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1 Introduction

1 Introduction
The problem of minimizing finite sums (a sum of a finite number of so-called

local loss functions) often arises in various fields such as machine learning, statistics,
and economics, making its solution crucial. Consequently, constructing algorithms
for solving finite sum problems and continuously improving them remains a subject
of ongoing research in the scientific community.

In response to this challenge, numerous techniques have been developed, theore-
tically suitable for addressing this problem. Among the earliest and most well-known
is the gradient descent method. The idea behind this method is straightforward: ite-
ratively move in the direction of the negative gradient of the function to decrease
its value. However, its main drawback is slow convergence. To achieve faster con-
vergence rates, various variations and improvements of the gradient descent method
have emerged.

One of these advanced techniques is the Newton’s method. In addition to first-
order information, it requires finding the Hessian matrix in each iteration. However,
this process has proven to be costly, as computing and manipulating the Hessian
matrix can be demanding, particularly for functions with a large number of varia-
bles. To overcome these challenges, methods that approximate the Hessian matrix
in different ways have been developed. Among them is the spectral gradient method.

The spectral gradient method has proven to be extremely efficient in classical
(deterministic) optimization. However, in practice, most classical methods are not
applicable because the optimization process costs too much. Therefore, increasing
attention is being paid to stochastic methods. In the paper [11], the authors propo-
sed and analyzed the Subsampled Line Search Spectral Gradient Method for Finite
Sums - SLiSeS, where the advantages of the spectral gradient method are utilized
within the framework of stochastic optimization. In stochastic optimization, inste-
ad of using the entire dataset, a randomly selected data sample is used for each
iteration to reduce computational costs and speed up the optimization process. It
is important to note that stochasticity introduces a certain level of noise into the
optimization process. For this reason, the authors of the SLiSeS algorithm proposed
retaining the same data sample for several iterations before selecting a new sample.
This allows for better exploration of the objective function’s structure and contri-
butes to the efficiency of the mentioned method.

The aim of this study will be to investigate the behavior of the SLiSeS algorithm
in various scenarios. The focus will be on analyzing the impact of different parame-
ters on the algorithm’s performance. Additionally, we will explore how the SLiSeS
algorithm behaves in situations with different types of data or different types of
optimization problems. The goal is to gain a deeper understanding of how SLiSeS
operates in different situations and how it can be most effectively applied in practi-
ce. This research will help us identify best practices and recommendations for using
the SLiSeS algorithm in real-world applications.
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1 Introduction

The rest of this thesis is organized as follows. In Chapter 2, we will explain the
concept of machine learning and focus on the importance of numerical optimization
in the context of machine learning. In Chapter 3, we will present a description of the
optimization problem that is considered in this thesis. After that, we will explain
the Line Search method and Stochastic Gradient Descent (SGD) as elements of
the SLiSeS algorithm. In Chapter 4, we will explain in detail the spectral gradient
method and present some of its characteristics. In Chapter 5, we will present the
SLiSeS algorithm itself with the corresponding line search technique and explain their
steps in detail. We will also state the conditions that guarantee the convergence of
this algorithm to a stationary point. Numerical experiments are given in Chapter 6.
Finally, in Chapter 7, we will provide some concluding remarks.
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2 Machine learning

2 Machine learning
Machine learning (ML), a discipline of artificial intelligence (AI), enables mac-

hines to learn automatically from data and past experiences. This allows them to
identify patterns and make predictions with minimal human intervention. It has a
wide range of applications, including image and speech recognition, natural langu-
age processing, recommendation systems, autonomous vehicles, medical diagnosis,
fraud detection, and much more. Machine learning involves showing a large volume
of data to a machine so that it can learn and make predictions, find patterns, or
classify data.

There are three types of machine learning: supervised, unsupervised, and rein-
forcement learning. Each of these has distinct advantages in different situations,
depending on the nature of the problem and the desired output.

Supervised learning is used when we have labeled input data and target out-
put values (labels), and the goal is to learn a model that can predict or classify
new input data based on those labeled instances. To achieve this, the machine is
trained on a set of example inputs and corresponding outputs. This type of learning
is very common and is used to solve problems such as classification (where we try
to classify input data into discrete classes) and regression (where we try to predict
continuous output values).

In unsupervised learning the machine is not provided labeled examples or pre-
vious patterns on which to base the analysis of the input data. The machine must
uncover patterns and draw inferences by itself, without having the correct answers.
It will classify or cluster data by discovering the similarity of features on its own. This
approach enables a deeper understanding of the data and potentially the discovery
of new information that could be useful for various analyses and decision-making.

Figure 1: Supervised, Unsupervised and Reinforcement learning, Source: [1]

Reinforcement learning differs from both supervised and unsupervised learning
primarily because it is used to take actions to achieve certain goals in dynamic envi-
ronments and continuously improves its model based on feedback from experiences.
It learns through trial and error - from the consequences of his actions and new
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2 Machine learning

choices. As the action is taken, the success of the outcome is evaluated, receiving
a positive or negative rating. The algorithm strives to obtain positive results and
the model is trained on continuous feedback. A conceptual example of this would
be a self-driving car that would get a positive rating for moving from one location
to another without crashing.

In this thesis, the focus will be on supervised learning, so here follows a brief expla-
nation of how this type of learning works.

The first step is to collect relevant data so that the machine learning model can
find the correct patterns. The quality of the data fed into the machine will determine
how accurate the model is; thus, inaccurate or outdated data can lead to inaccurate
outcomes or predictions that lack relevance. High-quality data is characterized by
its relevance, minimal instances of missing or duplicated values, and a comprehen-
sive representation of different subcategories or classes. Once the relevant data is
available, it should be prepared, which can be achieved by, for example, handling
missing values, “normalizing data,” and “encoding categorical variables.” The next
step is splitting the cleaned data into two sets - a training set and a testing set.
The training set is used to train the machine learning model, while the testing set is
used to assess the model’s accuracy after training. Then an appropriate algorithm
should be chosen depending on the nature of the problem and the characteristics
of the data. After choosing the algorithm, the model needs to be trained, which is
the most important step in machine learning. During training, training data is fed
into a machine learning model to find patterns and make predictions. This learning
process involves adjusting model parameters to minimize errors between the pre-
dicted outcomes and the actual data, ultimately enhancing the model’s accuracy
and its ability to make precise predictions. After training the model, it is necessary
to evaluate its performance. This is done by testing the model’s ability on data it
has not seen before, usually using a test set previously separated from the training
data. Various metrics are used to measure how well the model performs, such as
accuracy, precision, recall, and root mean square error.

Figure 2: Steps of Supervised Machine Learning, Souce: [2]
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2.1 Numerical Optimization in Machine Learning

The choice of evaluation metric depends on the specific problem and the desi-
red outcome. Once the model has been created and evaluated, it should be checked
whether its accuracy can be improved in any way. This is achieved by adjusting
the “hyperparameters” present in the model. Hyperparameters are variables in the
model that are generally chosen by the programmer. At a certain value of the
hyperparameter, the accuracy reaches its maximum. Setting hyperparameters invol-
ves identifying these values. In the end, the model can be applied to unseen data
for accurate predictions.

2.1 Numerical Optimization in Machine Learning
At the very core of machine learning lies numerical optimization, which involves

the process of finding the best possible solution from a set of feasible options, taking
into account various constraints and objectives. This optimization process plays a
key role in adjusting the parameters of machine learning models, improving their
performance and allowing them to draw general conclusions from the available data,
so that they can successfully apply their knowledge to new situations they have not
been exposed to before.
In numerical optimization the following problem is considered:

min
x∈S

f(x), (2.1)

where f : D → R and D, S ⊆ Rn. Vector x is called the decision variable, and
its dimension n represents the dimension of the problem. The function f is called
the objective function, and D represents its domain. S is called the feasible set
and represents the constraints of the optimization problem (2.1). In the case when
S = Rn, the problem (2.1) is said to be an unconstrained optimization problem.
On the other hand, if S is a true subset of Rn, then the problem (2.1) is called a
constrained optimization problem, and S is usually stated as follows:

S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}, (2.2)

where h : Rn → Rm represents equality constraints, and g : Rn → Rp represents
inequality constraints. Both of these constraints are explicit constraints, while im-
plicit constraints are represented by the domain D.

Solving the optimization problem means finding the best feasible decision varia-
ble - the one that minimizes the objective function on the feasible set. There are
two types of solutions to the problem (2.1), global and local solutions, and their
definitions follow below.

Definition 1. A point x∗ is a global solution of the problem (2.1) if f(x∗) ≤ f(x)
for every x ∈ S. If f(x∗) < f(x) for every x ∈ S, x ̸= x∗, then x∗ is considered a
strict global solution.

Definition 2. A point x∗ is a local solution of the problem (2.1) if there exists ε > 0
such that f(x∗) ≤ f(x) for every x ∈ S such that ∥x − x∗∥ ≤ ε. If f(x∗) < f(x)
for every x ∈ S, x ̸= x∗, such that ∥x − x∗∥ ≤ ε, then x∗ is termed a strict local
solution.
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2.1 Numerical Optimization in Machine Learning

Figure 3: Local and global solution to the problem (2.1), Source: [3]

Finding a global solution can be very challenging, making local solutions par-
ticularly relevant in nonlinear optimization. This thesis focuses on analyzing the
behavior of algorithms designed for solving unconstrained optimization problems:

min
x∈Rn

f(x), (2.3)

where f : Rn → R. Here, we state the first and second necessary conditions, as well
as a sufficient condition, for the local solution of these problems.

Theorem 1. Suppose that f ∈ C1(Rn). If x∗ is a local solution of (2.3), then
∇f(x∗) = 0.

Theorem 2. Suppose that f ∈ C2(Rn). If x∗ is a local solution of (2.3),then

a) ∇f(x∗) = 0;

b) ∇2f(x∗) ⪰ 0.

Theorem 3. Suppose that f ∈ C2(Rn). If

1. ∇f(x∗) = 0 and

2. ∇2f(x∗) ≻ 0

then x∗ is a strict local solution of (2.3).

There are many numerical methods for finding a local solution to the problem (2.3),
such as gradient descent, Newton’s method, Quasi-Newton method, and many ot-
hers. Each of these methods has its advantages and disadvantages, often evaluated
in terms of speed of convergence and efficiency in working with different types of
functions. For example, some methods feature a fast convergence rate, but may
require additional information about the function, which can be expensive or dif-
ficult to obtain. This leads scientists to research and develop new approaches to
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2.1 Numerical Optimization in Machine Learning

improve existing methods and overcome their shortcomings. Additionally, researc-
hers experiment with combining different techniques or adapting existing methods
to specific problem characteristics. This approach contributes to the development
of more efficient and robust numerical algorithms capable of handling increasingly
complex challenges in the field of machine learning and optimization. Advances in
this area offer new opportunities to efficiently solve complex machine learning pro-
blems, thereby contributing to the development of advanced models and algorithms
used in various applications.

10



3 Problem Description

3 Problem Description
In machine learning, a large number of problems involve computing the appro-

ximate minimizer of a finite sum of local loss functions over a large number of
training examples. These local loss functions estimate how much the actual value
for a given data point differs from the value predicted by the model. The basic idea
of this problem is to find a set of parameters or variables that minimize the total or
global loss, usually represented as the sum of these local loss functions. The global
loss function quantifies how well the model predictions align with the true target
values for the entire dataset, and minimizing this global loss is essential for training
models to achieve accurate predictions and good generalization. However, practical
problems often introduce additional complexities. For example, local loss functions
in practice are often nonconvex, which complicates the optimization problem beca-
use the problem may have multiple local minima.

We will consider the average of a finite number of possible non-convex smooth
functions:

min
x∈Rn

f(x) := 1
N

N∑
i=1

fi(x), (3.1)

where each fi : Rn → R for i ∈ {1, ..., N} is bounded from below and flow denotes
the objective function’s lower bound.

In the paper [11], the authors proposed the use of the Subsampled Line Search
Spectral Gradient Method to solve the problem (3.1). The reasons for creating this
algorithm, as well as its components, will be explained below.

3.1 Line Search Method
The line search method is an iterative approach to find a local minimum of

a continuously differentiable multidimensional nonlinear function. Its basic concept
derives from the observation that that if the point x is not a stationary point for
the objective function f , i.e. ∇f(x) ̸= 0, as indicated by Theorem 1, it implies that
x is not a minimizer of function f . Consequently, there is a vector d ∈ Rn known as
the descent direction, defined below, such that f(x + αd) < f(x) for some scalar
α > 0, referred to as the step size. The descent direction d indicates a decrease in
the function’s value, and the step size α determines the extent of the movement
along this direction.

Definition 3. Consider a point x such ∇f(x) ̸= 0. A direction d is called a descent
direction for f at the point x if there exists α > 0 such that

f(x + αd) < f(x). (3.2)

Below is stated a characterization of descent directions that is often used when
f is continuously differentiable.
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3.1 Line Search Method

Theorem 4. Suppose that f : Rn → R, f ∈ C1(R), and x ∈ Rn is such that
∇f(x) ̸= 0. Moreover, suppose that the direction d satisfies the following inequality

∇T f(x)d < 0. (3.3)

Then, there exists α̂ such that f(x + αd) < f(x) for all α ∈ (0, α̂].

A model algorithm of the line search method is given below.

Algorithm 1 Line Search Method
S0 Input parameters: x0 ∈ Rn.

S1 Initialization: k = 0.

S2 Stopping criterion: If ∇f(xk) = 0 STOP. Otherwise go to Step 3.

S3 Search direction: Choose dk such that ∇T f(xk)dk < 0.

S4 Step size: Find αk > 0 such that f(xk + αkdk) < f(xk).

S5 Update: Set xk+1 = xk + αkdk, k = k + 1 and go to S2.

However, the sequence {xk} generated by Algorithm 1 does not converge to a
minimizer of f in every case. The algorithm will stop only if it encounters a stationa-
ry point of the function f , otherwise it generates a sequence {xk} for which it only
holds f(xk+1) < f(x). In order to achieve convergence, it is necessary to introduce
certain constraints. To avoid too small steps and directions that are nearly orthogo-
nal to the gradient, the following conditions on direction d are imposed respectively:

||dk|| ≥ σ||∇f(xk)||, (3.4)

∇T f(xk)dk ≤ −θ||∇T f(xk)||||dk||, (3.5)

where σ > 0, θ ∈ (0, 1]. Also, in order to avoid too large steps, the following con-
dition is imposed on the step size αk:

f(xk + αkdk) ≤ f(xk) + ηαk∇T f(xk)dk, (3.6)

where η ∈ (0, 1). Condition (3.6) is often called the Armijo condition or the sufficient
decrease condition. The following theorem states the conditions under which we can
be certain that there exists an α satisfying (3.6).

Theorem 5. Suppose that f : Rn → R, f ∈ C1(Rn), and ∇T f(xk)dk < 0.
Moreover, assume that the function f is bounded from below on the line {xk +
αdk|α > 0}. Then, there exists ᾱ > 0 such that the Armijo condition holds for all
α ∈ (0, ᾱ].

Now, the following theorem, under certain conditions, provides for the global
convergence of the improved line search method.
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3.2 Subsampling

Theorem 6. Suppose that f : Rn → R, f ∈ C1(Rn) and f is bounded from
below. Moreover, assume that the sequence of search directions {dk}k∈N is bounded.
Then, either Algorithm 1, where for dk and αk the conditions 3.4, 3.5 and 3.6 hold,
terminates after a finite number of iterations k̄ at the stationary point xk̄ or every
accumulation point of the sequence {xk}k∈N is a stationary point of the function
f .

The descent direction can be computed by various methods, among them is
the gradient descent method, where dk = −∇f(xk). This direction satisfies both
inequalities (3.4), and (3.5) with σ = 1, and θ = 1. The basic idea of this method
is to take repeated steps in the opposite direction of the gradient of the function at
the current point because this is the direction of steepest descent. However, despite
its simplicity, the gradient descent method performs poorly (the rate of convergence
is at most linear in general). Therefore, to achieve a better convergence rate, met-
hods have been developed that, in addition to the gradient, also use second-order
information. These will be discussed in the next chapter.

3.2 Subsampling
In many machine learning problems, the need to compute an approximate mi-

nimizer of problem (3.1) arises when dealing with a large set of training examples,
which often exhibit a large amount of redundancy. In those cases, it is almost man-
datory to employ stochastic iterative methods that update the prediction model
based on a relatively small randomly chosen subset (or sample) of the training da-
ta. One such powerful method is Stochastic Gradient Descent (SGD), a variant of
the Gradient Descent algorithm specifically designed for optimizing machine lear-
ning models. SGD efficiently addresses the computational inefficiency of traditional
Gradient Descent methods when dealing with large datasets in machine learning
projects. In SGD, instead of using the entire dataset for each iteration, only a single
random training example (or a small batch) is selected to calculate the gradient
and update the model parameters. This random selection introduces randomness
into the optimization process, hence the term “stochastic” in stochastic Gradient
Descent.

In SGD, the path the algorithm uses to reach the minimum is usually noisier
than that of a typical Gradient Descent algorithm. The reason for this is that the
algorithm randomly chooses only one sample from the full sample to estimate the
gradient of the objective function for each iteration. However, the manner in which
the algorithm moves is inconsequential, as long as it reaches a minimum with sig-
nificantly shorter training time.

In the images below, we can see the paths of a typical Gradient Descent and the
Stochastic Gradient Descent method (SGD). These paths provide insight into the
differences between the two algorithms and how they move towards the minimum
of the function.
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3.2 Subsampling

Figure 4: Gradient Descent Optimization Path, Source: [4]

Figure 5: Stochastic Gradient Descent Optimization Path, Source: [4]

As we mentioned before, SGD is generally noisier than typical Gradient Descent,
so it usually requires a higher number of iterations to reach the minimum, given the
stochasticity in its descent. However, SGD is computationally much cheaper than
typical Gradient Descent, although reaching the minimum requires more iterations
than typical Gradient Descent.

Now that we have explained the reasons for introducing stochasticity into nu-
merical methods, in the following, we will mathematically define SGD.

Let us denote the full sample by N = 1, 2, ..., N and, independently of the ap-
plied iterative method, let us denote the randomly chosen subsample at iteration k
by Nk ⊆ N where |Nk| = S ≪ N .The function estimator obtained by averaging
the functions fi in Nk is given by

fNk
(x) = 1

S

∑
i∈Nk

fi(x), (3.7)

and the associated gradient estimator is

14



3.2 Subsampling

∇fNk
(x) = 1

S

∑
i∈Nk

∇fi(x). (3.8)

For solving (3.1), stochastic gradient (SG) algorithms are of the form

xk+1 = xk − γk∇fNk
(xk). (3.9)

However, in the case when the choice of the step length γk > 0 is standard (constant
or decreasing), SG methods must perform a large number of iterations to observe
an adequate reduction in the objective function.

In order to speed up the convergence rate of the iterative process towards the
local minimum of problem (3.1), the Stochastic Gradient method has been en-
riched by incorporating spectral step lengths. The spectral method, which will be
comprehensively explained in the next chapter, and its variants for the general un-
constrained minimization problem (full sample), are low-cost gradient methods that
have proved to be very effective in practice for large-scale optimization. However,
all schemes that utilized this combination of spectral steps with the SG method
shared a common feature of traditional options for changing the random subset Nk

(with constant or dynamically increasing sizes) at each iteration. Subsequently, the
authors of the SLiSeS algorithm proposed retaining the same subset for several ite-
rations before subsampling again. As demonstrated in their numerical experiments,
this alteration in the algorithm results in a significant improvement in the practical
behavior of the method.
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4 Spectral gradient method

4 Spectral gradient method
In order to achieve the fastest possible convergence to the local minimum of the

objective function, various numerical methods have been developed. These methods
usually require some information about the Hessian in addition to using the gradient
of the objective function. Since the Hessian represents the second-order derivative
of the objective function, methods that use this information are commonly called
second-order methods. Among them, Newton’s method is of particular importance.

Therefore, the basic idea of Newton’s method is to iteratively update the current
solution, taking into account both the gradient and the curvature of the objective
function. To better understand how Newton’s method works, let us consider an
iteration xk such that ∇f(xk) ̸= 0. In an ideal scenario, the goal is to progress to
the next iteration xk+1 such that ∇f(xk+1) = 0. Denote dk = xk+1 − xk. Then,
using the Taylor expansion yields the following approximation:

∇f(xk+1) ≈ ∇f(xk) + ∇2f(xk)dk. (4.1)

So, instead of searching for xk+1 such that the left-hand side is equal to zero, at-
tention is shifted to finding dk such that the right-hand side equals zero, i.e.

∇f(xk) + ∇2f(xk)dk = 0. (4.2)

Equation (4.2) is called Newton’s equation, and the vector d that satisfies it is
commonly referred to as the Newton step or the Newton direction. It is a solution
of the system of linear equations:

∇2f(xk)dk = −∇f(xk). (4.3)

This step is not unique in general, but if the Hessian matrix ∇2f(xk) is non-singular,
then the Newton step can be expressed as:

dk = −(∇2f(xk))−1∇f(xk). (4.4)

As can be noted, the Newton method requires computing the Hessian and then sol-
ving the system of linear equations at each iteration. That can be computationally
very expensive and challenging. In order to avoid these problems, Quasi-Newton
methods were developed.

Quasi-Newton methods aim to approximate the Newton direction without expli-
citly calculating the Hessian matrix, which is achieved as follows. The quasi-Newton
direction dk should satisfy the following equation:

Bkdk = −∇f(xk). (4.5)

where Bk denotes the approximation of the Hessian matrix. Then, assume that
we have an approximation Bk and that we performed the iteration to obtain xk+1.
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4 Spectral gradient method

Subsequently, we need to update the Hessian approximation Bk+1.To ensure a valid
update, it is essential that the new approximation Bk+1 satisfies the secant equation:

Bk+1sk = yk, (4.6)

where:
sk = xk+1 − xk, (4.7)

yk = ∇f(xk+1) − ∇f(xk). (4.8)

The secant method, which was originally developed for solving the problem of finding
zeros (roots) of a function with one variable, became the basis for quasi-Newton
methods for solving optimization problems of multidimensional functions. By avo-
iding the direct calculation of the Hessian matrix, these methods strike a balance
between the computational efficiency of first-order methods and the convergence
advantage of second-order methods.

In the spectral gradient method (originally introduced by Barzilai and Borwe-
in [10], the search is for a matrix Bk+1 with a very simple structure, which satisfies
(4.6). More precisely, the condition is set that the matrix Bk+1 is of the form:

Bk+1 = σk+1I, (4.9)

where σk+1 ∈ R, so then equation (4.6) becomes:

σk+1sk = yk. (4.10)

In general, this equation has no solutions. However, accepting the least-squares so-
lution that minimizes ||σsk − yk||22, it is obtained that the solution is σk+1 = sT

k yk

sT
k

sk
.

Therefore, in the spectral gradient method, the descent direction is obtained by
dk+1 = −σ−1

k+1∇f(xk+1), where

γLONG
k+1 = 1

σk+1
= sT

k sk

sT
k yk

(4.11)

gives an approximation of the inverse Hessian called the long BB step size.

The secant equation can also be stated as Hk+1yk = sk, and in that case, the
corresponding approximation of the inverse Hessian turns out to be

γSHORT
k+1 = sT

k yk

yT
k yk

, (4.12)

and it is called the short BB step size.

It holds that:

γSHORT
k+1 = sT

k yk

yT
k yk

≤ ||sk||||yk||
||yk||2

≤ ||sk||2

||sk||||yk||
≤ sT

k sk

sT
k yk

= γLONG
k+1 . (4.13)
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4 Spectral gradient method

When the objective function is a quadratic function:

f = 1
2xT AxT + bT x + c (4.14)

where f : Rn → R, b ∈ Rn and A ∈ Rn,n is a symmetric positive definite (SPD)
matrix, long and short BB step sizes become:

γLONG
k = ∇f(xk−1)T ∇f(xk−1)

∇f(xk−1)T A∇f(xk−1) . (4.15)

γSHORT
k = ∇f(xk−1)T A∇f(xk−1)

∇f(xk−1)T A2∇f(xk−1) . (4.16)

respectively. So, 1
γLONG

k

is a Rayleigh quotient of A by vector sk−1, and 1
γSHORT

k

is a Rayleigh quotient of A by vector
√

Ask−1. Based on this and the min-max
theorem, it follows that 1

γLONG
k

and 1
γSHORT

k

are in between the minimum λmin and
the maximum eigenvalue λmax of the Hessian A:

0 ≤ λmin ≤ 1
γSHORT

k

≤ 1
γLONG

k

≤ λmax. (4.17)

Note that the long BB step size (4.15) used for defining xk+1 is the one used in
the optimal Cauchy steepest descent method for defining the step at iteration k.
Therefore, the spectral gradient method computes, at each iteration, the step that
minimizes the quadratic objective function along the negative gradient direction
but, instead of using this step at the k-th iteration, saves the step to be used in the
next iteration. It can be shown that the method converges for the strictly convex
quadratic functions in the general case (for every n).

In the general case, by the Mean-Value Theorem of integral calculus, one has:

yk =
[∫ 1

0
∇2f(xk + tsk) dt

]
sk. (4.18)

Therefore, 1
γLONG

k

defined in (4.11) and 1
γSHORT

k

defined in (4.12) are Rayleigh qu-

otients relative to the average Hessian matrix
∫ 1

0 ∇2f(xk + tsk) dt. Also, it follows
that λmin ≤ 1

γSHORT
k

≤ 1
γLONG

k

≤ λmax, where λmin and λmax are respectively the
minimum and the maximum eigenvalue of the average Hessian. This observation
provides motivation for the term spectral method.

For minimizing general (not necessarily quadratic) functions, the spectral gradient
method shows (highly) non-monotonic behavior during the convergence process,
but it is significant that this method and its modifications show global convergence
under mild assumptions. Also, as can be noted that in general, the long and short
BB steps are not always greater than zero. In the case of a minimization task, and
if these steps turn out to be negative or extremely large, it is advisable to choose
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4 Spectral gradient method

an alternative positive value to ensure a stable and efficient optimization.

The spectral method and its variants, for a general (full sample) unconstrained
minimization problem, are inexpensive gradient methods that have proven to be very
efficient in practice for large-scale optimization. They have received much attention
in the last three decades, including theoretical understanding, extensions and adap-
tations for different scenarios (unconstrained and constrained) and for some specific
applications.
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5 The algorithm

5 The algorithm
The basic idea of the authors of the SLiSeS algorithm was to utilize the advanta-

ges of the spectral gradient method within the framework of stochastic optimization.
To reduce the impact of noise caused by the stochastic factor, the authors sugge-
sted that the same data sample be stored for several iterations before selecting a
new sample. In this way, the algorithm is allowed to better explore the structure of
the objective function, thereby increasing the probability of finding a convergence
direction with less variation caused by noise.

In this chapter, SLiSeS (Subsampled Line Search Spectral Gradient Method for
Finite Sums) will be described in Algorithm 2, while the line search procedure will
be described in Algorithm 3. Also, the steps involved in these two algorithms will
be explained in detail.

Algorithm 2 SLiSeS (Subsampled Line Search Spectral Gradient Method)
S0 Initialization: x0 ∈ Rn, η ∈ (0, 1), S ∈ 0, 1, ..., N , m ∈ N, 0 < γmin ≤ 1 ≤
γmax < ∞, {tk} ∈ R∞

+ such that
∑

k tk ≤ t < ∞, and N0 ⊆ N , |N0| = S. Set
k = 0.

S1 Sampling: If mod(k, m) = 0 choose Nk ⊆ N such that |Nk| = S. Else, set
Nk = Nk−1.

S2: Compute gk = ∇fNk
(xk).

S3 Spectral coefficient: If mod(k, m) = 0 and m > 0 set ck = 1
||gk|| . Else,

sk−1 = xk − xk−1, yk−1 = gk − gk−1 and set ck = ||sk−1||2

(sT
k−1yk−1) .

S4: Set γk = min{γmax, max{γmin, ck}}/k.

S5 Search direction: Set dk = −γk∇fNk
(xk).

S6 Step size: Find αk ∈ (0, 1] such that

fNk
(xk + αkdk) ≤ fNk

(xk) + ηαk∇T fNk
(xk)dk + tk (5.1)

by employing Algorithm 2.

S7: Set xk+1 = xk + αkdk, k = k + 1 and go to Step S1.

In step S1 of the algorithm, a subsample of data is generated to estimate the
gradient of the objective function. After a sample is generated, it is retained for
the next m iterations. This means that the same subsample is used to estimate the
gradient during m iterations, before a new sample Nk is generated. Each subsample
is of size S, which is assumed to be significantly smaller than the size of the full
sample - N . As explained in more detail in Chapter 2, this approach of using only a
subsample in each iteration can significantly speed up the model training process,
especially when working with large datasets, because the gradient is calculated from
a smaller number of samples compared to the size of the entire dataset. The esti-
mation of the gradient based on the subsample is performed in step S2. After that,
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5 The algorithm

in step S3, the long BB step size - ck is calculated, in the case when m > 1 and
the subsample is unchanged, and in the case when m = 1 at each iteration. In
the case when m > 1 and a new subsample was generated in the iteration, the
value 1

||gk|| is taken for ck. This is not crucial for the analysis, but from a practical
point of view, it may prove useful for the stability and efficiency of the algorithm
under real conditions. Also, some other choices are relevant, such as, for example
ck = 1. When m = 1 the method reduces to a stochastic gradient method with BB
choice of the step length similar to one considered in [12]. As already mentioned
in the previous chapter, spectral coefficients show non-monotonic behavior during
the convergence process, also they can be negative values. For this reason, in step
S4, the authors of this algorithm decided to ”tame” them by projecting them onto
an arbitrary large interval [γmin, γmax] and dividing them by k. Then, in step S5,
the negative gradient is scaled according to the obtained value for γk and thus the
search direction, dk, is obtained. At the very end, a non-monotonic procedure for
determining the step length is carried out, which is described in detail in Algorithm
3. This procedure, which has proven to be very effective in practice, is used to deter-
mine the appropriate step length in each iteration of the algorithm, using estimates
of the stochastic function, as in the current iteration as well as in the trial new
iteration. Those estimates are obtained by averaging the objective function values
over the same set of samples used to estimate the gradient.

Algorithm 3 LSP (Line Search Procedure)
0 Input parameters: xk ∈ Rn, η ∈ (0, 1), Nk, γk, tk

S1 Initialization: Set j = 0, dmk = gT
k dk, αj = 1.

S2: If
fNk

(xk + αjdk) ≤ fNk
(xk) + ηαjdmk + tk (5.2)

go to Step S5. Else, go to Step S3.

S3: If αj ≥ 0.1, compute

α̃j =
−dmkα2

j

2(fNk
(xk + αjdk) − fNk

(xk) − αjdmk) . (5.3)

If α̃j < 0.1αj or α̃j > 0.9αj ,set α̃j = αj/2. Set αj+1 = α̃j , j = j + 1 and go to
Step S2.

S4: If αj < 0.1, set αj+1 = αj/2, j = j + 1 and go to Step S2.

S5: Set αk = αj and STOP.

In step S2 of Algorithm 3, the value αj that satisfies the Armijo condition (5.2) is
searched for. If the individual value αj does not satisfy the Armijo condition, and at
the same time is greater than 0.1, the quadratic interpolation q(x) = ax2 + bx + c
is applied. This interpolation is used so that fNk

(x) and q(x) share two points (xk

and xk +αjdk) and have the same derivative at one of them. After that, the optimal
value of this quadratic function - α̃j is calculated, which becomes a candidate for
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5.1 Convergence analysis

αj in case the inequalities α̃j < 0.1αj and α̃j > 0.9αj are not satisfied. In all rema-
ining cases, Algorithm 3 switches to the backtracking procedure. As can be noticed,
one does not have to resample, but the current sample is used to evaluate the esti-
mation function at new points that are used to check if Armijo condition is satisfied.

5.1 Convergence analysis
Now that we are familiar with the SLiSeS algorithm, we will introduce the as-

sumptions under which this method converges to a stationary point. In this thesis,
the focus will be on the case when sampling in step S1 of Algorithm 2 is uniform,
that is, when each sample has the same probability of being selected. This is im-
portant to emphasize because uniform sampling has its specificities and can affect
the behavior of the algorithm. First of all, we assume that function f is twice con-
tinuously differentiable with Lipschitz-continuous gradients by making assumption
on the functions fi as follows.

Assumption 1. The functions fi, i = 1, . . . , N , are bounded from below and twice
continuously differentiable with L-Lipschitz-continuous gradients.

The well-definedness of LSP, as well as the fact that the step length computed
by LSP remains bounded away from zero, is confirmed by the following lemma.

Lemma 1. Suppose that Assumption 1 holds. Then the LSP procedure is well-
defined and there exists a constant αmin > 0 such that αmin ≤ αk ≤ 1 for every
k.

Let us denote by Fk a σ-algebra generated by N0, ..., Nk−1. Intuitively, Fk inc-
ludes all possible events that can be inferred or derived based on the information
from samples N0, ..., Nk−1. We can note that xk is Fk-measurable, that is, we have
complete information about the value of xk provided we know Fk. Additionally, it
should be noted that αk, gk and γk do not belong to the set of Fk-measurable
variables. Our focus will be exclusively on Fk during iterations k where k satisfies
the condition mod (k, m) = 0. We will refer to these iterations as outer iterations.
In the remaining iterations, to be referred to as inner iterations, we keep the same
sample. Based on the uniform sampling assumption, it follows that:

E(fNk
(xk)|Fk) = f(xk) (5.4)

and
E(gk|Fk) = ∇f(xk). (5.5)

Next, we state another assumption that is common to subsampling methods.

Assumption 2. There exists a constant G > 0 such that for all k there holds:

E(||gk||2|Fk) ≤ 2(G + ||∇f(xk)||2).
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5.1 Convergence analysis

Given that Nk is finite let s denote the number of possible samples Nk:
N 1

k , ..., N s
k . Then, for any Nk we have ||∇f(xk)||2 = E[∇f(xk)T ∇fNk

(xk)|Fk]
and

||∇f(xk)||2 = 1
s

(∑
i∈Ik

∇f(xk)T ∇fN i
k
(xk) +

∑
i∈Jk

∇f(xk)T ∇fN j
k
(xk)

)
, (5.6)

where Ik = {i : ∇f(xk)T ∇fN i
k
(xk) ≥ 0} and Jk = {j : ∇f(xk)T ∇fN j

k
(xk) < 0}.

It can be noticed from (5.6) that Ik ̸= ∅ for all k.

Finally, to ensure existence of a.s. (almost sure) convergent subsequence to the
stationary point, the following assumption is also needed.

Assumption 3. There exist constants C, θ > 0 and 0 < δ < 1 such that

P (Bk)E[∇f(xk)T ∇fNk
(xk)|Fk, Bk] ≤ θ

s
||∇f(xk)||2 + C

skδ
,

where Bk is event that ∇f(xk)T ∇fNk
(xk) ≥ 0 and P (Bk) is the probability of

this event.

If assumptions 1-3 hold, we have the following theorem.

Theorem 7. Suppose that the Assumptions 1-3 hold and let {xk} be a sequence
generated by the SLiSeS algorithm. Then, provided that s ≥ θ, with probability 1
there holds

lim inf
k→∞

∥∇f(xk)∥ = 0.

Theorem 7 shows that for the SLiSeS algorithm we have that lim inf
k→∞

∥∇f(xk)∥ =
0. This means that SLiSeS algorithm generates a subsequence such that it conver-
ges to a stationary point of the function f. It is possible to get stronger result on
convergence of the SLiSeS algorithm to the solution of the problem (3.1), by adding
following assumption.

Assumption 4. The function f is strongly convex.

Theorem 8. Suppose that the assumptions of Theorem 7 hold together with as-
sumption A4. Then, the sequence {xmk−1}k∈N converges to the solution of problem
(3.1) x∗ almost surely.

Theorem 8 states that sequence of outer iterations {xmk−1}k∈N generated by
SLiSeS algorithm converges to the solution with probability 1.
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6 Numerical results

6 Numerical results
In this chapter, the numerical results obtained by application of the SLiSeS algo-

rithm in several different scenarios will be presented. The results will be displayed in
the form of graphics, which will give us a more detailed insight into the performance
of the algorithm in different scenarios.

In the experiments, the focus will be on strongly convex quadratic functions and
on L2-regularized logistic regression problems, as canonical problems that satisfy
the assumptions stated in the previous chapter.

The considered quadratic functions, for 1 ≤ i ≤ N , are given by

fi(x) = 1
2(x − bi)T Ai(x − bi), (6.1)

where bi ∈ Rn, and Ai ∈ Rn,n is a symmetric positive definite matrix. Matrices
Ai and the vectors bi are obtained as in [18], i.e., vectors bi are extracted from the
Uniform distribution on [1, 31], independently from each other. Matrices Ai are of
the form Ai = QiDiQ

T
i , where Di is a diagonal matrix with Uniform distribution

on [1, 101] and Qi is the matrix of orthonormal eigenvectors of 1
2 (Ci +CT

i ), and the
matrix Ci has components drawn independently from the standard Normal distri-
bution. This construction guarantees that the matrices Ai are symmetric positive
definite, and this whole process ensures the generation of different and independent
sets of matrices and vectors, which are necessary for experimentation and analysis.

For the logistic regression, for 1 ≤ i ≤ N , the function fi is given by

fi(x) = log(1 + exp(−bi(aT
i x))) + λ

2 ||x||22, (6.2)

where the vectors ai ∈ Rn, and the labels bi ∈ {−1, 1} are given, and the regula-
rization parameter λ is set to 10−4. The vectors ai, and the labels bi are obtained
from three real datasets: Adult [5], Cina0 [6] and Voice dataset[22].

Dataset n N

ADULT 123 32561
CINA0 132 16033
VOICE 309 126

Table 1: Properties of the datasets used in the experiments.

The Adult dataset exclusively comprises binary features, offering insights into socio-
economic factors and their association with income levels. The target variable in
this dataset indicates whether an individual earns more than $50, 000.

On the other hand, the Cina0 dataset provides a more extensive array of informa-
tion compared to the Adult dataset, including both binary and numerical features.
While binary features provide insights into particular socio-economic factors, nume-
rical characteristics enable a more in-depth examination of quantitative variables
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6.1 Changing the number of internal iterations m

like years of education or weekly working hours.

The Voice dataset evaluates whether voice rehabilitation treatments lead to pho-
nations classified as "acceptable"or "unacceptable,"presenting a binary classification
task. This dataset consists entirely of numerical features.

We scaled the previously unscaled numerical data by normalizing each attribute
vector. This ensured their consistency and relevance in the analysis. Scaling the
numerical features ensures that each feature contributes equally to the analysis and
prevents features with larger scales from dominating the learning process.

In our experiments, we report the computational cost, which is measured by the
number of function evaluations relative to the observed reduction of the objective
function, as in [12]. First of all, it can be noticed that the main cost in the com-
putation of each function fi is the evaluation of exp(−bi(aT

i x)). Computing the
gradient of fi for an arbitrary index i, we obtain

∇fi(x) = exp(−bi(aT
i x))

1 + exp(−bi(aT
i x))

− biai + λx, (6.3)

thus the evaluation of the gradient comes for free from the evaluation of the corre-
sponding function. Based on this observation, at the beginning of each iteration,the
values of exp(−bi(aT

i x)) are computed, and subsequently utilized throughout the
iteration to assess both the sampled function fNk

(xk) and the sampled gradient
∇fNk

(xk).

In the case when the functions fi are strongly convex quadratic functions, as
defined in (6.1), we obtain ∇fi = Ai(x − bi). Following a similar procedure as in
the previous case, at the beginning of each iteration, the values of Ai(x − bi) are
first computed, and then used within the iteration to obtain the values of fNk

(xk),
and ∇fNk

(xk).

Therefore, to compute the cumulative number of function evaluations, in our
experiments, the counter is incremented by S = |Nk| each time the function fNk

is evaluated. Since evaluating the gradient does not incur any additional computa-
tional costs, it is not separately counted in the total number of evaluations.

All runs are terminated when a maximum number of iterations (maxiter) is
reached. The certain input parameters in the SLiSeS algorithm are fixed as follows:
x0 = 0, η = 10−4 and tk = 1/2k. At the beginning of each subsection, it will be
stated how the remaining parameters, which are not the subject of investigation in
current subsection, are fixed.

6.1 Changing the number of internal iterations m
Firstly, we investigate the behavior of the SLiSeS algorithm for different values

of the number of internal iterations m, in which we keep the same sample. For all
experiments, we set S = |Nk| = 1, γmin = 10−8, γmax = 108, and the maximum
number of iterations - maxiter = 50.
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6.1 Changing the number of internal iterations m

In the paper [11], it has been shown that the SLiSeS algorithm exhibits better
behavior in cases when m > 1 compared to m = 1. Therefore, our objective is to
explore scenarios where m > 1 and make corresponding comparisons.

Let us start by considering strictly convex quadratic functions. Figures 6 and 7
present the performance of the SLiSeS algorithm for several values of m, and for
two distinct values of n: 10 and 100, respectively. It can be noticed that in the both
cases, for m = 3, m = 4, m = 5, performances are better than for m = 2. In the
case when n = 10, algorithm performances for m = 10 are slightly worse than for
the remaining choices of m. However, when n = 100, algorithm performances for
m = 10 are similar to those for m = 3, m = 4, m = 5.

Figure 6: Performance of SLiSeS on strictly convex quadratics for m = 2, 3, 5, 10,
N = 1000, maxiter = 50, and n = 10.

Figure 7: Performance of SLiSeS on strictly convex quadratics for m = 2, 3, 5, 10,
N = 1000 maxiter = 50, and n = 100.
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6.1 Changing the number of internal iterations m

In Figures 8, 9, and 10, we focus our attention on observing how the algorithm
behaves when changing the values of m in the case of logistic regression problems
(Adult, Cina0, and Voice datasets). It can be noticed that the implemented SLiSeS
algorithm performs different on the different datasets. For instance, we notice that
the algorithm achieves the best performance on the Adult and Cina0 datasets when
m = 10, while on the Voice dataset, m = 10 exhibits worse algorithm performance
compared to the cases when m = 2, m = 3, m = 4, m = 5.

Figure 8: Performance of SLiSeS on the on the Adult dataset for m = 2, 3, 4, 5, 10,
and maxiter = 50.

Figure 9: Performance of SLiSeS on the on the Cina0 dataset for m = 2, 3, 4, 5, 10,
and maxiter = 50.

27



6.2 Changing the size of subsample S

Figure 10: Performance of SLiSeS on the on the Voice dataset for m = 2, 3, 4, 5, 10,
and maxiter = 50.

From the conducted experiments we can conclude that there is no choice of m
value for which the algorithm’s performance will be optimal for all of the above
cases. However, it can be noticed that on average, it appears that the value m = 3
shows better performance compared to other choices for the value of m.

6.2 Changing the size of subsample S
In this subsection, we investigate how the algorithm behaves depending on the

size of the subsamples (S = |Nk|) it uses. We report the computational cost me-
asured by the number of function evaluations, and by the number of iterations,
versus the observed decrease in the objective function. We conducted tests on stric-
tly convex quadratics when n = 10, as well as on linear regression problems (Cina0
and Voice datasets). In all experiments, the values are fixed as follows: m = 3,
γmin = 10−8, γmax = 108.

When measuring computational cost by the number of function evaluations, in
order to compare the algorithm’s performances over the same interval, different va-
lues for maxiter are set for different values of S. When the parameter S is small,
a large number of iterations is required, while increasing S reduces the number of
iterations. On the other hand, when computational cost is measured by the number
of iterations, maxiter is set to 50.

Figures 11, 12 show the performance of the SLiSeS algorithm on strictly convex
quadratics.

28



6.2 Changing the size of subsample S

Figure 11: Performance of SLiSeS on strictly convex quadratics for S = 1, 3, 5, 10,
N = 1000, maxiter = 250, 85, 50, 25 and n = 10.

Figure 12: Performance of SLiSeS on strictly convex quadratics for S = 1, 3, 5, 10,
N = 1000, maxiter = 50 and n = 10.

Figure 11 shows that after a certain number of function evaluations, the algo-
rithm’s performances are almost equal for all values of S. On the other hand, when
considering the number of iterations (Figure 12), as it is expected, we can see that
the SLiSeS performs better as S is higher, since more information about function
is available. However, it can been seen that there is no much difference between
S = 3, S = 5 and S = 10.
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6.2 Changing the size of subsample S

Figures 13 and 14 show performances of SLiSeS on the Cina0 dataset, while
Figures 15, and 16 show performances of SLiSeS on the Voice dataset.

Figure 13: Performance of SLiSeS on the Cina0 dataset for S = 1, 3, 5, 10, and
maxiter = 250, 85, 50, 25.

Figure 14: Performance of SLiSeS on the on the Cina0 dataset for S = 1, 3, 5, 10,
and maxiter = 50.

When examining the logistic regression problem using the Cina dataset, Figures
13 and 14 clearly show that the performance of the algorithm decreases significantly
for S = 1, compared to S = 3, 5, 10.
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Figure 15: Performance of SLiSeS on the on the Voice dataset for S = 1, 3, 5, 10,
and maxiter = 250, 85, 50, 25.

Figure 16: Performance of SLiSeS on the on the Voice dataset for S = 1, 3, 5, 10,
and maxiter = 50.

From the specific numerical experiments, it can be noticed that when measuring
computational cost based on the number of iterations, the performances of the
SLiSeS algorithm for S = 1 exhibit the poorest performance (Figures 12, 14, and
16). Moreover, when comparing the performance of the algorithm for S = 3, S = 5
and S = 10, it can been seen that there is no an optimal choice of S, since for
different datasets, the best performance of algorithm is obtained for different choice
of S. However, due to the computational cost, it is better to use the values S = 3
and S = 5 , since they offer sufficiently good results with faster execution compared
to the higher values such as S = 10.
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6.3 Thresholds γmin and γmax

As previously stated, the spectral coefficients - ck may exhibit both the negative
and excessively large values. Therefore, it becomes necessary to impose constraints
in the form of lower (γmin) and upper (γmax) bounds, such that 0 < γmin ≤ 1 ≤
γmax < ∞. More precisely, within each iteration of the SLiSeS algorithm, the spec-
tral coefficient ck is calculated (Step S3), and then, in the next step, γk is chosen
such that it holds γk = min{γmax, max{γmin, ck}}. For the descending direction,
dk = γk

k ∇fNk
(xk) is used. In this subsection, we explore how the choice of γmin

and γmax influences the algorithm’s performance.Throughout all experiments, the
parameters m = 3, S = 1, and maxiter = 50 are considered.

The research begins with an analysis of the SLiSeS algorithm’s performance on
the strictly convex quadratics for n = 10 and n = 100 (Figures 19 and 20). To
assess the impact of thresholds on performance, we initially analyzed the behavior
of the ck value during iterations, as depicted in Figures 17 and 18. It can be noticed
the non-monotonic behavior of the spectral coefficients. In addition, it is noted that
for 1 ≤ k ≤ 50, the condition 10−8 < ck < 1 holds. Accordingly, we decided to
explore the following cases:

1. γmin = 10−8 and γmax = 108 - In this case, the spectral coefficient is used
in each iteration, because γmin < ck < γmax. Therefore, the value of ck is
directly used to determine γk.

2. γmin = 10−2 and γmax = 102 - Here, if ck < γmin, ck is used; otherwise γmin

is used. This approach enables us to observe how the algorithm behaves when
spectral coefficients are not utilized in every iteration, given the constraints.

Figure 17: ck across iterations for n = 10 and N = 1000.
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Figure 18: ck across iterations for n = 100 and N = 1000.

Figure 19: Performance of SLiSeS on strictly convex quadratics for N = 1000,
maxiter = 50 and n = 10.

Figures 19 and 20 show that the SLiSeS algorithm exhibits better convergence
behavior when thresholds are used, compared to the case when ck is used in each
iteration.
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Figure 20: Performance of SLiSeS on strictly convex quadratics for N = 1000,
maxiter = 50 and n = 100.

Figures 21 and 22 show ck values across the iterations while Figures 23 and 24
show the performance of the algorithm for the different thresholds, for Cina0 and
Voice datasets, respectively. As it can be seen, using the same reasoning as in the
quadratic case, existence of thresholds again has positive impact on the performance
of algorithm for the both datasets.

Figure 21: ck values across iterations for Cina0 dataset.
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Figure 22: ck values across iterations for Voice dataset.

Figure 23: Performance of SLiSeS on the on the Cina0 dataset for maxiter = 50.
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Figure 24: Performance of SLiSeS on the on the Voice dataset for maxiter = 50.

6.4 Comparison of SGD and SLiSeS
In this subsection, the SLiSeS method will be compared with its competitor for

solving problem 3.1 - the Stohastics Gradient Descent (SGD). The SGD can be
interpreted as a simplified case of the SLiSeS method where the step length γk is
obtained either as a sufficiently small constant to guarantee convergence, or in a
diminishing way such that

∑
γk = ∞, and

∑
γ2

k < ∞ to guarantee convergence
(the most common choice is 1

k ). In either case, the SGD method does not require a
line search strategy. The Figures 25, 26, and 27 show the performance of these two
methods applied to a strictly convex quadratic when n = 100 and N = 1000, as
well as on the Adult and Voice datasets, respecitively. Throughout all experiments,
value of S is set to 3.

Figure 25: Performance of the SLiSeS method (m = 3) and the SGD method with
step length 1/k, for maxiter = 50, on a strictly convex quadratic when n = 100
and N = 1000.
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Figure 26: Performance of the SLiSeS method (m = 3) and the SGD method with
step length 1/k, for maxiter = 50, on the Adult dataset.

Figure 27: Performance of the SLiSeS method (m = 3) and the SGD method with
step length 1/k, for maxiter = 50, on the Voice dataset.

When comparing the results obtained from applying the SGD and SLiSeS algo-
rithms, it is evident that SLiSeS exhibits better convergence behavior towards the
stationary point compared to SGD. This is because the SLiSeS algorithm is less
affected by noise and more adaptable to different types of the data.
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7 Conclusions
Solving large-scale finite-sum optimization problems is a challenging but key

area in machine learning. With the advent of massive amounts of data, traditional
optimization methods have become impractical or inefficient due to high compu-
tational requirements and memory issues. Therefore, stochastic algorithms become
the most suitable options.

Among the stochastic algorithms based on negative gradient direction is the
SGD and its variants, which, although possessing many theoretical advantages, in
practice can face several challenges that may affect its efficiency and performance.
By focusing on practical behavior, these methods have been upgraded to overcome
these challenges. Thus, gradient-type stochastic methods were developed that inc-
luded the use of non-monotonic step lengths such as the Barzilai and Borwein (BB)
spectral ones. This method has proven to be extremely effective in practice and is
the subject of numerous scholarly works in order to gain a deeper understanding of
its behavior and application in different optimization contexts.

However, what all these stochastic gradient methods have in common is that the
sample is changed at each iteration. Consequently, the authors of the Subsampled
Line Search Spectral Gradient Method for Finite Sums proposed keeping the same
subsample during several iterations, which makes it possible to use more information
from the same data sample and the possibility of reducing the computational cost.
After conducting numerical experiments, it was noticed that the spectral method
with this method of subsampling improves the existing gradient methods.

In this research, we analyzed the behavior of the SLiSeS algorithm with different
parameters. The goal was to study how parameter variations affect the performan-
ce of this algorithm in solving certain optimization problems. Based on our expe-
riments, we conclude that it is important to carefully select algorithm parameters
according to the specific requirements of the problem and data characteristics. Furt-
her research and analysis are needed to better understand these issues and enable
more efficient use of the SLiSeS algorithm in practice. These findings provide use-
ful guidelines for optimizing algorithm performance in real-world machine learning
applications.
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Code for Adult, Cina0 and Voice datasets.

def sum_(data , x, lamb):
fsum =0
sum_grad =0

for i in range (data. shape [0]):
a= data.iloc[i][: -1]. to_numpy () # vectors
b= data.iloc[i][ data.iloc[i]. shape [0] -1] # labels

exp = np.exp (( -1 * (b * np.dot(a, x))))
loga = np.log (1 + exp)
reg = 0.5 * lamb * np. linalg .norm(x)**2

fsum += (loga + reg) / data. shape [0]

sum_grad += (( exp / (1 + exp)) * -b * a + lamb * x) / data
. shape [0]
return fsum , sum_grad

def algorithm_SLiSeS_regression (data , x, eta , S, m, gamma_min ,
gamma_max , lamb , maxiter ):

k=1
evaluations =0
performance_data =[] #f(x_k)
evaluations_list =[0]
alpha_seq =[]
ck_list =[]
gamma_list =[]
num_of_iter =[0]
N=list( range (0, data. shape [0]))

while k <= maxiter :

f_of_x = sum_(data , x, lamb)[0]
performance_data . append ( f_of_x )

tk= 1/2** k

#STEP 1 - Sampling

if (k -1) % m == 0:

subsetN = random . sample (list(N), S)
else:

subsetN = subsetN

#STEP 2 - Computing gradient

new_data = data.iloc[subsetN , :]
if (k -1) % m == 0:

f_Nk , gk = sum_(new_data , x, lamb)
evaluations +=S

else:
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f_Nk= new_f_Nk_x
gk= new_gk

#STEP 3 - Spectral coefficient

if (k -1)%m ==0 and m >1:

ck = 1/ np. linalg .norm(gk)

else:

s_km1 = x - x_prev
y_km1 = gk - gk_prev
ck = np. linalg .norm( s_km1 )** 2 / np.dot(s_km1 , y_km1 )

#STEP 4

gamma_k = (min(gamma_max , max(gamma_min , ck)))/k

#STEP 5 - Search direction

dk = -( gamma_k * gk)

#STEP 6 - Step size

alpha_k , evaluations_lsp , new_f_Nk_x , new_gk =
algorithm_LSP_regression (x, eta , gamma_k , tk , dk , gk , new_data
, f_Nk , S,lamb)

evaluations += evaluations_lsp
alpha_seq . append ( alpha_k )

#STEP 7

x_prev = x.copy ()
gk_prev = gk.copy ()
x = x + alpha_k * dk
k+=1
num_of_iter . append (k)
evaluations_list . append ( evaluations )
if k == ( maxiter +1):

performance_data . append (sum_(data , x, lamb)[0])

ck_list . append (ck)
gamma_list . append ( gamma_k )

return performance_data , evaluations_list , alpha_niz , ck_list ,
gamma_list , num_of_iter

def algorithm_SGD (data , x, eta , S, lamb , maxiter ):

k=1
evaluations =0
performance_data =[]
evaluations_list =[0]
num_of_iter =[0]
N=list( range (0, data. shape [0]))

while k <= maxiter :

f_of_x = sum_(data , x, lamb)[0]
performance_data . append ( f_of_x )
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#STEP 1 - Sampling

subsetN = random . sample (list(N), S)

#STEP 2 - Computing gradient

new_data = data.iloc[subsetN , :]
f_Nk , gk = sum_(new_data , x, lamb)
evaluations +=S

#STEP 3 - gamma
gamma_k = 1/k

#STEP 4 - Search direction

dk = -( gamma_k * gk)

#STEP 5

x_prev = x.copy ()
gk_prev = gk.copy ()
x= x + dk
k+=1
num_of_iter . append (k)
evaluations_list . append ( evaluations )
if k == ( maxiter +1):

performance_data . append (sum_(data , x, lamb)[0])

return performance_data , evaluations_list , num_of_iter

def algorithm_LSP_regression (xk , eta , gamma_k ,tk , dk , gk , new_data
, f_Nk , S, lamb):

evaluations2 =0
dmk= np.dot(dk , gk)
alphaj =1

while True:

f_Nk_a , g_Nk_a = sum_(new_data , xk + ( alphaj * dk), lamb)
evaluations2 +=S

if f_Nk_a <= f_Nk +eta* alphaj *dmk+ tk and alphaj <=1:

alphak = alphaj
return alphak , evaluations2 , f_Nk_a , g_Nk_a

else:

if alphaj >0.1:

alphaj_new =(- dmk * ( alphaj )**2) / (2*( f_Nk_a - f_Nk
- alphaj *dmk))

if alphaj_new <0.1* alphaj or alphaj_new >0.9* alphaj :

alphaj_new = alphaj /2

alphaj = alphaj_new

else:
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alphaj = alphaj /2

Code for sum of strictly convex quadratic functions.

def matrix_A (n): #n is dimension
A = np. zeros ((n,n))
D = np.diag(np. random . uniform (1, 101 , size =(n ,)))
C = np. random . normal (size =(n, n))
E = 0.5 * (C + C.T)
Q = eigenvectors
A = np.dot(Q, np.dot(D, Q.T))
return A

def vector_b (n):
b = np. random . uniform (1, 31, size =(n ,)) #real
return b

def quadratic_function1 (x):
s = x.size
A = matrix_A (s)
b = vector_b (s)
return A, b

def generating_q_functions (N, dimension ):
f=[]
for i in range (N):

x=np. random . uniform (size =( dimension ,))
a= quadratic_function1 (x)
A= a[0]
b=a[1]
f. append ((A,b))

return f

def sumf(x, t):
s = 0 # fucntion value
s2 =0 # gradient
for i in range (len(t)):

A, b = t[i][0] , t[i][1]
gradient = np.dot(A, x - b)
s2 += gradient / len(t)
s += 0.5 * np.dot ((x - b).T, gradient ) /len(t)

return s, s2

def algorithm_SLiSeS ( parametri_funkcije , x, eta , S, m, gamma_min ,
gamma_max , maxiter ):

k=1
S=S
N=list( range (1, len( par_of_q_f )))
evaluations =0
performance_data =[]
evaluations_list =[0]
alpha_seq =[]
num_of_iter =[0]
ck_list =[]

while k <= maxiter :

performance_data . append (sumf(x, parametri_funkcije )[0])
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tk= 1/2** k

#STEP 1 - Sampling

if (k -1) % m == 0:

subsetN = random . sample (list(N), S)
else:

subsetN = subsetN

#STEP 2 - Computing gradient

sf = [ parametri_funkcije [i] for i in subsetN ]
new_func = partial (sumf , t=sf)

if (k -1) % m == 0:

f_Nk , gk = new_func (x)
evaluations +=S

else:

f_Nk= new_f_Nk_x
gk= new_gk

#STEP 3 - Spectral coefficient

if (k -1)%m==0 and m >1:

ck = 1/ np. linalg .norm(gk)

else:

s_km1 = x - x_prev
y_km1 = gk - gk_prev
ck = np. linalg .norm( s_km1 ) ** 2 / np.dot(s_km1 , y_km1 )

#STEP 4

gamma_k = (min(gamma_max , max(gamma_min , ck)))/k

#STEP 5 - Search direction

dk = -( gamma_k * gk)

#STEP 6 - Step size

alpha_k , e_lsp , new_f_Nk_x , new_gk = algorithm_LSP (x, eta ,
gamma_k ,tk , dk , gk , new_func , f_Nk , S)

evaluations += e_lsp
alpha_seq . append ( alpha_k )

#STEP 7

x_prev = x.copy ()
gk_prev = gk.copy ()
x = x + alpha_k * dk
k+=1
if k== ( maxiter + 1):
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performance_data . append (sumf(x, parametri_funkcije )[0])

evaluations_list . append ( evaluations )
num_of_iter . append (k)
ck_list . append (ck)

return performance_data , evaluations_list , alpha_seq ,
num_of_iter , ck_list

def algorithm_SGDQ ( parametri_funkcije , x, eta , S, maxiter ):
k=1
N=list( range (1, len( par_of_q_f )))
evaluations =0
performance_data =[]
evaluations_list =[0]
num_of_iter =[0]

while k <= maxiter : # maxiter

performance_data . append (sumf(x, parametri_funkcije )[0])
#STEP 1 - Sampling

subsetN = random . sample (list(N), S)

#STEP 2 - Computing gradient

sf = [ parametri_funkcije [i] for i in subsetN ]
new_func = partial (sumf , t=sf)
f_Nk , gk = new_func (x)
evaluations +=S

#STEP 3

gamma_k = 1/k

#STEP 4 - Search direction

dk = -( gamma_k * gk)

#STEP 5

x_prev = x.copy ()
gk_prev = gk.copy ()
x = x + dk
k+=1
if k== ( maxiter + 1):

performance_data . append (sumf(x, parametri_funkcije )[0])

evaluations_list . append ( evaluations )
num_of_iter . append (k)

return performance_data , evaluations_list , num_of_iter

def algorithm_LSP (xk , eta , gamma_k ,tk , dk , gk , new_func , f_Nk , S):

evaluations2 =0
dmk= np.dot(dk , gk)
alphaj =1

while True:
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f_Nk_a , g_Nk_a = new_func (xk+ alphaj *dk)
evaluations2 +=S
if f_Nk_a <= f_Nk +eta* alphaj *dmk+tk:

alphak = alphaj
return alphak , evaluations2 , f_Nk_a , g_Nk_a

else:
if alphaj >0.1:

alphaj_new =(- dmk *( alphaj )**2) /(2*( f_Nk_a -f_Nk -
alphaj *dmk))

if alphaj_new <0.1* alphaj or alphaj_new >0.9* alphaj :

alphaj_new = alphaj /2
alphaj = alphaj_new

else:

alphaj = alphaj /2
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