with low probability of error. 

Detailed information can be found in Shannon’s work [27] and we will deal with those notions in 

further work on practical examples.  

 

2.2 Basic concepts in betting  
 

There is variety of relationships of information theory to other fields, especially in economics 

(investments) and it has wide spectrum of application.  

Gambling is mostly math-driven, although the majority of people enjoys gambling but dislikes 

math. Whether it is sports betting, horse race betting, poker, blackjack, roulette or stock market, 
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there is always a mathematical background which plays significant role in understanding and 

optimizing a problem.  

In the following, the basic notions that will be used in paper will be explained. 

First, let us define what exactly a bet is. Two people place bets on whether or not a specific event 

will occur under specific circumstances. The wager may be ‘even money’, although generally 

speaking, ‘odds’ may be stated.  

o Even money bet 

‘Even money’ denotes a type of bet where, if you win, a payout will be equivalent to the original 

bet, i.e. the invested amount will be doubled. The reason why even-money bets are appealing is 

due to their simple nature and 50-50 chance of winning. An example of this type of bet is 

roulette and choosing to bet on red or black. We can think of these bets as fair due to their 1:1 

payout ratio, where initial and winning amount is same. 

o Odds  

Bets are determined by their odds. They are used to express the probability of an outcome 

occurring. In other words, it is ratio of probabilities that an outcome will or will not happen. For 

instance, blackjack has the best odds for players, if they know how to play.  

o Fair odds 

Mathematically speaking, a bet is considered to be fair if all outcomes are equally likely, or when  

you play the same game multiple times, on the long run, your total gain is zero. It can be simply 

proved to be true if we observe tossing a coin. Probability of getting head is the same as getting 

tail. If we continue to toss for a large number of times, we expect to see roughly the same 

number of tails and heads. 

Suppose that coin used in the game is not perfectly balanced and that chances are not 50:50 but, 

for example, 60:40 for heads, how much would you bet now? 

What is, from scientific perspective, the optimal amount of money you should bet with this level 

of advantage? The solution to this problem was proposed by John Larry Kelly, an American 

physicist. 

o Edge  

Everyone places a bet because they believe they are in a better position than the others. For 

example, they are more knowledgeable, have access to secret technology, or possess private 

information. Therefore, that kind of a gambler who has additional information and bet on 

something that has a higher probability than the prescribed odds, has an edge.    
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o Bookmakers  

The odds are determined by bookmakers, by adjusting them in their favor. Typically, bookies 

serve as market makers and benefit from the event regardless of the outcome due to the various 

positions that you can bet on the same event.  
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Chapter 3  

 

Information-theoretic gambling strategies and the 

Kelly criterion 
 

For gamblers, the main goal is to make a profit by betting. In mathematical terms, to find bets 

with positive expectations, i.e. that at the end of the game, the outcome is positive. Also an 

important task for gamblers is to dispose of money in the right way, and to decide how much to 

bet.  

This has been of interest since the eighteenth century when the St. Petersburg Paradox was 

introduced by Daniel Bernoulli and led to a reevaluation of the financial decisions that were 

formerly thought to be wise. Fresh perspectives on money, business, and the daily choices we 

make have been opened up by this paradox. More about St. Petersburg paradox in: [2]. Since 

then, different approaches to the valuation of money have been encountered, but we will focus 

on application of utility function. In the case of wealth, utility function increases as the wealth 

increases. 

We would think of relationship between money and utility as linear, but actually it is not. Utility 

can be seen as happiness and if you have zero dollars and someone gives you 100$, you will be 

happier than if you have million dollars and someone gives you 100$. The more money you have 

the less that extra little bit of money is going to count. As we can see in Figure 3, it slowly 

flattens out. The initial spike and leveling off is typically represented by a log function. Another 

example of utility function is exponential function (𝑈(𝑥) = 𝑥𝑏, 0 ≤ 𝑏 ≤ ∞). 
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Figure 3 - Utility and logarithmic functions 

 

This was an introduction to the Kelly's criterion, since it is frequently explained through the use 

of logarithmic function. It is suggested that assuming long-term goals, the logarithmic utility 

function is the only reasonable choice for a utility function. What we will do is actually 

maximization of logarithmic utility function, or maximization of the expected value of the 

logarithm of the random variable. In our case, random variable will be capital at the disposal of 

the gambler. 

 

3.1 Kelly criterion  
 

Let us look at some realistic and some a little less realistic situations that examine the 

fundamental characteristics of a communication system. The chosen scenario involves a situation 

in which a gambler leverages information about the received symbols from a communication 

channel to place advantageous wagers on the transmitted symbols. 

Imagine a communication channel used to share the results of an unpredictable event before it 

becomes widely known. That gives the gambler an advantage as he can still gamble at the 

original odds. As we said earlier, the key factor that determines the amount of money a gambler 

could profit from is the size of his bet. Given this advantage of knowing the game results, the 

question arises:  How much should the gambler bet to maximize his profit, or what is the 

maximum he can bet without going bankrupt?  
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The scenario essentially discusses an event in which an individual can profitably place bets if 

they have advance knowledge of game results that is communicated through a trustworthy 

channel. Finding the right amount to gamble for optimum profit is the difficult part. 

The solution to this problem was suggested by John Larry Kelly [12]. He discovered that in order 

to make the most of the information that gives you an advantage, you need to bet a portion of 

your money according to a certain formula. There are more approaches depending on the level of 

advantage the gambler has.  

First, we will consider the case when the gambler has a private wire. 

 

3.1.1 The gambler who possesses private information 

3.1.1.1 Noiseless binary channel 

 

Let us start by investigating a case where we have noiseless binary channel. An example where 

this kind of channel might be used is to transmit baseball game results between teams that are 

evenly matched.  In such a scenario, the gambler would wager the maximum amount possible, as 

they are confident in doubling their money due to the reliable, noiseless nature of the channel. 

Therefore, the gambler's money would multiply rapidly, reaching 2𝑛 times the initial amount 

after 𝑛 bets, showcasing exponential growth of his capital, i.e. 

𝐶𝑛 =  2
𝑛𝐶0, 

 

3.1 

  

where: 

𝐶0 – Initial capital 

𝐶𝑛  - The capital after n trials (bets) 

For consistency, this convention will be applied throughout the whole work. 

The situation described above is far from realistic, and is only possible in extreme situations that 

are mostly illegal, but it is easiest to present as a starting point. 

 

3.1.1.2 Noisy binary channel 

 

The more common situation is the gambler who has a noisy channel. In this scenario, the 

outcome is conveyed accurately through the channel with a probability 𝑝, and inaccurately with a 
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probability 𝑞. And again, the gambler retains the option to wager his entire capital. But, due to 

the nature of the noisy channel, if he continues to wager with entire capital each time without a 

fixed limit, the probability that he loses everything tends to 1.  

Optimal strategy implies that for such conditions it is wiser to bet only a fraction 𝑓 of the initial 

capital. The bets are made with even odds, starting with an initial wealth 𝐶𝑜. The wealth after 𝑛 

trials, utilizing a betting fraction f of the initial capital (expressed in %), is expressed as follows: 

𝐶𝑛 = 𝐶0(1 + 𝑓)
𝐴(1 − 𝑓)𝐵 

 

3.2 

  

where A is number of wins (Achievements), and B number of losses (Breakdowns) in 𝑛 bets. 

We are interested in understanding how the gambler's capital grows over time. If the capital is 

growing exponentially, it means it is increasing at a certain percentage rate with each bet. 

Definition 6:  The exponential rate of growth of a gambler’s capital, denoted by  

𝐺𝑟 = lim
𝑛→∞

1

𝑛
log(

𝐶𝑛
𝐶0
) 

 

 
3.3 

  

represents the average compounded growth per bet as the number of bets approaches infinity. 

Formula Breakdown: 

 Practically, this is ratio which represents how much the gambler's capital has changed 

over all the bets, i.e. the final amount compared to the initial amount 

 Limit is used because we want to see what happens to the average growth rate as we 

consider more and more bets. We want to see how the growth behaves in the long run 

 The formula uses the logarithm to express the average growth rate in a more interpretable 

manner, capturing the long-term trend in the capital growth over an infinite number of 

trials 

The exponential rate of growth can be restated according to 3.2 and 3.3 

𝐺𝑟𝑛(𝑓) =
1

𝑛
log (

𝐶𝑛
𝐶0
) =  

1

𝑛
log [(1 + 𝑓)𝐴(1 − 𝑓)𝐵]  =  

𝐴

𝑛
log(1 + 𝑓) +

𝐵

𝑛
log(1 − 𝑓)   

 
3.4 

  

To optimize the gambler's capital after 𝑁 bets, it is imperative to maximize growth rate, but 

instead of maximizing 𝐺𝑟, we will actually maximize the expected value of 𝐺𝑟, denoted by 𝑔𝑟 

𝑔𝑟(𝑓) = 𝐸(𝐺𝑟𝑛(𝑓)) = 𝑝 log(1 + 𝑓) + 𝑞 log(1 − 𝑓), 
 

3.5  
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using the fact 𝐸(𝐴) = 𝑛𝑝 is expected value of success in 𝑛 trials with success probability 𝑝, and 

𝐸(𝐵) = 𝑛𝑞 is expected value of failure in 𝑛 trials with failure probability 𝑞.  

In probability theory, an expected value tells us what outcomes to expect in the long run, using 

the probability of each outcome.   

We now turn to the maximization process and firstly, calculate the first derivative of 𝑔𝑟 which 

will indicate a potential maximal value. For the sake of simplicity, the natural logarithm will be 

used. 

𝑔𝑟′(𝑓) =
𝑝

1 + 𝑓
−

𝑞

1 − 𝑓
=
𝑝(1 − 𝑓) − 𝑞(1 + 𝑓)

(1 + 𝑓)(1 − 𝑓)
=
𝑝 − 𝑝𝑓 − 𝑞 − 𝑞𝑓

(1 + 𝑓)(1 − 𝑓)

=
𝑝 − 𝑞 − 𝑓(𝑝 + 𝑞)

(1 + 𝑓)(1 − 𝑓)
  =

𝑝 − 𝑞 − 𝑓

(1 + 𝑓)(1 − 𝑓)
 

 

 
3.6 

  

where 𝑔𝑟′(𝑓) = 0 when  𝑓 = 𝑓∗ = 𝑝 − 𝑞, and  𝑝 ≥ 𝑞 > 0. Then, the second derivative 

𝑔𝑟"(𝑓) = (
𝑝

1 + 𝑓
−

𝑞

1 − 𝑓
)
′

= −(
𝑝

(1 + 𝑓)2
) − (

𝑞

(1 − 𝑓)2
) < 0 

 

 
3.7 

  

Concavity of function 𝑔𝑟(𝑓) implies that there is a unique maximum at 𝑓∗, where 

 𝑔𝑟(𝑓∗) = 𝑝 log(1 + 𝑝 − 𝑞) + 𝑞 log(1 − 𝑝 + 𝑞) = ⋯ = 𝑝 log𝑝 + 𝑞 log𝑞 + log2 > 0 
 

3.8 

  

𝑔𝑟(𝑓∗) = 𝑝 log𝑝 + 𝑞 log𝑞 + 1 = 1 − 𝐻(𝑝), 
 

3.9 

  

where 𝐻(𝑝) is defined by formula 2.2.  

There are many advantages of maximizing 𝑔𝑟, but the one that will be formally defined in a 

simple way is one which indicates the efficacy of utilizing the Kelly method of maximization 

expected value of capital by  choosing  𝑓∗on each trial. 

Proposition 1:  For a binomial random variables, where probability of success is 𝑝, and 

probability of failure is 𝑞, expected value of the final capital is maximized by fixed fraction 𝑓∗, 

where 𝑓∗ = 𝑝 − 𝑞 . 

We will present this with a practical example in order to plastically explain the story so far. We 

can look at this scenario through the example of tossing a coin with biased distribution. 

Example 1: Imagine a coin toss game with a biased coin, where the payoff is even money, 

player A enters the game with an initial capital 𝐶0 that we assume to be infinitely divisible, and 
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the probability that player A wins is 𝑝 = 0.6. In order to find the optimal fraction on which to 

invest so that the desired outcome in the end would be as large as possible and grow as fast as 

possible, applying Proposition 1, 𝑓∗ = 0.6 − 0.4 = 0.2. That means player will bet with 20% of 

current wealth on each play.  

Under those conditions, as we can see in Figure 3, the growth rate in 𝑓∗(= 0.2) will be 0.03. 

That means after n bets, his wealth will tend to 20.03×𝑛  times his initial capital.  

 

Figure 4 - Logarithm of the wealth growth rate depending on fraction with fixed winning probability 

 

If we want to know how long will it take for the investment to double, we will set the growth rate 

to be equal to log2, i.e. we will solving equation 0.02n = log2, which will give us estimation of 

time (n), 𝑛 =
log 2

0.02
≈ 35. 

Moreover, as it can be seen in Figure 3, expected growth rate cannot be negative for all 𝑓 ≥ 0 

and 𝑓 ≤ 𝑓∗, but for 𝑓 > 𝑓∗, it becomes negative. It occurs when the probability of winning is 

overestimated. 

Note: Everything was done with the assumption that capital is infinitely divisible, which is not 

applicable in the real world. 
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3.1.1.3 Uneven payoff games   

 

The concept of uneven payoff games means the odds may not accurately reflect the true 

probabilities. Therefore, the narrative could be extended and it can be assumed the odds in favor 

of winning is 𝑎: 1. The game is favorable if 𝑝𝑎 − 𝑞 > 0. So formula  

 

𝑔𝑟(𝑓) = 𝐸(𝐺𝑟𝑛(𝑓)) = 𝑝 log(1 + 𝑓) + 𝑞 log(1 − 𝑓) 
 

 
3.10 

  

 is changed to 

𝑔𝑟(𝑓, 𝑎) = 𝐸(𝐺𝑟𝑛(𝑓, 𝑎)) = 𝑝 log(1 + 𝑎𝑓) + 𝑞 log(1 − 𝑓) 
 

3.11 

  

 With a simple calculation of maximization process, optimal fraction 𝑓∗is calculated 

𝑓∗ =
𝑎𝑝 − 𝑞

𝑎
 

 

3.12 

  

Until now we focused on analyzing binary cases. Now, we will broaden the scope to more 

complicated situation, particularly those involving non binary outcomes, such as horse races. It 

will enable us to investigate the details that lead to a more comprehensive understanding of the 

dynamics of gambling and information theory.  
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Chapter 4  

 

Wealth formula for horse race 
 

Now that we have familiarized ourselves with betting strategies and goals using simple 

examples, we will move on to a slightly more sophisticated game of chance, with rich history 

and cultural tradition, and which requires certain skills. It is game of chance regarding its 

essential uncertainty. There are numerous unpredictable factors, some factors are related to 

horses, but some also concern weather conditions, and other unpredictable events that can affect 

the result and performance of game. It is considered attractive due to its availableness for 

serious, but also for casual gamblers. Experienced bettors like to analyze different factors (such 

as recent performance, historical information, etc.) and to use it to make better decisions which 

attract a higher realized profit. There are also statistical models and algorithms that can help to 

predict more accurately. Good connoisseurs of mathematics and statistics, who are also 

enthusiastic gamblers, have an advantage using effective bankroll management strategies to 

minimize losses and maximize profits over the long term. Unlike some sports, another attractive 

fact is frequent races, even more in one day, which gives the possibility of consecutive betting 

and faster winnings. 

 

4.1 Choosing strategy  
 

Each strategy has its advantages and disadvantages, but we have to decide on something in order 

to interpret the results. Betting on one horse might lead to a higher potential profit in case that 

horse wins, but it is also considered risky for many reasons. Some of the reasons are very high 

uncertainty, great potential for losing wealth entirely, low odds for favorites etc.  

On the other hand, there is another approach, widely known as ‘covering the field’. Although this 

also has its good and bad sides, it distributes risk across multiple outcomes, and despite potential 

reducing of profit, there is more consistent returns which can be reinvested again. Therefore, 

moving forward, ‘Dutching’ technique will be considered as principal approach in this thesis, i.e. 

we are covering all possible outcomes of an event. Furthermore, we will consider flat racing, i.e. 

horses run on a level track, and our chosen betting option is to bet on the horse to finish first.  
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4.2 Multi-horse betting strategy and wealth growth in repeated races 
 

We will consider a series of horse races where gambler spreads all of his wealth over 𝑘 horses. 

This means that he has to divide his capital and that fraction of the capital that he invests in the 

horse 𝑖 will be denoted the same as in the previous section by 𝑓𝑖, with constraint that the sum of 

all 𝑓𝑖  is equal to 1. That ensures that the entire capital is invested. Also, we will assume odds 𝑑𝑖,  

where the payout is related with that specific outcome. In simple example, if you bet 2$ on horse 

𝑖 with odds 𝑑𝑖, your payoff is  (2 × 𝑑𝑖)$  if horse 𝑖 wins and you receive 0$ if that victory does 

not occur. When we apply it to our problem, we can define function 𝑉(𝑋) = 𝑓𝑋𝑑𝑋 which 

represents attribute that will increase gambler’s capital if horse 𝑋 wins, with probability 𝑝. 

Let us discuss a single race. We will denote gambler’s gain after first race with 𝐶1, and 𝑪𝟎 initial 

capital, where 𝑋 is a winning horse in the first race: 

𝐶1 = 𝐶0𝑉(𝑋) 4.1 

  

If we extend this to multiple races (𝑛 races), considering that the gambler reinvests his money, 

his wealth after 𝑛 races, including only wins is: 

𝐶𝑛 = 𝐶0∏𝑉(𝑋𝑖)

𝑛

𝑖=1

 

 

 
4.2 

  

where 𝑋𝑖 is the winning horse in the 𝑖th race. Product ∏ 𝑉(𝑋𝑖)
𝑛
𝑖=1  is accumulated gains over all 𝑛 

races.  

For better clarity and results, using the logarithm function provides more intuitive insights. 

Consequently, we will define the logarithmic return 𝑟𝑖 = log𝑉(𝑋𝑖). It is useful firstly because of 

basic properties of logarithms, which transform product to sum, and it is easier to work with 

additive terms. 

As discussed in the previous chapter, expected value plays an important role, and it is used to 

estimate the average growth of the gambler’s wealth over multiple races. Therefore,  

𝐸(𝑟) = 𝐸(log𝑉(𝑋𝑖))  
 

4.3 

  

is expected value of the logarithmic return. 

Then,  
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log𝐶𝑛 = log(𝐶0∏𝑉(𝑋𝑖)

𝑛

𝑖=1

) = log 𝐶0 +∑log𝑉(𝑋𝑖)

𝑛

𝑖=1

 

 

 
4.4 

  

If we take the average of the logarithm of wealth, 
1

𝑛
log𝐶𝑛, we can use law of large numbers 

which describes the convergence in probability of the sample mean to the population mean as the 

sample size increases. In the other words, sample mean converges in probability to the expected 

value. Since log𝐶0 is a constant term, representing the logarithm of initial wealth, neglecting it 

does not significantly alter the accuracy of conclusions drawn from the further analysis about the 

convergence behavior. Therefore, we continue on omitting log𝐶0, and taking the average of only 

the second part of the expression from 4.4: 

1

𝑛
∑log𝑉(𝑋𝑖) →

𝑛

𝑖=1

 𝐸(log𝑉(𝑋𝑖)) 

 

 
4.5 

  

where 

𝐸(log𝑉(𝑋𝑖)) =∑𝑝𝑖 log𝑉(𝑋𝑖)

𝑘

𝑖=1

=  ∑𝑝𝑖 log(𝑓𝑖𝑑𝑖

𝑘

𝑖=1

) 

 

 
4.6 

  

We will denote this expression as 𝑔(𝑓). 

Therefore,  

1

𝑛
log𝐶𝑛 ≈𝑔(𝑓) 

4.7 

  

⇕ 

log𝐶𝑛 ≈ 𝑛𝑔(𝑓) 
 

4.8 

  

⇕ 

𝐶𝑛 ≈  2
𝑛𝑔(𝑓) 

 

4.9  

  

This formula suggests that the gambler’s wealth experiences exponential growth and the rate of 

this growth is determined by expected value of the logarithmic return. This also indicates that as 

larger the expected value (𝑔(𝑓)), the faster the wealth tends to grow over repeated races. 
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Although, the central limit theorem remind us that there will be short-term fluctuations that can 

impact gambler’s wealth negatively. 

That indicates, in order to optimize wealth, we have to maximize 𝑔(𝑓). So, we are maximizing 

max
𝑓
𝑔(𝑓) =  max

∑𝑓𝑖=1
∑𝑝𝑖 log(𝑓𝑖𝑑𝑖)

𝑘

𝑖=1

 

 

 
4.10 

  

It will be done by solving the optimization problem with constraints using the Lagrange 

multipliers method with the objective function 

𝑧 =∑ 𝑝𝑖 log(𝑓𝑖
𝑖

𝑑𝑖) 

 

4.11 

  

and constraint  

∑𝑓𝑖 = 1
𝑖

.  

 

4.12 

  

To simplify, we change the base of the logarithm to 𝑒 and we set up the Lagrangian function: 

𝐿 =  ∑ 𝑝𝑖 𝑙𝑛(𝑓𝑖 𝑑𝑖) − 𝜆(∑ 𝑓𝑖 − 1)
𝑖𝑖

 
4.13 

  

where 𝝀 is Lagrangian multiplier. Next, we need to find partial derivative of L with respect to 𝑓𝑖 

and to set it equal to zero: 

𝑑𝐿

𝑑𝑓𝑖
=
𝑝𝑖
𝑓𝑖
+  𝜆 = 0, 𝑖 = 1, . . 𝑘 

 

4.14  

  

 which implies  

 𝑓𝑖 = −
𝑝𝑖

𝜆
. 4.15  

  

Back to the formula 4.13 and replacing 𝑓𝑖  , we obtain the following: 

∑−
𝑝𝑖
𝜆
= 1

𝑖

    →     𝜆 = −1, 𝑝𝑖 = 𝑓𝑖  

 

4.16  

  

 Therefore, 
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𝒇 = 𝒇∗ = 𝒑 
 

4.17  

  

is critical point of function 𝐿, and 𝑝 is probability of winning. Taking second derivative can help 

us determine whether that critical point is local maximum, so 

𝑑2𝐿

𝑑𝑓2
= −

𝑝

𝑓2
< 0 

 

4.18 

  

Concavity of 𝐿 implies that 𝑓∗ is a maximum, where  

𝑔(𝑓∗) =∑ 𝑝𝑖 log(𝑝𝑖𝑑𝑖)
𝑘

𝑖=1
= ∑ 𝑝𝑖 log𝑝𝑖 +∑ 𝑝𝑖 log𝑑𝑖

𝑘

𝑖=1

𝑘

𝑖=1
= ∑ 𝑝𝑖 log𝑑𝑖

𝑘

𝑖=1
− 𝐻(𝑝) 

 

 
4.19 

  

where 𝐻(𝑝) is entropy.  

We can notice that the same strategy holds regardless the odds if we bet entire capital. 

We have considered so far the situation when the outcomes of individual races are independent 

of each other, the probability distribution of outcomes for each race is the same, which indicated 

to i.i.d. horse races. It certainly makes the analysis more reducible. However, in reality, races 

may not always meet these assumptions.  Also, we did the analysis above under the assumptions 

that gambler invests entire capital which he can reinvest again.  

However, there are cases where the gambler should consider whether he wants to invest the 

whole wealth. He should make wise choices and must be aware of market changes and betting 

trends because bookmakers constantly modify their odds. Bookmakers adjust the odds to ensure 

they make a profit. They build margins into the odds, and the sum of the probabilities is greater 

than 1 (100%). That ‘overbalance’ is known as ‘vig’. The odds offered by bookmakers may 

deviate from fair odds. When the odds are fair, the sum of the probabilities is one. 

 

4.2.1 The impact of knowing the probability distribution 

 

We will define by 𝑏𝑖 =
1

𝑑𝑖
 bookmakers probability distribution; this is a way of converting odds 

into a probability-like measure. For example, if the odds for horse i are 𝑑𝑖 = 3 , then 𝑏𝑖 =
1

3
 , i.e. 

horse has a 
1

3
 probability of winning.   

Whether the ∑𝑏𝑖 is greater or smaller than 1 determines whether the game is fair and whether the 

strategy is optimal. When sum is smaller than 1, the conditions are more favorable for the bettors 
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because the bookmaker's odds do not cover all possible scenarios. However, the best presenting 

situation when it comes to the real world, is case when sum is greater than 1, which indicates that 

bookmaker makes a profit regardless of the actual outcome, and this is the least favorable and 

most challenging situation for the bettors, but at the same time, an integral part of the betting 

ecosystem, which cannot be avoided. Achieving perfectly fair odds in real-word is almost 

unattainable. 

In order to make the whole concept more comprehensible, and to remove the complexities, we 

are going to break away from reality a bit. We will consider the case when ∑ 𝑏𝑖 = 1 which 

indicates that the game is fair, i.e. no additional margin applied by bookmaker. If we play 

proportional gambling (𝑓 = 𝑝) then: 

𝑔(𝑓) =∑𝑝𝑖 log(𝑓𝑖𝑑𝑖) =  ∑𝑝𝑖 log (
𝑓𝑖
𝑏𝑖
)

𝑖𝑖

= 𝐷(𝑓||𝑏) = 𝐷(𝑝||𝑏) > 0 

 

 
4.20  

  

Here we come to the term from information theory we introduced at the beginning, which is 

relative entropy. It is clear that gambler who knows the true probability cannot lose. And if and 

only if 𝑝 = 𝑏 (casino’s odds are correct) relative entropy will be 0. But in reality, achieving this 

situation is challenging due to the many factors. 𝐷(𝑝||𝑏) = 0 iff 𝑝 = 𝑏 means that true 

distribution is equal to bookie’s estimate of distribution. That implies the odds offered by the 

casino are fair. Under such conditions, in the long run, the gambler will neither win nor lose, he 

will be at zero.   

A more realistic situation is when the true probability is unknown for both gambler and 

bookmaker, so proportional gambling cannot be applied.  

𝑔(𝑓) =∑𝑝𝑖 log(𝑓𝑖𝑑𝑖) =  ∑𝑝𝑖 log (
𝑓𝑖
𝑏𝑖
) =∑𝑝𝑖

𝑖𝑖𝑖

log (
𝑓𝑖
𝑝𝑖

𝑝𝑖
𝑏𝑖
) =∑𝑝𝑖 log (

𝑓𝑖
𝑝𝑖
)

𝑖

+∑𝑝𝑖 log (
𝑝𝑖
𝑏𝑖
)

𝑖

=∑𝑝𝑖 log (
𝑝𝑖
𝑏𝑖
)

𝑖

−∑𝑝𝑖 log (
𝑝𝑖
𝑓𝑖
)

𝑖

= 𝐷(𝑝||𝑏) − 𝐷(𝑝||𝑓) 

 

 
4.21  

  

 Then the gambler will be in the plus if his estimation is better than the bookmaker's. 

 

4.2.1.1 Uniform distribution  

 

If the odds are "t-for-1" for each horse in a race, it implies that the potential profit is consistent 

across all horses. Each horse has the same 𝑡: 1 odds format. For instance, if the first horse has 3-

for-1 odds, the second horse, the third, and so on, would also have 3-for-1 odds. Now, again with 
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assumption of perfectly fair market, we set equal chance of winning for each horse. That implies 

the odds are fair, and distribution is uniform. If we say that odds for each horse is t,  

𝑔(𝑓∗) =∑𝑝𝑖 log(𝑝𝑖𝑑𝑖) =

𝑖

∑𝑝𝑖 log(𝑝𝑖𝑡) =

𝑖

∑𝑝𝑖 log𝑝𝑖 +∑𝑝𝑖 log 𝑡 =

𝑖

 log 𝑡 − 𝐻(𝑝)

𝑖

 

 

 
4.22  

  

As we said above, relative entropy measures how one probability distribution diverges from 

another. Odds are expressed as t, so implied probability is  
1

𝑡
, and true probability is p. Difference 

between the implied probability based on odds and the true probability is 

𝐷 (𝑝||
1

𝑡
) 

 

 
4.23 

  

 From formula 4.23 we got the important claim.  

Theorem 2 (Entropy-wealth conservation): If odds are uniformly distributed and fair 

𝑔(𝑓∗) + 𝐻(𝑝) = log 𝑡 
 

4.24 

  

We can see the connection with data compression which reflects trade-off between uncertainty 

and information efficiency. The higher the entropy, the slower wealth grow, and vice versa. 

Entropy has an impact on wealth; the more unpredictable the outcomes, the less wealthy the 

gambler. Hence, it is advisable to minimize entropy as much as possible. The question is how to 

do it, and the answer lies in conditioning.  

 

4.2.2 Strategic betting with exclusive knowledge 

 

The conditional probability captures the updated likelihood of a horse winning based on the 

additional information. As we know entropy decreases by decreasing uncertainty, but also if we 

have any additional information (side information). Various types of information can reduce 

uncertainty and increase wealth, for example historical data, weather condition etc.  

The following notation will be used:    

𝑥 ∈ 𝐾 - symbols representing horses 

 𝑠 ∈ 𝑆 - side information 

 𝑝(𝑥) - win probability 
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 𝑝(𝑠) - probability of side information 𝑠 occurring 

 𝑑(𝑥) - odds 

 𝑝(𝑥, 𝑠) - joint probability of 𝑥 and 𝑠 

 𝑝(𝑥|𝑠) - conditional probability of horse 𝑥 winning given side information 𝑠 

 𝑝(𝑠|𝑥) conditional probability of side information 𝑠 given that horse 𝑥 wins 

𝑓(𝑥|𝑠) fraction of gambler’s wealth he decides to bet on 𝑥 after receiving 𝑠 

𝑑(𝑥) =
1

𝑝(𝑥)
  - meaning the reciprocal of the winning probability gives the odds  

We still consider fair odds, and that gambler bets on full capital  

∑𝑓(𝑥|𝑠) = 1

𝑥

 

 

4.25  

  

We want to maximize 𝑔 with respect to 𝑓(𝑥|𝑠). Using the formula 4.11 we can construct 

conditional grow rate by: 

𝑔(𝑋|𝑆) =∑𝑝(𝑥, 𝑠) log𝑓(𝑥|𝑠) ∙ 𝑑(𝑥)

𝑥,𝑠

 

 

4.26 

  

max𝑔(𝑋|𝑆) = max
𝑓(𝑥|𝑠)

∑𝑝(𝑥, 𝑠) log𝑓(𝑥|𝑠)𝑑(𝑥)

𝑥,𝑠

 
4.27 

  

We are interested in what difference in the growth rate this additional information contributes 

and we will denote that desired difference by: 

Δ(𝑔) = max
𝑓(𝑥|𝑠)

𝑔(𝑋|𝑆) − max𝑔(𝑋) 

 

4.28 

  

 Considering proportional gambling, i.e. 𝑓∗(𝑥|𝑠) = 𝑝(𝑥|𝑠): 



Some applications of information theory to investments  
 

29 
 

Δ(𝑔) = max
𝑓(𝑥|𝑠)

∑𝑝(𝑥, 𝑠) log𝑓(𝑥|𝑠)𝑑(𝑥)

𝑥,𝑠

−(∑𝑝(𝑥) log𝑑(𝑥)

𝑥

−𝐻(𝑋))

=∑𝑝(𝑥, 𝑠) log𝑝(𝑥|𝑠)𝑑(𝑥)

𝑥,𝑠

−(∑𝑝(𝑥) log𝑑(𝑥)

𝑥

−𝐻(𝑋))

= −𝐻(𝑋|𝑆)                          

+  ∑𝑝(𝑥, 𝑠)𝑑(𝑥) − (∑𝑝(𝑥) log𝑑(𝑥)

𝑥

− 𝐻(𝑋)) =  𝐻(𝑋) − 𝐻(𝑋|𝑆)

𝑥,𝑠

 

 

 
4.29 

  

 Using the formula 2.7 we can conclude   

Δ(𝑔) = 𝐼(𝑋; 𝑆) 4.30 

  

So we can see that the difference between maximum exponential growth rate for proportional 

betting in the presence of side information and maximum growth rate without side information is 

equal to the mutual information between horse race 𝑋 and side information 𝑆. It can be 

concluded if the odds are fair, uncertainty is the highest, and profit can be obtained only if 

gambler has some side information. Understandably, if side information is independent, it does 

not affect rate of growth.  

We said in the opening part of this chapter that experienced gamblers analyze previous races in 

order to gamble smarter, but this makes sense if those races are truly interdependent and the 

results of the current race can be correlated with the historical performance of the participating 

horses. 

The next thing we will see is how the dependent races affect the growth rate of wealth, and 

therefore the knowledge of stochastic processes and entropy rate that we defined in Chapter 2, 

Section 2.1 will help us a lot.  

 

4.2.3 Dependent bets on horse racing  

 

Making a strategy for future bets is greatly influenced by the past, if these events are somehow 

connected. It can be betting on sports matches or investing in the stock market. In sports matches 

as well as in horse races, a team or a horse that often wins, the probability that it will win again is 

high. In the same manner, stocks that are showing signs of instability are undesirable for 

investors, because there is a greater chance that they will be less resistant to market uncertainty 

in the future as well. Managing the risk of uncertainty is the topic of the next chapter. So, it is 
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smart to use knowledge of previous results in our betting strategy for horse race. We assume the 

horse races form a stochastic process where the sequence {𝑋𝑖} contains race results and the odds 

are uniform, 𝑟: 1.  We are defining bet on the last race as 𝑓(𝑋𝑛|𝑋𝑛−1, … , 𝑋1). Therefore the 

growth rate is calculated: 

 
max
𝑓
𝑔(𝑓) = max

𝑓
∑𝑝(𝑋1, … , 𝑋𝑛) log(f(X𝑛|X1, … . , X𝑛−1)r) = log 𝑟 − 𝐻(X𝑛|X1, … . , X𝑛−1), 

 

 
 
4.31 

  

when 𝑓∗ = 𝑝. For a stationary stochastic process, using formula 2.16 

max
𝑓
𝑔(𝑓) = log 𝑟 − 𝐻(𝑋𝑛|𝑋1, … , 𝑋𝑛−1) = log 𝑟 − 𝐻(𝜒) 4.32 

  

where 𝐻(𝜒) = lim
𝑛→∞

𝐻(𝑋1,…,𝑋𝑛)

𝑛
. That implies  

max
𝑓
𝑔(𝑓) + 𝐻(𝜒) = log 𝑟 4.33 

  

We are coming again to conservation statement, but for entropy rate. That indicates for a lower 

entropy rate, growth rate is larger. In other words, low entropy rate indicates that the outcomes 

are more deterministic. This is logical since with reduction of uncertainty outcomes become 

more predictable and certain. That means that initial conditions are well-defined. This 

predictability can contribute to achieving higher maximum rate. 

So far we have seen that the best strategy in terms of long-term betting and reinvestment is to bet 

proportionally to the probability distribution. Although our intuition may tell us otherwise, we 

should not deviate from the original strategy. There may be better options if the wagers are 

independent or if you intend to keep your earnings. For instance, single sport wagers and lottery 

tickets. You need to be careful and familiarize yourself with the idea because the circumstances 

in which Kelly should be used rely on the particular qualities. 

One can continue in this narrative and generalize the previous strategy to the stock market and 

portfolio theory. Log-optimal portfolios, connection with side information, stationary markets, 

universal portfolios etc. can be found in [7]. 
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"It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't 

so. " 

Mark Twain 

Chapter 5  

 

Measure of entropy in portfolio theory 
 

In this chapter, we dig further into the progress and shift from gambling's unpredictable results to 

investment management's strategic approach. As we have seen in previous chapters, randomness 

is inherent in gambling activities. On the other hand, portfolio theory provides a more structured 

framework for optimizing risks and returns on the stock market. Thus, this chapter will logically 

be suitable for a more methodical investigation of risk management and financial decision-

making.  

Although both the casino and the stock exchange originated and developed in the 17th century, 

in a similar period, their purpose is certainly different. In contrast to casinos which have 

traditionally been primarily for games of chance, enjoyment and entertainment, the stock market 

is used to purchase and sell financial bonds that allow businesses to generate funds and investors 

to trade in ownership. The key difference is that stock market is legitimate form of investment, 

contributing to economic growth, which does not apply to gambling.  

Regardless of the fact that they have different goals, gambling and stock market share common 

features such as risk and uncertainty. Another common thing is investing money that can 

potentially lead to profit or loss. As expected, speculation is involved in both cases.  

Although we have seen that there is an optimization solution for classic gambling as well, with 

certain conditions that may conflict with reality, but despite all, luck is still the key factor, and 

we will see that in stock market there are many more different factors which affect the outcome.   

Why is the stock market appealing is a frequent question and we will answer it with some basic 

facts. 

 Building wealth over time. When an investor has shares in a company, along with the 

company's growth, the investor's capital also grows. 

 When investor buys stocks, he owns a share of a company. 

 Anyone can easily access the stock market through online platforms. 
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In addition to the fact that everyone can follow the stock market, they must be aware that every 

investment carries with it risks, and what is the basic and main goal of everyone who invests is to 

minimize the risk and maximize the profit. Therefore, before making an investment decision, 

everyone who finds investing intriguing and wants to give it a try should conduct study or 

consult an expert. 

Conducting a study is exactly what we will do, based on the principles of information theory and 

related concepts. But before we scratch the surface, let us familiarize ourselves with the basic 

factors and concepts needed to build and manage a portfolio. There are many definitions of a 

portfolio, but in the simplest way it can be defined as a collection of financial assets. Those 

assets may belong to an individual, but also to investment institution or firms. Financial assets 

can include stocks, bonds, funds, even real estate. Recent years have seen a significant amount of 

research on the advantages of incorporating unconventional assets into conventional stock and 

bond portfolios. Bitcoin as an alternative investment option has attracted enormous attention 

from the media and investment communities. More about this topic is in [26].  Stocks or shares 

in a company are the most typical part of a portfolio.  

In creating a portfolio, it is important to identify the objective, risk tolerance, choose the asset 

allocation, but perhaps most important is to diversify the investments, in order to spread risk. (It 

is less hazardous to own a portfolio of assets from diverse classes than it is to maintain a 

portfolio of assets that are similar). Having assets in your portfolio that are not exactly positively 

connected is essential to diversification. 

 

5.1 Modern portfolio theory  

 

The desire to reduce risk for a given level of expected return or maximize expected return for a 

given level of risk was framed mathematically in 1952 by Harry Markowitz [19]. To put it 

differently, it is a theory that addresses how to build a diversified investment portfolio while 

striking a balance between risk and return. It is called modern portfolio theory (MPT).  

Key concepts of MPT: 

 Return – financial  gain or loss made on an investment over some period of time 

expressed in percentages 

𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛 = ( 
𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒 − 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒 + 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠

𝑏𝑒𝑔𝑔𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒
) × 100 

 

 Risk – probability that an investment will lose money or deviate from expected outcome 
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 Risk-Return tradeoff - Investments with a high degree of risk are more likely to 

experience higher returns (higher risk - higher reward) 

 Diversifiable Risk – risk that can be reduced through diversification 

 Correlation – measure how two assets move in relation to each other 

 The risk-free rate - return on an investment with zero risk of financial loss 

 The efficient frontier – the best combination of investments to maximize returns for 

minimal risk 

 

5.1.1 The efficient frontier – graphical representation 

 

Risk can be represented as standard deviation. To present efficient frontiers, we need to 

understand the relationship between risk and standard deviation. Standard deviation is a 

common statistical measure that quantifies the amount of variation or dispersion of a set of 

values. In the context of finance and portfolios, standard deviation is used to quantify the risk of 

a certain investment. The standard deviation indicates how much the actual return is expected to 

deviate from the average expected return. Generally, a higher the standard deviation is associated 

with higher risk, and vice versa.  

Expected return is actually the mean return.  

One of the most significant graphs in the field of finance is the curve represented in Figure 5. 

 

Figure 5 - Efficient frontier curve 
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If the market is efficient, this curve exists. An explanation of the curve follows: 

 A portfolio that lies on the efficient frontier is superior to the one below. For a given risk, 

we are aiming for the best possible return (risk and return are efficiently traded). If we 

look at portfolios that are on the efficient frontier, we cannot say what the best portfolio 

allocation is, because it depends on the level of risk tolerance of the investor. If we have 

two portfolios that have the highest return for a given risk, we cannot say that one is 

better than the other. Investors with a higher risk tolerance will prefer one with a higher 

risk, while more conservative investors will look for less risky investments.  

 A portfolio that lies above the curve means that the portfolio is considered 

underestimated (for the same level of risk, the expected return is higher). If one invests in 

the portfolio of that kind, its value will rise and adjust to fair value. 

 A portfolio that lies below the curve is considered overestimated because the risk is 

greater for a lower return that the investor can get. Therefore, if one invests in those 

portfolios, losses are expected.  

Portfolios that are outside the curve lead to opportunity and to another concept in finance, which 

is arbitrage. This happens due to temporary market inefficiencies. The investor concludes 

whether the price is fair or not fair, and accordingly decides whether to buy or sell something. 

The idea that lies behind it is ‘buy low, sell high’. That's why undervalued and overvalued 

portfolios mean to us, that overvalued stocks are sold and undervalued stocks are bought. It is 

important to know that such arbitrage opportunities do not last long, due to active tracking and 

monitoring. 

In addition to all this, the fact is that risk cannot be completely avoided, due to the constantly 

changing market. Therefore, besides knowing the terminology and mastering the subject matter, 

it is crucial to stay informed about economic trends, company performance and global events 

that may affect the financial market.  

 

5.1.2 Mean-variance approach  

 

Now that we have familiarized ourselves with the basic concepts and principles used in finance, 

or more specifically in portfolio theory, we have made a nice introduction for the approach 

which marks the beginning of modern portfolio theory, and it is exactly the mean-variance 

approach. This theory continues to be the standard, or baseline methodology used by scientists, 

researchers, and all professionals in the field of finance.  
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The traditional answer to the basic question that interests every investor is how to find the 

optimal way to invest in a certain set of assets. The technical name for strategies that solve this 

problem is Portfolio selection model, same as the title of the first paper by Markowitz on the 

subject [19].  

Before Markowitz’s work, portfolio selection was primarily based on the return generated by an 

investment. Risk was not given much attention and Markowitz considered it mistake. Therefore, 

he raised risk to the same level of importance as return. And so the idea of portfolio risk 

emerged. Variance has become an accepted measure of risk. Markowitz was the first to show 

how the variance can be reduced by the influence of diversification. 

Mathematically, portfolio can be presented by vector of weights  𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛), where 𝑣 is 

containing of investor’s allocation of wealth where  

∑𝑣𝑖 = 𝑣′1𝑛 = 1.

𝑛

𝑖=1

 

 

5.1 

  

As we said earlier, the sample variance represents a measure of risk, and a sample mean a 

measure of return. Weights refer to the proportion (in %) of investment allocated to each asset 

within a portfolio, i.e. weights indicated how much of your total investment is placed in each 

particular asset. Therefore, MV (mean-variance) problem seeks to choose those weights where 

the variance is the lowest of portfolio returns, while aiming for a certain target. 

We define vector of the returns of individual assets in the portfolio as 𝑅 = (𝑅1, … , 𝑅𝑛), 

covariance matrix 𝑣𝑎𝑟(𝑅) = 𝐶 and expected (average) return 𝑚 = 𝐸(𝑅).  

 Now we can formulate the objective function of MV problem as follows: 

min
𝑣
𝑣′𝐶𝑣 

 

5.2 

  

subject to the constraints: 

 𝐸(𝑣′𝑅) = 𝑣′  

 𝑚 = 𝜏0 , where 𝜏0 is target return  

 𝑣′1𝑛 = 1, investment is fully allocated  

We can also go the other way by maximizing expected portfolio return (𝑣′𝑚) instead minimizing 

the portfolio variance.  
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Understanding assumption about investor behavior and financial markets is very important for 

using this model in a proper way, because model is built upon certain expectation. Deviations 

from these assumptions in a real world can impact the reliability. A couple of example 

assumptions will be listed below: 

1. Investors can make probabilistic assessments of the future returns of assets using for 

example historical data, models etc., and those estimated probability distributions is a key 

input in mean-variance analysis. The accuracy of these assumptions depends on the 

availability and quality of the data, as well as the investor's ability to use the given data in 

the best way and predict the future. 

2. Investors measure their satisfaction represented by a utility function and they aim to 

maximize it, making decision based on their financial state over a specific period of time, 

they are not looking a long-term perspective.  

3. Investors focus only on the two first moments of a probability distribution: expected 

value and variance.  

This type of analysis provides a useful framework and fundament od modern portfolio theory, 

but makes certain assumptions that may not hold in the real world, such as a normal distribution, 

and observing only the first two moments. The problem is that financial returns are not typically 

normal. They mostly have negative symmetry, skewness, kurtosis, etc.  

The success of a portfolio depends in part on the correct assessment of risk. However, it happens 

that the risk is correctly assessed on the basis of historical data, but the problem is still not solved 

because no attention is paid to the uncertainty of data, because MV is often concentrated only on 

a few assets. Therefore, the optimal portfolio may be less diversified. Some even suggest that the 

standard deviation cannot perfectly illustrate the risk. 

 

5.2 Entropy Approach  
 

Having established a foundation with methodology in the previous section, we are now entering 

the pivotal point of this chapter. That is how information theory relates to this topic.  

Although there are still various new applications of the mean-variance method and it is still 

actively used for various researches, we will devote our attention to research from a newer and 

different angle based on information theory which will try to overcome the problems that existed 

in the traditional approach. 20 years had passed since Markowitz method, and in 1972, entropy 

was introduced as a measure of risk to replace variance. A model was considered to maximize 

expected return and minimize entropy. In the last section, we saw variance as a measure of risk, 

which we will replace with entropy in this section. Although used as measures of risk, these two 
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terms are fundamentally different when it comes to interpretation. Special case is when random 

variable 𝑋 is Gaussian, entropy and variance become connected: 

𝐻(𝑋) =
1

2
log(2𝜋𝑒𝑉𝑎𝑟(𝑋)) 

 

5.3 

  

Another type of comparison is given in the paper [22], which compares the efficient frontier of 

mean-variance and mean-entropy. This is another reason why entropy should be considered, and 

mean-entropy model will be given below. The first thing that is exemplified in the picture is the 

difference in shape. The main difference is that entropy balances risk and return better.  

 

Figure 6 – Difference between entropy and variance. Soruce: [22] 

 

In order to overcome the problems and limitations we had in the traditional model, we will 

employ a variety of different models and see if they show better performance when we are not 

limited to the normal distribution.   
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5.2.1 Single objective model - ME (Mean-Entropy) model   

 

When the transition from MV to ME happened, an index-based framework for construction a 

portfolio was described. The portfolio’s entropy is computed based on the relationship between 

individual asset returns and a market index return.  

Market index return 𝑅𝑀 – an indicator of how well a set of assets performed in a specific market 

measured in percentage over a given period of time  

Asset’s return (𝑅1, 𝑅2, … , 𝑅𝑛) – depends on 𝑅𝑀  

We can describe this dependence by conditional entropy: 

𝐻(𝑅𝑖|𝑅𝑀) 
 

5.4 

  

In the context of portfolio, conditional entropy measures the uncertainty of individual returns 

taking into consideration the impact of the market.  

Another notation is portfolio weights (𝑣𝑖) – proportion of the portfolio allocated to each asset.  

e.g. 𝑣1 – proportion of the portfolio allocated to asset 1.  

The objective function combines these weights and conditional entropies in the following way: 

min
𝑣
∑𝑣𝑖

2𝐻(𝑅𝑖|𝑅𝑀)

𝑛

𝑖=1

 

 

5.5 

  

with respect to the constraints:  

𝐸(𝑣′𝑅) = 𝜏0 – expected return of the portfolio is equal to a specific target return 

𝑣′1𝑛 = 1 – sum of all portfolio weights is equal 1 (no cash left unallocated) 

What is interesting and innovative about this approach is observing not only the individual asset 

but also its connection with the wider market, allowing for a more sophisticated and potentially 

more realistic representation.  
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5.2.2 Single objective versus multi-objective portfolios 

 

Although ME is more interesting and brings something new by observing conditional entropy, it 

is still a single objective problem – which has the task of optimizing only one goal or objective. 

Its benefit is that it is simple and easy to understand, but it probably won’t be able to adequately 

represent the complexity of the real-world. Most of the real-life problems, including portfolio 

optimization, have multiple conflicting objectives. The basic and at the same time the most 

important example is profit maximization with minimal risk. Due to this problem, and problems 

similar to it, multi-objective optimization is used, which considers several objectives at the same 

time. Decision-making in the real world is often reduced to an ideal balancing act between 

multiple goals. Therefore, unless there is a cause to assume that higher moments have no impact 

on the investor’s decision, higher moments must not be disregarded. 

 

5.2.3 Portfolios with multiple objectives 

5.2.3.1 Mean-variance-entropy (MVE) portfolio  

 

As we said earlier, diversification is key goal of asset allocation since it lowers the unsystematic 

risk. Furthermore, when diversification rises, variance falls. By combining the variance of assets 

with the entropy of weights, it is created diversified portfolio know as mean-variance-entropy 

(MVE) portfolio.  

In this portfolio, entropy is not used as a risk indicator, instead, it is incorporated to produce 

weights that are nearly uniformly distributed. This model can balance the risk and diversity of 

the portfolio with the right selection of the momentum factor. 

Model is defined as follows: 

min
𝑣
𝑣′𝐶𝑣 + 𝜇∑𝑣𝑖 log𝑣𝑖

𝑛

𝑖=1

 

 

 
5.6 

  

Adjusting the parameter 𝜇 allows to control the importance if entropy in the overall objective.  

If we take 𝜇 = 0, we get MV model.  
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5.2.3.2 Mean-variance-skewness-entropy (MVSE) portfolio  

 

Skewness describes the asymmetry in a probability distribution, as it is presented in Figure 7.  

 

Figure 7 - Types of skewness 

 

Positively skewed – higher probability of large gains than large losses  

Negatively skewed – higher probability of large losses  

It is stated that investors should incorporate the skewness of the return distribution as a part of 

decision-making process. The reason is investors' awareness that there is a chance for 

asymmetric returns and they have the ability to recognize the impact of extreme events. By 

making investors better provided, it can potentially lead them to higher returns.  

Skewness can be added to mean-variance model, and if, on the top of that, we add entropy, we 

get a well-diversified portfolio – MVSE. This is a model where the aim is to maximize the 

skewness and entropy of weights, while minimizing the variance, presented as follows: 

{
min𝑣′𝐶𝑣

max 𝑣′𝑆(𝑣 × 𝑣)

max−𝑣′ ln 𝑣

 

 

 
5.7 

  

Here we have introduced various measures that improve portfolio performance. Transaction 

costs (turnover) have also been shown to be lowest when using this model. 
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5.2.4 Diversification regarding the terms of entropy  

 

As we were introduced at the beginning of the chapter, Markowitz defined the concept of 

portfolio diversification. In his model, when number of asset increases, the variability of 

expected return decreases, as the specific risk within the portfolio. We can see that in Figure 8.  

 

Figure 8 - Market and specific risk 

 

As we can see, we divided total risk into specific and market risk. Specific risk can be 

diversified, because it is a part of risk which is specific to the firm, while market risk is 

connected to the whole economy. The risk that comes from specific sources is more uncertain, 

has limited possibilities of risk protection and often unpredictable factors specific to each 

company. Nevertheless, investors must consider both types of risks to make right decisions and 

manage overall portfolio risk. 

The reason we started the topic of diversification again lies in the interesting fact. The division of 

the total risk described above can be represented with entropy. More precisely, by the chain rule 

of entropy. 

We will observe: 

 𝐴 – an asset 

 𝑀 – market index 

 𝐻(𝐴) –Risk associated with the asset X 

 𝐼(𝐴;𝑀) – mutual information between A and  M which measures shared information, i.e. 

shared risk, so we can see it as market risk.  
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 𝐻(𝐴|𝑀) – specific risk associated with A given the market index M  

So, we can decompose 𝐻(𝐴) into mutual information 𝐼(𝐴,𝑀) and conditional entropy 𝐻(𝐴|𝑀), 

i.e. 

𝐻(𝐴) = 𝐻(𝐴|𝑀) + 𝐼(𝐴;𝑀) 
 

5.8  

  

Now, we inspect how entropy reacts to diversification and how sensitive is in respect to this. 

The concept of convexity is closely related to diversification in the context of portfolio 

management and risk analysis because it influences how the risk of a portfolio changes as more 

assets are added. The convexity of the standard deviation function implies that the effect on total 

risk becomes smaller as you diversify the portfolio by adding more assets. Convexity contributes 

to the sensitivity of portfolio risk as it decreases with further diversification. As we aware, the 

entropy is a concave function, but negative entropy is a convex.  

One important property of entropy is subadditivity: 

𝐻(𝑋, 𝑌) ≤ 𝐻(𝑋) + 𝐻(𝑌) 
 

5.9  

  

It can be seen there is a reduction in uncertainty (risk) when both variables are consider jointly. 

This property supports the idea that considering multiple variables together can lead to risk 

reduction or increased sensitivity to diversification. 

Some scientists claim that using entropy as a measure of diversity has some advantages. Entropy 

is not limited to numeric data and can be applied to various types of information. 

 

5.2.5 Empirical verification 

 

It was empirically confirmed that when variance is used as a measure of risk, diversification can 

be a risk-reducing factor. In the experiment, an equally weighted portfolio was used.  

An equally weighted portfolio is type of investment portfolio where the investor allocates an 

equal amount of money or an equal percentage of the total portfolio value to each individual 

asset. Giving each asset the same significance is the aim of an equally weighted portfolio. 

Now, using a similar experiment, it can be confirmed how entropy responds to diversity. In 

experiment, the analysis is based on 15 different stocks from the New York Stock Exchange. The 

information used is the monthly closing prices of these stocks (last traded price at the end of the 

day). The data covers period from 2004 to 2013. For each of these stocks, there are 107 monthly 
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observations. Then we started adding assets to the portfolio ranked by the amount of riskiness, 

starting with the riskiest. The conditional entropy is used to quantify the specific risk. The term 

‘normal entropy’ was introduced as the entropy calculated based on normal distribution. The idea 

is to use normal entropy for comparing portfolios instead of using standard deviations, since it is 

equivalent to standard deviation, but offers comparison across different datasets.  

 

Figure 9 - Comparison of the empirical and normal entropy 

 

A sketch of the results is shown in the image above. We can see that both empirical and normal 

entropy (standard deviation) decreases as the numbers of assets increases. Consequently, entropy 

can also be used to quantify diversification because it is highly responsive to the effects of 

diversification. 

Moreover, we can see that normal entropy is greater than empirical. It may indicate that risk is 

overvalued or predictability is undervalued when assets are normally distributed. This research 

leads us to the conclusion that variance is less informative than entropy. Furthermore, 

distribution-free property is advantageous, because doesn’t require knowledge of the exact 

distribution.  

Additionally, this experiment offers empirical support for the entropy subadditivity rule. 

𝐻[𝜑𝑋 + (1 − 𝜑)𝑌] ≤ 𝐻[𝜑𝑋] + 𝐻[(1 − 𝜑)𝑌] 
 

5.10  

  

where 𝜑 =
1

𝑁
. 
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5.2.6 Best performing multi objective portfolio model – MEE model  

 

The first and second moments are typically unsatisfactory and incomplete to explain portfolios in 

the situation of non-normal return distribution, since it is empirically demonstrated that returns 

on practically all asset classes and portfolios are not normally distributed. The logical 

consequence is that performance of a single objective is poorer than of a multi-objective model. 

Moreover, it has been discussed that if in such models entropy is much more useful to use than 

variance. In this chapter, we provide an entropy-based multi-objective portfolio model that 

guarantees a well-diversified portfolio and appropriate utilization of historical risk. 

 

5.2.6.1 Entropy based multi-objective portfolio model  

 

For a well-diversified portfolio model, at least two objectives ought to be accomplished: 

diversification and risk minimization. That can be formulated as: 

{
 
 

 
 min∑𝑣𝑖

2

𝑛

𝑖=1

𝐴𝑖

max(−∑𝑣𝑖 ln 𝑣𝑖

𝑛

𝑖=1

)

 

 

 
 
5.11 

  

with respect to the constraints 

∑𝑣𝑖𝑅𝑖 = 𝜏𝑜

𝑛

𝑖=1

 

  

 
5.12 

∑𝑣𝑖 = 1

𝑛

𝑖=1

 

 
5.13 

  

  

where 

𝐴𝑖- risk associated with the ith asset 

𝑅𝑖 – return from the ith asset 

𝜏𝑜- expected return 

𝑣𝑖 – portfolio weight for the ith asset 



Some applications of information theory to investments  
 

45 
 

This can be reconstructed, combining these two objectives into the single one objective as: 

min∑𝑣𝑖
2𝐴𝑖

𝑛

𝑖=1

+ 𝜉∑𝑣𝑖 ln 𝑣𝑖

𝑛

𝑖=1
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 where 𝜉 determine the trade-off between risk and diversity. 

 For 𝜉 = 0, and risk 𝐴𝑖 is changed to corresponding variance estimate, this model becomes 

single objective, well-known MV model. 

 For 𝜉 = 0, and 𝐴𝑖 is changed with corresponding entropy estimate, model becomes ME 

model 

 For 𝜉 > 0 and 𝐴𝑖is changed to corresponding variance estimate, we got MVE model 

 For 𝜉 > 0  and 𝐴𝑖 is changed to corresponding entropy estimate, MEE (mean-entropy-

entropy) model is obtained.  

In the MEE model, entropy is used as a measure of both risk and diversity.  

 

5.2.7 Measure of performance 

 

The most straightforward way of measuring portfolio performance is by using the Sharpe ratio, 

which is calculated as ration between expected value of the return and standard deviation of the 

return. Given how it is calculated, we conclude that it is only applicable for the normal 

distribution. The use of the Sharpe ratio in situations where return distributions are non-normal 

might result with false conclusions and unresolved contradictions. 

In order to properly assess the performance of the models we mentioned, alternative measures 

were used. Some of them are: ASR (Adjusted for Skewness Ration), MADR (The Mean 

Absolute Devitation Ration), etc. More about them and their formulas can be seen in [28].  

 

5.2.8 Application of the model to stock market data 

 

In this section, we will represent the results of comparing the models we discussed above (ME, 

MEE, MV, MVE) which were applied on four stock markets (Shanghai stock exchange (SEE), 

Korea exchange (KRX) and New York stock exchange (NYSE)). The observed time period is 

from 2009 to 2012. Dataset is consisted of 15 stock prices and the market index.  
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Summary statistics of stock returns of four stock exchanges was calculated, as well as 

performance of different portfolio models for each stock exchange. Both in-sample and out-

sample periods were considered. 

In the paper [28] you can see detailed tables with results for each stock exchange, here will be 

represented one as an example, and later we will be discussed the results and the best 

performances.  

 

 

Table 1 - Summary NYSE 

 

 

Table 2 - Performance of different portfolio models (NYSE) 
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Note: SR(Var), SR(Ent), ASR, MADR, SSR, FTR are different ratios for measuring 

performance. 

Stock returns often show characteristics that deviate from a normal distribution. Financial 

markets are known for their complexity, and various factors can contribute to non-normality, 

asymmetry, and excess kurtosis in stock return distributions. 

We will not go through each stock exchange individually, but we will draw a conclusion based 

on all 4 together, because the results are similar in most cases.  

For all four stock exchanges, multi-objective models perform better than singe-objective models. 

MEE gives the highest portfolio return for both in and out of sample periods. Also, it has the best 

performance measures. Moreover, MEE yields the lowest portfolio turnover. It can be good or 

bad, depends on expectations and preferences of investors. Lower portfolio turnover is good for 

investors who prefer buy-and-hold strategy. This strategy requires fewer transactions, so 

transaction costs are lower. However, for someone who doesn’t like to miss any opportunity, low 

turnover is not desirable.  

In the early literature, entropy is employed separately, for a diversity or as a risk measure. A 

more comprehensive portfolio model is provided by the multipurpose use of entropy in MEE. 

MEE can be used to realize the potentially significant investment gain instead of a variety of 

portfolio investment strategies. 
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Chapter 6  

 

Application of Rényi entropy in portfolio theory 
 

This chapter is mostly based on [14]. 

This chapter's objective is to provide a generalization of Shannon's entropy and examine the 

advantages of using it as a risk measure in portfolio optimization. 

We have seen that recently the use of entropy as an investment criterion has become popular. 

However, its application to portfolio selection is still in its infancy and there is still much to learn 

about the possible benefits of entropy regarding this problem. As we have seen earlier, non-

normality is a challenging problem which we tried to solve by introducing entropy as an 

additional parameter in the models described above.  

In this chapter, however, we address this problem by introducing a new term, i.e. the 

generalization of Shannon entropy, named Rényi entropy. The goal is to estimate portfolio risk 

through the amount of randomness carried by its returns. Unlike Shannon entropy, Rényi entropy 

gives us an additional parameter which controls how uncertainty is measured. We will see how 

the parameter controls both the center and tail part of distribution. We will also see how 

minimizing Rényi entropy yields portfolios that outperform minimum variance portfolios. 

We will explore theoretical basis of the Rényi entropy, its exponential measure as a risk measure, 

introduce minimum Rényi entropy portfolios, and support all this with empirical evidence. The 

main parts will be described, and results will be presented.  

 

6.1 Rényi entropy – definition  
 

Thirteen years after the introduction of Shannon’s entropy, Rényi suggested generalization with 

help of a parameter 𝜌 ∈ 𝑅+.  

Definition 7: Rényi entropy is defined as:  

𝐻 𝜌(𝑋) =
1

1 −  𝜌
log(∑𝑝𝑖

 𝜌

𝑛

𝑖=1

) 

 

 
6.1 
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where 𝜌 ∈ [0,∞], 𝜌 ≠ 1. In case of continuous random variable, the definition changes slightly 

to: 

𝐻 𝜌(𝑋) =
1

1 −  𝜌
ln∫𝑓𝑋(𝑥)𝑑𝑥 
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 For  𝜌 → 1, Shannon entropy is recovered, i.e. 

𝐻1(𝑋) = lim
 𝜌→1

𝐻 𝜌(𝑋) = 𝐻(𝑋) 

 

6.3 

  

 

6.2 Exponential Rényi entropy and its connection with deviation risk 

measures 
 

Despite the fact that Rényi entropy has interesting properties, its exponential transformation is 

considered to have more natural properties when dealing with risk. Hence, we will transform the 

Rényi entropy defined above into an exponential form. 

Definition 8: Exponential Rényi entropy is defined as follows: 

𝐻𝜌
′ (𝑋) = exp (𝐻𝜌(𝑋) = (∫(𝑓𝑋(𝑥))

𝜌 𝑑𝑥)

1
1−𝜌
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Note: for 𝜌 → 1 this expression become exponential Shannon’s entropy. 

Now we apply this measure to build a portfolio with a minimal risk. 

Deviation risk measures belong to the class of risk measures used to quantify deviations of a real 

portfolio’s return as opposed to what is expected. The most common deviation risk measures are 

Standard Deviation, VaR (Value at Risk) and extensions of both.  These measures are crucial for 

risk management and assessment.  

Regarding the properties, a mathematical and conceptual similarity was noticed between the 

exponential Rényi entropy and deviation risk measures. 

Deviation risk measures satisfying the following four properties: positivity, positive-

homogeneity, translation-invariance and subadditivity. It has been proven that 𝐻𝜌
′ (𝑋) satisfies 

the same properties. More about properties and proofs are given in a paper [14]. 
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6.2.1 Exponential Rényi entropy and its interpretation with different values of the 

parameter 𝝆 

 

In this section we will see how the adjusting parameter 𝜌 affects the central and tail parts of the 

distribution which might lead to alternative definition of risk, since adjusting 𝜌 changes the way 

entropy is measured. What is certain is that the parameter 𝜌 contributes to flexibility.  

For a demonstration, we will first take 𝜌 to be either 0 or ∞ to see how extreme cases behave.  

 When 𝜌 = 0 risk is measured with the support of distribution. That means that the 

emphasis is on the whole range of possible outcomes. Event with the lowest probabilities 

contribute the most to the risk measure, i.e. rare events (extreme values) have a greater 

impact. 

 

 When 𝜌 = ∞ risk is measured with by the maximal probability, i.e. the risk measure 

becomes sensitive to the most likely outcomes. Concentrating only on the most likely 

outcomes indicates that most of the risk is attributed to the events with the highest 

probability. Rare events or extreme values have little influence on the risk measure when 

𝜌 is very large.  

 

From this we can conclude as 𝜌 approaches infinity, the influence of tail events or extreme 

values is neglected. Since one of the key concerns in portfolio theory is managing the risk 

associated with extreme events or tail events, we want to avoid large parameter values. The ideal 

case is to find a balance between the most likely outcomes and extreme events. Finding the right 

value for the parameter 𝜌  is very important because it can balance the investor's appetite for risk 

with the nature of the asset's return. 

Using a graphic example, we will see how by decreasing 𝜌, the exponential Renyi entropy 

becomes more sensitive to events in the tail or extreme outcomes in the distribution. The entropy 

is evaluated for different values of parameter in the t-Student distribution. The number of 

degrees of freedom in the t-distribution influences its shape, particularly its tails. This analysis 

helps to assess how the Exponential Rényi Entropy reacts to changes in the behavior of the tail of 

the distribution.  

Formula used for this example is given in [37].  
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Figure 10 - Sensitivity to tail uncertainty of the exponential Rényi entropy 

 

We can see that for 𝜌 = 0.4  the sensitivity to increasing tail uncertainty is the most visible. 

It implies that a risk measure or investment strategy is becoming more responsive to extreme or 

rare events in the tails of the probability distribution. More specifically, it was concluded both 

through empirical results and through various arguments that favorable setting for 𝜌 is between 0 

and 1, i.e. 𝜌 ∈ [0,1] .  

 

6.2.2 How Rényi entropy interconnects with portfolio selection 

 

In this section we will use exponential Rényi entropy as an objective function to support 

investment strategies. It is best proposed to create a minimum risk portfolio that we can call a 

minimum Rényi entropy (MRE) portfolio. In this way, the exponential Rényi entropy of the 

portfolio return will be minimized.  

If R is the portfolio return, 𝑣 = (𝑣1, … , 𝑣𝑛)′ is the vector of portfolio weights, 𝑋 = (𝑋1, … , 𝑋𝑛) 

random asset-return vector, we can define portfolio return as  

𝑅 = 𝑣′𝑋 =∑𝑣𝑖𝑋𝑖

𝑛

𝑖=1

 

 

 
6.5 
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Definition 9 (Minimum Rényi entropy portfolio): If we have a set of n assets, the MRE portfolio 

for a given 𝜌 is defined as following: 

𝑣𝜌
∗ = min

𝑣∈𝑉
𝐻𝜌
′ (𝑅), 

 

6.6 

  

where  𝑉 is a set of constraint on 𝑣, and 1𝑛
′ 𝑣 = 1 holds, i.e. 100% is invested.  

When someone talks about the "higher-order moments of portfolio return," they are usually 

referring to moments beyond the second order (variance). Skewness is considered as the third 

moment) measuring the asymmetry of a probability distribution, as we have shown in the 

previous section. Kurtosis is considered as the fourth moment measuring the "tailedness" of a 

distribution. High kurtosis indicates heavy tails, meaning that the distribution has more extreme 

values (outliers), while low kurtosis indicates lighter tails. 

 

Figure 11 - Types of kurtosis 

 

Regarding the higher-order moments, minimum Rényi entropy portfolio is more suitable than 

minimum-variance since it aims to incorporate information from higher-order moments into the 

optimization process. By addressing the risk and uncertainty brought on by the skewness and 

kurtosis of the portfolio returns, the minimum Rényi entropy portfolio offers a more realistic 

method of risk management and portfolio creation. To show this, we introduce the Gram-

Charlier expansion of Rényi entropy.  

The Gram-Charlier expansion is a method applied to approximate probability distributions. It's 

particularly useful for capturing deviations from a normal distribution, and it provides a more 
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detailed analysis considering higher order moments. Through the next proposition we will see 

how exactly.  

Proposition 2: Let 𝑋 ∈ 𝐿4(Ω) and �̌� =
𝑋−𝐸(𝑋)

√𝑉𝑎𝑟(𝑋)
 standardization for a random variable X which 

follows a standard normal distribution. (This transformation is commonly used to compare 

values from different distributions or to identify outliers.) 

Skewness (𝑆) is defined as  

 
𝑆(𝑋) = 𝐸(�̌�3) 
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Kurtosis (𝐾) is defined as  

𝐾(𝑋) = 𝐸(�̌�4) − 3 
 

6.8 

  

The standardized form is used to eliminate the scale of the original distribution so that skewness 

and kurtosis are expressed in a dimensionless manner, making them comparable across different 

distributions 

𝐻𝜌
𝐺𝐶𝐸(𝑋) = 𝐻𝜌[𝜂(0,√𝑉(𝑋))] + 𝑏1(𝜌)𝐾(𝑋) + 𝑏2(𝜌)𝑆(𝑋)

2 + 𝑏3(𝜌)𝐾(𝑋)
2 
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with coefficients 

𝑏1(𝜌) =
1 − 𝜌

8𝜌
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 𝑏2(𝜌) = −
3𝜌2−6𝜌+5

24𝜌3′2
 

 
 

6.11 

𝑏3(𝜌) = −
3𝜌4 − 12𝜌3 + 42𝜌2 − 60𝜌 + 35

384𝜌5′2
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For 𝜌 = 1, the expansion of Shannon entropy is recovered: 

𝐻1
𝐺𝐶𝐸(𝑋) = 𝐻1[𝜂(0, √𝑉(𝑋))] −

1

12
𝑆(𝑋)2 −

1

48
𝐾(𝑋)2 

 

 
6.13 

  



Some applications of information theory to investments  
 

54 
 

It can be noted that in this kind of setup, 𝑏1(𝜌) = 0, therefore Rényi entropy is in noteworthy 

advantage, since it can control kurtosis.  

In the following picture coefficients  𝑏1(𝜌), 𝑏2(𝜌), 𝑏3(𝜌) are presented.  

 

Figure 12 - Behavior of coefficients 

 

𝐻𝜌[𝜂(0, √𝑉(𝑋))] = 𝐻𝜌[𝜂(0, 1)] +
1

2
ln 𝑉(𝑅)  provides the explicit connection between MRE 

and higher-order portfolios 

𝑣𝜌
∗ ≈ 𝑎𝑟𝑔min

𝑣∈𝑉

1

2
ln𝑉(𝑅) +𝑏1(𝜌)𝐾(𝑅) = 𝑏2(𝜌)𝑆(𝑅)

2 + 𝑏3(𝜌)𝐾(𝑅)
2 
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What can be observed in the picture is: when 𝑓𝑅  is close to a normal distribution, 𝑏1(𝜌)𝐾(𝑅) will 

have the most contributions. It may be noted that when 𝜌 < 1, 𝑏1(𝜌) > 0 MRE portfolio is 

similar to minimum-variance-kurtosis portfolio, which we did not mention in this paper, and 

more about it in [21]. However, when 𝜌 > 1, 𝑏1(𝜌) < 0  and the effect is reversed.  

As we know, traditional models frequently assume a normal distribution of returns. It is known 

that kurtosis normal distribution has a kurtosis of 3. If it is highly probable that extreme values 

are less likely, lower kurtosis would be preferred.  
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As we can see, for 𝜌 ∈ [0,1], the kurtosis is lower, and with assumption that investor is risk-

averse, he certainly prefer lower kurtosis, therefore this setting of 𝜌 is natural, as we mention 

earlier. Changing 𝜌 changes the minimization of variance and tail uncertainty.  

Next, 𝑏2(𝜌) and 𝑏3(𝜌) are negative for all 𝜌, therefore 𝑏2(𝜌)𝑆(𝑅)
2 and 𝑏3(𝜌)𝐾(𝑅)

2  can be 

seen as factors that moving the solution away from normal distribution skewness and kurtosis. 

This is logical given the nature of Shannon’s entropy which is maximal for the normal 

distribution. 

 

6.2.2.1 Robust estimator of exponential Rényi entropy 

 

To avoid making bad assumptions about the data distribution, we introduce a robust estimator 

since it provides reliable results despite extreme values. Therefore, the objective is to estimate 

exponential Rényi entropy in a robust way using appropriate estimator. In this work the m-

spacing estimator is used. This estimator is appropriate because it observes the differences 

between successive values in the data in a robust way, which implies that the influence of 

extreme values is reduced. The use of m-spacing ensures a better observation of the distribution 

characteristics. Robustness ensures resistance to outlier. Ensuring robustness is crucial for 

achieving a good out-of-sample performance. It is important that the construction of the portfolio 

be stable regardless uncertainties in the true return distribution. The detailed properties and 

implementation of this estimator is covered in paper [14]. Here we will report only the final 

results for the sake of brevity.  

 

6.2.3 Empirical study – comparison of MV and MRE portfolios 

6.2.3.1 Methodology   

 

Now it is time to demonstrate practically the interest of the strategy proposed in this chapter in 

comparison with several different minimum-variance strategies. Six datasets were used, which 

are often benchmarks in the literature. 

First, MRE portfolios are compared with each other for given different values of the parameter 

𝜌 ∈ {0.3,0.5,0.7,1,1.5,2}. Second, MRE portfolios were compared with five different MV 

portfolios.  

The portfolios are constructed by dynamic rebalancing which involves periodically reviewing 

and adjusting portfolio to respond to the certain changes. The portfolio is reviewed and adjusted 
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every year. Historical data from the past ten years was gathered for making decisions. The total 

period of analysis is from 1963 to 2016, that is 43 years. We want to see how well portfolios 

perform over this period of time, using out-of-sample data.  

Regarding robust estimator, it is concluded that with increasing m, stability of portfolio weights 

is improved.  

In order to improve stability and performance in real situations, it is good to limit the range of 

possible solutions. Without limitation, optimized portfolios can have high turnover, which means 

that the composition of the portfolio changes a lot, which is not desirable when there are a small 

number of assets. Also, the constraint is introduced based on the explanation that stocks with 

higher standard deviations are more prone to estimation errors. Consequently, global variance-

based constraint (GVBC) established by [15] was introduced.  GVBC is a method that imposes 

more stringent constraints on stocks with higher standard deviations in order to improve the 

stability and performance of out-of-sample portfolios.  

Lastly, for measuring portfolio performance, three criterions are used: well-known The Sharpe 

Ratio, Adjusted Sharpe Ration (ASR) 

𝐴𝑆𝑅 = 𝑆𝑅 (1 +
𝑆(𝑅)

3!
𝑆𝑅 −

𝐾(𝑅)

4!
𝑆𝑅2) 
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and turnover. Portfolio turnover is a measure of how quickly assets are either bought or sold over 

a given period of time. High turnover rate will have higher fees to reflect the turnover costs. 

Higher turnover can introduce more uncertainty and potential risks, but it can also present 

opportunities for gain. Lower turnover is generally associated with lower transaction costs. [6] 

 

6.2.3.2 Results  

 

Since we have 6 values of paremeter 𝜌, we comparing performance of 6 MRE portfolios. 

Regarding SR, the best results give values of parameter between zero and one. Also, the 

parameter selected in this way enables the reduction in portfolio turnover. If we take the average 

of all six datasets, 𝜌 = 2 provides monthly turnover of 86.7%, and 𝜌 = 0.3 provides 32.7%. 

Moreover, the smaller the alpha and the closer to zero, the more the turnover drops. However, 

although the advice is to use small values of 𝜌, for skewness and kurtosis, it may lead to high tail 

risk. Smaller the 𝜌 leads to decrease of skewness (extreme events are less likely) and increase of 

excess kurtosis (extreme events are more likely). For 𝜌 = 0.3 it is best trade off between risk, 

return and turnover.  
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Next, we compare MRE and MV. There are several noteworthy observations that can be made. 

For instance, for 𝜌 = 0.3 MRE shows better performance than all five MV portfolios. MRE 

outperforms MV for both SR and ASR. But, regarding turnover, MV portfolios are more stable 

than MRE. This can be expected since MRE consider higher-order moments, which are more 

influenced by extreme events, leading to potentially higher turnover as the portfolio reacts more 

strongly to unexpected or extreme market conditions.  

The choice between these approaches depends on many factors. But overall, it can be thought 

that Rényi entropy is a more appropriate risk criterion than variance, more notably for a low 

values of 𝜌.  
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Table 3 – Results  

 

Note: 𝛼 is 𝜌 in our case and Σ̂, Σ̂𝑐𝑐 , Σ̂𝑆𝐹 , Σ̂𝐼  and MP are different types of minimum-variance 

portfolios we mentioned above.  
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From those results, it can be concluded that we have achieved reliable out-of-sample 

performances. Moreover, Rényi entropy has proven to be a powerful alternative to existing risk 

criteria and outperform traditional MV model, but it also opened the door to other applications 

and new ideas. For instance, this research gives an idea for a different and potentially more 

attractive way of implementing entropy, which is to maximize the entropy of portfolio returns. 
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Chapter 7  

 

Conclusion 
 

To conclude, uncertainty is one of the main characteristics of gambling, but also in investing in 

the stock market. What is certain is that the 50s and 60s of the last century marked enormous 

achievements in finance and information theory. Shannon, Kelly and Markowitz are proven 

geniuses of their time, since their fundaments still remain popular and fertile ground for research.  

In the first half of the thesis, we got to know the ground breaking theory in financial field and 

showed the basics of the Kelly criteria which highlight close connections with information 

theory. We tackled the theory through its application in gambling. We started from the simplest 

things to the more complex ones, but again not enough as wide range of application. In recent 

times, the theory that originated in the 60s, has flourished again in 21st century and this is shown 

by the fact that variations of the Kelly criteria are used by the most famous investors, among who 

is Warren Buffet [8]. We have seen how entropy and its modifications play a key role, but also 

stochastic processes and their entropy rate. Generally, we have seen how different notions from 

information theory are related to different betting strategies. The aim of this thesis was to show 

how information theory contributes to this topic, but if we want to go further and deeper we 

could see how experts advise never to use the full Kelly criterion, but modifications or 

‘fractions’. This problem has been widely elaborated in recent researches as well [33] where 

different experiment was conducted.  Also, one of the greatest applications of Kelly Criterion is 

by using it for card counting in blackjack, discovered by Edward O. Thorp, where the subject is 

elaborated in a popular book ‘Beat the Dealer’, and more about game of blackjack in [9]. It can 

be said that it was information theory that helped Edward beat the casino. Although it sounds 

mathematically perfect, this theory still has its flaws and limitations. One of the main problems is 

the assumption of an ideal scenario that often conflicts with reality. When theory and practice are 

in agreement it means that the probability distributions are correct and well known. In [16] both 

positive and negative sides are highlighted. In short term period, gambling is mostly based on 

luck, making the game difficult to predict. When looking at the long-term goal, the good 

qualities still dominate, but it must be remembered that the background must be well known and 

that the criterion is carefully applied, paying attention to the risks.  

Although there are various scientific works that have continued the narrative in direction 

extending Kelly criterion to managing portfolios of investments, we nevertheless took a different 

path with the desire to see in what other ways information theory can be applied. 

The purpose of the second part is to analyze several models to solve some of the challenges 

faced in the field of portfolio selection, focusing on risk and how to better measure it. We 
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actually focus on upgrade and improvement of a well-known Markowitz mean-variance model. 

Markowitz received the Nobel Prize for his work, so the problem was well set even at the very 

beginning of the 70s, it was only supplemented with additional parameters or objective 

functions, and the technology used to test the model advanced. Everything that exists today is 

based on what was created 70 years ago. But our aim is to go beyond and rely on information 

theory and try to improve traditional model and also introduce strategies that accounts for higher 

moments. Attention was drawn to the model Mean-Entropy-Entropy that showed the best 

performance and we saw that entropy is a good measure of risk as well as diversification. 

Entering the world of entropy, we investigated Rényi entropy as a more flexible measure of 

Shannon’s entropy and again showed how this way of approaching risk is better than the 

traditional one. The traditional model is still in use because of its clarity, mathematical ease, and 

is based on a lot of researches. Entropy is somewhat more complex to calculate so in this work 

but also in any other the simplified real complexity of financial markets was used. 

The application of information theory to investment, exemplified through the exploration of the 

Kelly Criterion, portfolio theory, and entropy-based risk measures, underscores the profound 

impact that harnessing principles of information theory can have in optimizing decision-making 

processes within the realm of finance, ultimately paving the way for more efficient and effective 

investment strategies in an increasingly complex and dynamic market environment. 
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