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Chapter 1

Introduction

Rumors are unverified or unconfirmed information that circulates informally within
social circles. They manifest in diverse formats, ranging from hearsay, gossip or
speculations, to conspiracy theories, advanced propaganda and marketing mate-
rial. They are disseminated verbally, through writing or digital media platforms,
and rapidly, particularly within today’s interconnected global landscape which is
amplified by the presence of social media platforms and Internet in general.

Rumors represent a natural and universal phenomenon within human soci-
eties. The examination of rumors is valuable for several reasons. Rumors possess
the capacity to affect person’s decisions since individuals frequently base their
choices and actions upon the information they encounter, whether or not they
are actually true. So, the systematic analysis of rumors plays a pivotal role in
unraveling the intricate interplay between misinformation and its potential con-
sequences on choices and outcomes. Also, amidst times of crises, the rapid
dissemination of rumors can create widespread panic and confusion. The goal of
organizations and emergency response units is to confront misinformation, pre-
serve the trust of the public and provide effective crisis communication strategies.
In the specific context of health crises, rumors wield the potential to contribute
to vaccine hesitancy and disapproval with vital public health guidelines. That is
why this analysis is important for epidemiologists, healthcare practitioners and
public health agencies in order to develop effective strategies for addressing and
countering health-related rumors. Furthermore, there can exist potential risks
and consequences by spreading false information that can impact national secu-
rity during military actions or threats. In addition, in the era of fast and broad
dissemination of online information, it is imperative to understand the role of
algorithms and the influence of echo chambers and filter bubbles, an environ-



ment in which a person encounters only beliefs or opinions that coincide with
their own, so that their existing views are reinforced and alternative ideas are
not considered. In conclusion, the research on rumors is significant as it pro-
vides comprehension of human behavior and the impact of information in various
domains, from psychology and sociology to healthcare and national security. Un-
derstanding how rumors function and spread allows individuals and organizations
to respond effectively to the challenges posed by misinformation and rumors in
today’s information-rich world.

There exist various approaches to analyzing rumor spreading, each offering
a unique perspective on this complex phenomenon. The psychological approach
revolves around comprehending the cognitive, emotional and behavioral mecha-
nisms that induce the creation, propagation and reception of rumors. Within this
framework, psychologists delve into the intricacies of how individuals process and
interpret information, the role of emotions such as fear in shaping the belief and
propagation of rumors, and the various motivations that drive rumor creation,
such as the pursuit of social status. On the other hand, the sociological ap-
proach explores the manner in which rumors operate within social collectives and
interpersonal connections. This perspective recognizes that social norms and cul-
tural dynamics wield substantial influence over the creation, interpretation and
dissemination of rumors. The mathematical perspective on this phenomenon,
which is covered in this thesis, emphasizes modeling and quantitative analysis
to elucidate the intricate dynamics of rumor propagation within networks. Re-
searchers create models of complex networks to simulate rumor spreading and use
computer simulations and mathematical equations to study how rumors spread,
considering parameters like network structure and transmission rates. It is neces-
sary to mention that these approaches need not remain mutually exclusive, and
researchers can draw from multiple disciplines to obtain a complete knowledge
of rumor diffusion.

This thesis is organized into 8 chapters, where the first and the last provide
an introduction and conclusion. In the second chapter, we delve into the very
essence of complex networks and their properties. Chapter 3 explores the four
prominent network models and explains the difference in their characteristics. In
Chapter 4 we introduce the notion of rumor propagation and explain how knowl-
edge of network models offers insight into different propagation patterns. The
processes of rumor spreading and epidemic spreading are very similar, so in the
fifth chapter we mention three models that belong to the category of determin-
istic compartmental models that represent the fundamental dynamic framework
for infectious diseases. Even though the spread of rumors reflects certain aspects
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of the spread of infectious diseases, they are not completely equivalent. Hence, in
Chapter 6 we explain the fundamental rumor spreading models derived by draw-
ing insights from the study of infectious disease transmission. In the seventh
chapter, the work and results of the work "Theory of rumor spreading in complex
social networks", by M. Nekovee et. al is discussed. In their work, they introduce
a new model of rumor propagation on complex networks that provides a more
realistic description of this process and explains the dynamics of the model on
complex social networks.
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Chapter 2

Complex social networks

The scientific exploration of networks, encompassing computer networks, social
networks and biological networks, has become a subject of extensive scientific
interest in recent decades. The widespread use of the Internet and its acces-
sibility has facilitated the collection and analysis of network data on a large
scale. Furthermore, the emergence of diverse theoretical frameworks has enabled
the extraction of new possibilities for gaining insights from various types of net-
works. The study of networks transcends disciplinary boundaries, with significant
advancements witnessed in fields such as mathematics, physics, computer and
information sciences, biology and the social sciences.

Therefore, network science is a multidisciplinary field that delves into the
study of connectivity and networks in various manifestations. Whether it is a
simple connection between two nodes or intricate networks comprising millions
of members, network scientists examine these structures, uncovering meaningful
patterns between network attributes and their eventual results. By carefully
observing and investigating these networks, valuable theories are formulated to
clarify the underlying mechanisms governing their behavior and provide insights
into optimizing their use for practical applications.

In this work, the focus is on social networks. To many individuals, the term
"social network" commonly relates to online social networking services such as
Facebook and Twitter. They can actually be seen as how people or groups of
people are connected to each other through social interactions, where vertices in
these networks represent individuals or groups, while edges indicate the existence
of social ties. It is crucial to acknowledge that social networks can be defined
in various ways, particularly in terms of their edges. The specific definition of
edges used depends on the research questions being addressed. Edges could



2.1 Characteristics of complex networks

represent friendships, professional relationships, exchange of goods or money,
communication patterns, romantic relationships, or other types of connections
[4].

Over the past few decades, various quantities and measures of complex net-
works have been proposed and studied extensively. The advent of powerful
technologies has revolutionized our ability to explore the structure of complex
networks. In the past, analyzing networks with millions of nodes would have
required specialized facilities that were beyond the reach of most researchers.
However, this is no longer the case. Now, even networks with millions of nodes
can be analyzed with relative ease, opening up new possibilities for research and
discovery in this exciting field.

2.1 Characteristics of complex networks
The anatomy of a network is of utmost importance because structure and func-
tion are inherently linked. In other words, the way a network is structured can
significantly impact how it functions. For instance, the topology of social net-
works can affect the spread of information and disease, with densely connected
networks facilitating faster propagation.
Analyzing certain fundamental characteristics of a complex network is the initial
phase in comprehending its structure. Nonetheless, a certain number of excep-
tional concepts, such as the size and density of a network, average path length,
clustering coefficient and degree distribution - have been involved in advancing
the theory of complex networks. So, each of these properties will be covered in
more detail [9,12].

2.1.1 Network size
The size of a network can be typically defined in terms of the number of nodes,
denoted by n, or less commonly, the number of edges, denoted by m. For a
connected simple graph, the number of edges can range from n − 1 in the case
of a tree to maximum number of edges, which is

(
n
2

)
, in the case of a complete

graph. On the contrary, in the presence of self-connected vertices and multiple
edges between a pair of vertices, the utmost number of edges is considered to
be infinite.
Moreover, the complexity of a network grows exponentially with its size.
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2.1 Characteristics of complex networks

2.1.2 Network density
The density of a network is a normalized measure, ranging between 0 and 1, that
evaluates the ratio between the actual number of edges and the total number
of possible edges in a network consisting of n nodes. Network density serves as
an indicator of the percentage of "optional" edges that are present within the
network. Here, "optional" edges refer to the potential connections that could
exist between nodes, regardless of whether they are currently established. The
lower limit of network density corresponds to networks where no relationships
exist, indicating a sparse or disconnected network. On the other hand, the upper
limit represents networks where all possible relationships are present, indicating a
dense or highly interconnected network. As the network density value approaches
1 , the network becomes denser, indicating a higher degree of cohesion among the
nodes, leading to a tighter and more interconnected structure among the nodes.
Also, information in dense networks can flow more easily than information in
sparse networks.

Figure 2.1: Sparse and dense networks

2.1.3 Average path length
Within a given network, the distance between any two nodes is described as the
shortest path that connects them in terms of the amount of edges present. Cor-
respondingly, the diameter of the network is established as the maximal distance
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value among all the distances calculated between any two nodes present in the
network. Additionally, the average path length L of the network is defined as the
mean value of the distances between each pair of nodes in the network, calcu-
lated over all possible node pairs. This parameter L serves as a key determinant
of the overall "size" of the network, representing the most common distance be-
tween two randomly chosen nodes present in the network. For instance, when
analyzing a friendship network, the average path length represents the typical
number of friends that any two individuals are connected by, and shows us how
interconnected and closely knit these social circles can be.

2.1.4 Clustering coefficient
In a friendship network, it is quite common for two friends to also be friends
with each other, which is known as clustering. To measure this property, the
clustering coefficient C is used. To be more specific, the clustering coefficient is
characterized as the average fragment of pairs of adjacent nodes for a given node
that are also adjacent to one another, resembling a community of interconnected
individuals sharing a common bond. It is a measure of the network’s cohesion,
indicating the strength of the relationships between nodes within the network.

To calculate the clustering coefficient Ci of a node i in a network, we examine
all distinct pairs of vertices that are neighbours of i in the network. For each
such pair, we count the number of links connecting them and divide by the total
number of possible links between them, which is given by

(
ki

2

)
, where ki is the

degree of i [2].
That is,

Ci = number of pairs of neighbors of i that are connected
number of pairs of neighbors of i

This ratio gives us the local clustering coefficient Ci, which represents the average
probability that two friends of i are also friends of each other. The clustering
coefficient is an important measure of the local structure of a network, as it
captures the tendency of nodes to form clusters or communities.
Local clustering plays a significant role in the study of networks due to its de-
pendence on the degree. Generally, vertices with higher degrees exhibit a lower
average local clustering coefficient. Another reason why local clustering is essen-
tial is its ability to detect "structural holes" in a network. Typically, especially
in social networks, neighbors of a vertex in a network are connected among
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themselves. However, this may not always be the case, leading to expected con-
nections between neighbors being absent. Structural holes can be detrimental to
the efficient spread of information or other traffic within a network, as they de-
crease the number of alternative routes available. However, for the central vertex
i, whose friends lack connections, structural holes can be beneficial as it provides
i with power over information flow between those friends. The local clustering
coefficient measures the level of influence i has in this sense, with lower values
indicating a higher number of structural holes in the network surrounding i.

Figure 2.2: Structural holes. Source:[2]

In order to determine the clustering coefficient C of the entire network, we
average the Ci values across all nodes i within the network.
Note that 0 ≤ C ≤ 1. In a complete network, the clustering coefficient is equal
to 1. On the other hand, in a completely random network consisting of n nodes,
the clustering coefficient is approximately equal to 1

n
.

2.1.5 Degree distribution
A node’s degree is its most basic, and, arguably, its most significant attribute.
The degree of a single node, refers to the total number of connections it pos-
sesses, or equivalently, the total number of its nearest neighbors. Higher degrees
signify greater node importance within the network. The network’s average de-
gree is denoted by ⟨k⟩ and can be given by ⟨k⟩ = 2m

n
, where m is the number

of edges and n is the number of vertices.
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2.1 Characteristics of complex networks

The distribution of node degrees in a network is represented by the probability
function P (k), which outlines the likelihood of a randomly selected node having
exactly k edges. In a regular lattice network, where all nodes share the same num-
ber of edges, the degree sequence is straightforward, with the degree distribution
plot displaying a single, concentrated spike known as a delta distribution.

However, randomness in the network causes this peak to broaden and the
distribution shape to change. In the scenario of a completely random network,
the degree sequence follows the Poisson distribution.

Figure 2.3: Poisson distribution. Source: [12]

In networks with a Poisson degree distribution, commonly known as expo-
nential networks, the distribution curve is symmetrical and the shape of this
distribution exhibits an exponential decrease from the peak value of ⟨k⟩. This
means that discovering a node with a degree equal to k, for any k far greater
than the average degree ⟨k⟩, is highly unlikely. A completely random graphs were
studied first by Erdős and Rényi, about whom there will be more word later.

Recent empirical evidence has demonstrated that, for most large-scale real
networks, the degree distribution differs significantly from the Poisson distribu-
tion. Instead, a power law of the form P(k) ∼ k−γ, where γ is some expo-
nent(known as the power law exponent), more accurately represents the degree
distribution for certain networks.

13



2.1 Characteristics of complex networks

Figure 2.4: Power law distribution.

The indicated power law distribution displays a slower decline than the expo-
nential distribution, which permits a few nodes with exceptionally large degrees
to exist. Because power laws do not have any peculiar scale, a network that
follows a power law degree distribution is known as a scale-free network. We will
discuss them later on as well.

2.1.6 Degree correlation
Complex networks can be classified as assortative, disassortative or neutral.

In assortative networks, nodes with high degree tend to connect with other
high-degree nodes, resulting in the formation of tightly knit communities or clus-
ters. Conversely, small-degree nodes have a tendency to link with other small-
degree nodes. Social networks are a classic example of such networks.
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2.1 Characteristics of complex networks

Figure 2.5: Assortative network. Source: [6]

In disassortative networks, on the other hand, high-degree nodes avoid each
other, connecting instead to small-degree nodes, as observed in information and
biological networks.

Figure 2.6: Disassortative network. Source: [6]
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2.1 Characteristics of complex networks

Neutral networks are characterized by a random linking pattern between
nodes, that is, showing no significant preference for node degree in their connec-
tions, resulting in a lack of correlation and structural organization in the network.
This randomness in the linking pattern is reflected in the symmetric density of
links around the average degree, indicating that nodes are as likely to be linked
to nodes with similar degrees as they are to nodes with different degrees.

Figure 2.7: Neutral network. Source: [6]

Sociologists have long observed and discussed these divisions. Individuals tend
to form social connections with others based on various attributes such as age,
nationality, language, income and education level. This is known as assortative
mixing, which is characterized by the tendency of individuals to connect with
others who share similar features.
However sometimes, although rarely, people also form connections with those
who possess different characteristics from them, which is disassortative mixing.
Disassortative mixing is predominantly seen in the context of gender-based mixing
in marriages, where partnerships between individuals of opposite genders are more
prevalent compared to same-gender partnerships.

If the number of links between high and low-degree nodes deviates signifi-
cantly from what would be expected by chance, then a network is said to display
degree correlations. Classical random graphs do not exhibit degree correlations,
but growing networks naturally display them.
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Chapter 3

Network models

One of the fundamental aspects of network science is the study of network mod-
els, which are mathematical abstractions that capture essential characteristics
of real-world networks. These models help researchers understand and analyze
various properties and phenomena exhibited by real networks. Network analysis
often involves calculating various attributes, mentioned in the previous chapter,
that provide insights into the characteristics of a network. These properties play
a crucial role in defining network models and can be utilized to compare and
contrast different models, highlighting their distinct behaviors.

Four prominent network models widely studied in network science are random
graphs, scale-free graphs, regular coupled networks and small-world networks,
which will be explored in more detail. The first two will be of great importance
to us later on in this paper.

3.1 Random graphs
In 1959, Paul Erdős and Alfréd Rényi, two outstanding mathematicians from
Hungary, proposed a model to describe networks observed in fields like commu-
nications and life sciences. Their concept involved the random connection of
nodes through links, offering a simple yet powerful approach. This approach
brought new vitality to the realm of graph theory. As a result, a specialized area
of mathematics emerged, focusing on the analysis and exploration of random
networks.

In general, a random graph is a type of model network that has certain
parameters with fixed values, but is random in other aspects. There are two



3.1 Random graphs

main constructions of a random graph model with a fixed number of nodes that
were proposed.
The first construction involves a network where we only set the number of vertices
n and the number of edges m. This means we have n vertices, and we randomly
place m edges among them. Specifically, we select m pairs of vertices randomly
from all possible pairs and connect them using an edge. It is often required that
the network should be a simple graph, meaning it should not have self-edges
or multiple edges. Therefore, the position of each edge should be selected only
among distinct pairs that are not already connected. This model is commonly
known as G(n, m) in mathematical terms.
Another way to define the model is to state that the network is created by
randomly choosing from the set of all simple graphs that have exactly n vertices
and m edges.
Both constructions yield statistically equivalent sets of graphs.

It is important to note that the random graph model should not be defined
in terms of a single randomly generated network, but as a collection of networks.

The majority of mathematical research has primarily focused on a relatively
modified model known as G(n, p), which offers significantly greater ease of anal-
ysis. Within this particular model, the emphasis shifts from fixing the number
of edges to fixing the probability of edges between vertices. In this revised
framework, we maintain a network of n vertices, where each distinct pair has an
independent probability p of being connected by an edge. Unlike previous mod-
els, the number of edges in this network is not predetermined. It is feasible for
the network to contain zero edges or even have edges connecting every possible
pair of vertices, although these scenarios are less likely for most values of p.

Once again, it is essential to note that the technical definition of a random
graph relates not to an individual network, but rather to an ensemble over all
conceivable networks.

The advent of the G(n, p) model brought forth significant contributions from
renowned mathematicians Erdős and Rényi, who conducted a series of ground-
breaking studies on this model during the late 1950s and early 1960s. Their
invaluable insights led to the model being commonly referred to as the "Erdős-
Rényi model" or the "Erdős-Rényi random graph" as a tribute to their influential
work. Notably, when discussions revolve around a random graph without speci-
fying a particular variant, G(n, p) invariably serves as the fundamental reference
point.

In our exploration of the G(n, p) random graph, we commence with a straight-
forward yet crucial calculation, which is the determination of the expected number

18



3.1 Random graphs

of edges within our model network. Even though the number of edges in this
model is not fixed, we can derive its expectation value through a systematic anal-
ysis. By examining the number of graphs featuring precisely n vertices and m
edges, we can discover the various ways in which edge positions can be selected
from

(
n
2

)
distinct vertex pairs. Consequently, the total probability of selecting a

graph with m edges from our ensemble can be expressed with a standard binomial
distribution as:

P (m) =
((

n
2

)
m

)
pm(1 − p)(

n
2)−m (3.1)

In addition, the expected number of edges connecting any given pair of ver-
tices is equivalent to the probability p of an edge existing between those vertices.
That being so, the expected total number of edges in the network is equal to
the probability p connecting any pair of vertices, multiplied by the total number
of pairs, that is

E(m) =
(n

2)∑
m=0

mP (m) =
(

n

2

)
p. (3.2)

Now, since the average degree of a graph with precisely m edges is k = 1
n
m,

the average degree in G(n, p) is

< k >=
(n

2)∑
m=0

1
n

mP (m) = 1
n

(
n

2

)
p = (n − 1)p. (3.3)

The computation of the degree distribution of G(n, p) is slightly more chal-
lenging. Each vertex in the graph is independently connected to every other
vertex with a probability of p, excluding itself. Consequently, the probability of
being connected to exactly k other vertices while not being connected to any of
the remaining n − 1 − k vertices is given by pk(1 − p)n−1−k. With

(
n−1

k

)
ways

for k vertices to be selected, the total probability of being connected to precisely
k vertices follows again the binomial distribution, which is

P (k) =
(

n

k

)
pk(1 − p)n−1−k. (3.4)

Hence, in essence, G(n, p) is characterized by a binomial degree distribution.
However, in numerous cases, our focus is directed towards the properties exhibited
by expansive networks, where the value of n can be considered sufficiently large.

19



3.1 Random graphs

Moreover, many networks showcase a mean degree that remains relatively stable
as the network size expands. For instance, the average number of friends an
individual possesses is not heavily dependent on the total global population.

From Eq.(3.3) we can see that, as n → ∞, p = <k>
n−1 becomes vanishingly

small, which enables us to write

ln
[
(1 − p)n−1−k

]
= (n−1−k) ln

(
1 − < k >

n − 1

)
≃ −(n−1−k)< k >

n − 1 ≃ − < k >

where we have expanded the logarithm as a Taylor series, and the equalities
become exact as n → ∞. By exponentiating both sides of the equation, we gain

(1 − p)n−1−k = e−<k>. (3.5)
Furthermore, for large n, we obtain(

n − 1
k

)
= (n − 1)!

k!(n − 1 − k)! ≃ (n − 1)k

k! . (3.6)

Therefore, we can express P (k) as

P (k) = (n − 1)k

k! pke−<k> = (n − 1)k

k!

(
< k >

n − 1

)k

e−<k>

= e−<k> < k >k

k! .

(3.7)

Hence, for large n, we gain that G(n, p) has the Poisson distribution, which
is why this specific model is also sometimes called the "Poisson random graph".

Now, using that ⟨k⟩ is the average degree in a random graph, we know that
a node in this network has on average:

− < k > nodes at distance one (d = 1)
− < k >2 nodes at distance two (d = 2)
− < k >3 nodes at distance three (d = 3)
− . . .
− < k >d nodes at distance d

The expected number of nodes up to distance d from the starting node is
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3.1 Random graphs

N(d) = 1+ < k > + < k >2 + < k >3 + . . . + < k >d

= < k >d+1 −1
< k > −1 .

(3.8)

Let Lrand represent the average path length of a random network. Intuitively,
approximately < k >Lrand nodes within the random network are situated at a
distance Lrand or in close proximity to it. Consequently, n ∼< k > Lrand ,
implying that Lrand ∼ ln n

ln<k>
. Due to the slow increase of ln n with respect to n,

the average path length can remain relatively small even within relatively large
networks.

This model G(n, p) produces networks that are statistically homogeneous,
even though the model is inherently random. This means that most nodes in
the network have roughly the same number of links, around the average degree
(< k >). The connectivity in this model follows a Poisson distribution with a
bell shape, with a strong peak at ⟨k⟩. This suggests that the likelihood of finding
a node with a very high degree decreases exponentially.

Figure 3.1: Bell curve distribution of node linkages. Source: [11]

When examining the Poisson random graph, one can easily compute an essen-
tial network metric - the clustering coefficient. As already stated, this coefficient
quantifies the transitivity within a network by representing the probability that
two neighboring vertices are also connected to each other. In the case of a ran-
dom graph, the probability of any two vertices being neighbors is identical, and
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3.2 Scale-free networks

all these probabilities are equal to p = <k>
n−1 , where < k > represents a constant

value.
Accordingly,

C = < k >

n − 1 .

As the limit n approaches infinity with a fixed average degree, we can see from the
above equation that the clustering coefficient tends to zero in the random graph.
One noteworthy disparity between the random graph and real-world networks lies
in their clustering coefficients. While real-world networks frequently exhibit high
clustering coefficients, the random graph follows a different pattern.

3.2 Scale-free networks
For over four decades, the scientific community regarded complex networks as en-
tirely random. Therefore, when scientists Albert-László Barabási, Eric Bonabeau,
Hawoong Jeong and Réka Albert initiated their ambitious project to map the
World Wide Web in 1998, they anticipated discovering a random network [11].
Their reasoning was straightforward: individuals link their web documents based
on their distinctive interests, and with the vast variety of these interests and the
sheer number of available web pages, one would expect the resulting connections
to exhibit a fairly random pattern.
However, the measurements they obtained during their investigation contradicted
their initial assumptions. Using specialized software, they unleashed a virtual
robot that traversed the web, meticulously collecting all the links it encountered.
Although the robot could only explore a diminutive fraction of the entire web, the
resulting map it constructed unveiled that a select few highly connected pages
played a vital role in holding the entire World Wide Web together. Strikingly,
over 80% of the pages on the map possessed fewer than four links, while an ex-
traordinarily minuscule minority(less than 0.01% of all nodes) had an astonishing
number of over 1000 links. The magnitude of this phenomenon became even
more apparent in a subsequent web survey, which uncovered a single document
that had amassed references from an astounding two million other pages.
A careful analysis of the web pages, taking into account the number of links they
possessed, revealed that the distribution followed a power law. This particular
distribution demonstrated an intriguing characteristic whereby the probability of
a node being connected to exactly k other nodes was 1

kn . In simpler terms,
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3.2 Scale-free networks

nodes with a small number of links were plentiful, whereas nodes with a large
number of links were relatively rare. The value of n exhibited an approximate
value of 2 for incoming links. So, a node was roughly four times more likely to
have half the number of incoming links compared to another node. This power
law distribution stood in stark contrast to the familiar bell-shaped distributions
commonly observed in random networks, thus emphasizing the distinctive and
captivating nature of complex networks.

Unlike a bell curve, which exhibits a peak, a power law distribution is char-
acterized by a continuously decreasing function. When represented on a double-
logarithmic scale, a power law takes the form of a straight line.

Figure 3.2: Power law distribution of node linkages. Source: [11]

Notably, power laws defy the distribution of links observed in random net-
works, instead characterizing systems where a select few dominant hubs (nodes
that are highly connected to other nodes in the network), like for instance Google,
exert significant influence. Random networks, on the other hand, do not enable
the emergence of such hubs.

Anticipating to encounter nodes that follow a bell-shaped distribution similar
to the distribution of human heights, the scientists found nodes that defied
conventional understanding, analogous to the discovery of individuals with height
of 30 meters, which prompted them to introduce the term "scale-free" to capture
the essence of this extraordinary phenomenon.

The investigation conducted later on by the three Faloutsos brothers, who
are computer scientists, focused on examining the routers interconnected through
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3.2 Scale-free networks

optical or other types of communication lines. Their findings discovered that the
network topology also exhibits a scale-free nature.
Researchers have further uncovered the presence of scale-free properties in select
social networks. Among these revelations is the investigation which revealed that
a network depicting relationships among individuals in Sweden is adhered to a
power law distribution. While the majority of individuals had only a few lifelong
partners, a small group of hubs had a considerably larger number of partners.
Another study provided evidence of a scale-free network structure among indi-
viduals connected through email communication. Additionally, scientific papers,
connected through citations, also exhibit a power law distribution. Furthermore,
collaborations among scientists in various fields, including physicians and com-
puter scientists, have scale-free characteristics in these networks.
Besides all of this, scale-free networks can occur in protein regulatory network,
Hollywood actor’s network, cellular metabolism and many more, which scientists
discovered the more they studied networks.

An essential question arises concerning the inadequacy of random network
theory in explaining the presence of hubs and the power law degree distribution
within networks. To elucidate this, Barabási and Albert (BA) proposed another
network model, through the closer examination of the original work by Erdős and
Rényi (ER) which uncovers two key reasons behind this. Firstly, the ER model
assumed a predetermined inventory of nodes prior to establishing connections,
whereas the number of documents on the Web, for instance, is far from constant.
The Web, which began with a solitary page in 1990, has since grown, surpassing
a trillion pages. Similar growth patterns can be observed in most networks.
For example, the Hollywood network initially consisted of a mere handful of
actors, but as new individuals entered the industry, the network flourished, with
newcomers connecting to established veterans, with each new addition linking to
the existing network. Consequently, due to the dynamic nature of real networks,
older nodes were afforded greater opportunities to establish connections.
The second crucial factor revolves around the inequality of nodes within net-
works. When individuals decide where to place their web page links, they face
over a billion potential destinations. However, our familiarity is limited to only
a tiny fraction of the entire web, with a tendency to favor well-connected sites
that are easier to discover. By linking to these nodes, individuals unintentionally
contribute to and strengthen a bias toward them. This phenomenon, referred
to as "preferential attachment" is observed in various contexts. In the domain
of Hollywood, for instance, more connected actors are more likely to be selected
for new roles, thereby reinforcing their prominence. Similarly, well-established
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companies naturally attract a higher number of alliances, enhancing their desir-
ability for future partnerships. Likewise, highly cited articles in scientific literature
attract more researchers to read and cite them, maintaining their influence.
Hence, the presence of hubs can be clarified by these two mechanisms: growth
and preferential attachment. As the network expands and new nodes come into
play, they exhibit a natural inclination to connect to the more connected sites that
have already gathered attention. As a result, these popular locations accumulate
a growing number of links over time, surpassing their less connected neighbors.
This process, often characterized as "rich get richer," predominantly favors the
early nodes, as they are more likely to evolve into hubs in due course.

Scientists have utilized computer simulations and precise calculations to
demonstrate that a growing network with preferential attachment inevitably ex-
hibits a scale-free nature, characterized by a distribution of nodes that adheres to
a power law. While this theoretical model is simplistic in nature and necessitates
adjustments to suit individual circumstances, it undeniably verifies the explana-
tion for the ubiquitous presence of scale-free networks in real-world scenarios.

Numerical findings have provided evidence that, when compared to a random
graph of the same size and average degree, the scale-free model showcases a
marginally smaller average path length, alongside a significantly higher clustering
coefficient. This observation suggests that the presence of a few "big" nodes,
characterized by exceptionally large degrees serves as crucial role in bringing the
remaining nodes in the network into closer proximity. Nevertheless, currently,
no analytical predictive formula exists to determine the average path length and
clustering coefficient for the scale-free model.

The intuitive understanding suggests that the breakdown of a considerable
number of nodes would lead to the fragmentation of a network, resulting in
isolated and non-communicating segments. This notion holds true for random
networks, wherein the removal of a critical fraction of nodes causes the system
to disintegrate into disconnected islands. However, simulations conducted then
on scale-free networks reveal a different outcome. Surprisingly, even if up to 80%
of Internet routers are arbitrarily selected and fail, the remaining nodes manage
to form a cohesive cluster, maintaining a path between any two nodes. Similarly,
disrupting a cell’s protein-interaction network proves challenging, but the mea-
surements indicate that despite introducing a high level of random mutations,
the unaffected proteins continue to collaborate effectively.

Scale-free networks, in their essence, demonstrate a remarkable ability to
withstand accidental failures, a quality deeply ingrained within their inhomoge-
neous topology. When nodes are randomly removed, it is the smaller ones that
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are predominantly affected due to their abundance compared to hubs. The elim-
ination of these small nodes does not significantly disrupt the overall network
topology as they possess fewer connections in contrast to the hubs, which serve
as connectors to a substantial portion of the network. However, the dependence
on hubs also poses a notable vulnerability to deliberate attacks, which is often
referred to as the "Achilles’ heel" of such systems. This term draws an analogy
from Greek mythology, where the legendary warrior Achilles possessed extraordi-
nary strength and invulnerability except for a single weak spot in his heel.

Through a series of simulations, researchers have discovered that the elimi-
nation of a few pivotal hubs from the Internet has a detrimental effect, causing
the system to fragment into isolated groups of routers with no viable connections
between them. Similarly, experiments conducted on yeast have revealed that re-
moving proteins with higher degrees of connectivity poses a significantly higher
risk of organism fatality compared to the deletion of other nodes.

In conclusion, the significance of relying on hubs can vary depending on the
specific system under consideration, offering both advantages and disadvantages.

3.3 Regular coupled networks
In the domain of graph theory, there exists another structure where each vertex
has an identical number of neighbors, that is, has the same degree, and it is
called a regular graph. Real-world networks rarely exist in isolation, intertwin-
ing through various modalities such as dependency relationships, multi-support
and inter-connection patterns. Intuitively, a globally coupled network manifests
the intriguing attributes of possessing the smallest average path length and the
largest clustering coefficient.

An extensively examined, sparse and regular network model of notable interest
is the nearest-neighbor coupled network, commonly referred to as a lattice. This
type of regular graph exhibits nodes linked solely to a limited number of their
neighbors. In this context, a lattice does not exclusively imply a two-dimensional
square grid but can rather adopt diverse geometries. A minimal lattice, for in-
stance, constitutes a straightforward one-dimensional structure akin to a row of
individuals holding hands. On the other hand, a nearest-neighbor lattice with a
periodic boundary condition encompasses of n nodes arranged in a ring-like for-
mation, where each node i is adjacent to neighboring nodes, i = 1, 2, · · · , K/2,
with K representing an even integer. When K assumes a large value, such a
network showcases substantial clustering. In fact, the clustering coefficient of

26



3.3 Regular coupled networks

the nearest-neighbor coupled network approximates C = 3
4 .

Figure 3.3: (a) The simplest nearest-neighbor coupled network. (b) Nearest-
neighbor coupled network with four nearest-neighbor coupled nodes. Source:
[16]

The nearest-neighbor coupled network exhibits a significantly large average
path length that diverges as n → ∞. This characteristic poses a challenge
in achieving effective global coordination, such as synchronization, within the
confines of this locally connected network. Nevertheless, there exists a regu-
lar network that combines sparsity, clustering and a small average path length
called the star-shaped coupled network. In this particular network, a central node
interconnects with all other n−1 nodes, while the peripheral nodes remain uncon-
nected amongst themselves. Surprisingly, as n tends to infinity, the average path
length converges to 2 along with the clustering coefficient approaching to 1. This
star-shaped network model embodies the sparse, clustering and other properties
observed in many real-world networks, rendering it a more fitting model than
the regular lattice for several well-known real networks. Notably, although most
real networks do not exhibit an exact star shape, this model captures essential
characteristics of real-world systems.
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Figure 3.4: Star-shaped network.

3.4 Small-world networks
The small-world phenomenon captures the prevalence of interconnections within
human networks, often referred to as "six degrees of separation". This principle
underscores the abundance of short paths in social graphs composed of indi-
viduals, linked by acquaintances. Its origins trace back to an American social
psychologist, Stanley Milgram in the 1960s, who conducted experiments by ask-
ing the participants to forward letters through personal connections in the United
States. Each participant could forward a letter to solely one person with the aim
of the letter reaching a "target person" in Boston. Milgram unveiled that the
average chain length was six. This intrigued the exploration of compact pathways
within networks.

The succeeding studies by eminent applied mathematicians Duncan Watts
and Steve Strogatz proposed a distinctive interpretation of networks possessing
the small-world attribute. They conceptualized such networks as a superposition:
a densely interconnected sub-network encompassing nodes’ local connections,
along with a set of randomized long-range connections facilitating the creation
of concise pathways. Beyond empirical analyses of social, technological and bi-
ological networks, Watts and Strogatz explored this fundamental model. This
model commences with a d-dimensional lattice network, augmented by a small
amount of extended links from each node, randomly chosen with uniform distri-
bution. The resultant network demonstrates localized clustering and short paths,
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mirroring prevalent real-world networks. (Refer to Figures 3.5 and 3.6 for visual
representation.)

Figure 3.5: Two-dimensional grid with a single random shortcut superimposed.
Source: [19]

Figure 3.6: Two-dimensional grid with many random shortcuts superimposed (as
in the Watts-Strogatz model). Source: [19]

Conventionally, network connection topology adheres to either total regularity
or complete randomness. However, a shift has transpired with the advent of
"small-world" networks, introducing a middle ground. In these networks, regular
structures undergo progressive rewiring, introducing a growing degree of disorder.
It becomes a type of graph in which most nodes are not neighbors of one another,
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but most nodes can be reached from every other by a small number of steps.
Strikingly, these networks embody the dual nature of high clustering similar to
regular lattices, coupled with small characteristic path lengths similar to random
graphs.

To transition between regular and random networks, Watts and Strogatz
employ the following random rewiring protocol. Commencing with a ring lattice
consisting of n vertices and k edges per vertex, they randomly rewire each edge
with a probability of p. In this context, "rewiring" refers to relocating one end
of a link to a randomly selected node within the entire network, following the
conditions that distinct nodes cannot possess multiple connections between them
and no node can be connected to itself. This procedure establishes connections
between nodes that would otherwise belong to separate local clusters. With this
approach, the graph is gradually adjusted from regularity (p = 0) to randomness
(p = 1), thereby exploring the intermediate zone where 0 < p < 1.

Figure 3.7: Three graphs depending on the value of p. Source: [20]

In the WS small-world model, both clustering coefficient C(p) and average
path length L(p) can be regarded as functions of the rewiring probability p. At the
beginning, when p = 0, a regular ring lattice has high clustering C(0), but a long
average path length L(0). When the rewiring probability is low, the local network
features remain similar to the original regular network, maintaining clustering
coefficient close to the initial value (C(p) ≈ C(0)). Yet, the average path
length decreases significantly and approaches that of random networks (L(p) >>
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L(0)). This is expected since a few random rewirings can substantially reduce the
average path length while keeping local clustering properties relatively unchanged.

Figure 3.8: Average path length and clustering coefficient of the WS small-world
model as a function of the rewiring probability p. Both are normalized to their
values for the original regular lattice (p = 0). Source: [12]

The study of WS small-world networks has led to an exploration of new models
of complex networks, which includes certain adaptations of the WS model. One
well-known variation is the NW small-world model, introduced by Newman and
Watts [21]. In the NW model, existing connections between nearest neighbors
remain intact, and new connections are introduced between node pairs with
probability p. A node’s connectivity also cannot involve multiple links to another
node or self-connections. When p is set to 0, the NW model mirrors the original
nearest-neighbor coupled network, and if p is 1, it transforms into a globally
coupled network. Analyzing the NW model is comparatively simpler than the
original WS model, as it avoids the emergence of isolated clusters, a phenomenon
that may be present in the WS model. When p is sufficiently small and n is
adequately large, the NW model becomes essentially indistinguishable from the
WS model. Presently, these two models are collectively referred to as small-world
models for the sake of conciseness.

The origin of small-world models lies in social networks, where individuals
usually have friendships with nearby neighbors, like those living on the same street

31



3.4 Small-world networks

or coworkers in the same workplace. However, many individuals also maintain a
handful of friendships through significant distances, such as friends in different
countries. These distant relationships are symbolized by the extended edges
introduced through the rewiring process in the WS model or by the connection-
addition process in the NW model.
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Chapter 4

Rumor spreading

In the age of information, with massive amounts of data being generated and
circulated without any monitoring, gossip can spread like a wildfire. In today’s
world, it is more important than ever to be cautious about the accuracy and
reliability of the information we consume and share.

Rumor spreading refers to the process of dissemination of unverified or false
information among individuals or groups in a social network. Research has shown
that the spread of rumors is influenced by a variety of factors, including psycho-
logical and social factors, such as the need for information, the emotional appeal
of the rumor and social identity dynamics.

Misinformation, being incorrect information, and disinformation, being de-
liberately misleading false information, have always existed in human communi-
cation, propagating through word-of-mouth transmission. Hence, the informa-
tional content of rumors varies widely, spanning from basic gossip to developed
propaganda and marketing material. However, contemporary research utilizing
modern analytical techniques, facilitated by the Internet, has shed new light on
this phenomenon. In the past, the spread of rumors was limited to interpersonal
interactions, but the emergence of social media has ushered in a new era of rapid
and extensive rumor propagation which has become more destructive.

The study of rumor propagation in social networks is vital for various reasons.
Firstly, it helps develop strategies to limit misinformation, especially during crises
or sensitive occurrences. Secondly, examining rumor diffusion patterns yields in-
sights into human behavior, cognitive biases and information processing in digital
communities. Moreover, identifying influential nodes (individuals with significant
rumor propagation potential) is crucial for focused intervention and precise in-
formation dissemination. Analyzing rumor spreading also helps in detecting and



tracking the origin and evolution of specific rumors, thus aiding in building more
effective fact-checking mechanisms.
Furthermore, social network analysis benefits researchers in comprehending the
network’s structure that either facilitates or impedes rumor diffusion. Recognizing
vulnerable regions in the network guides the implementation of measures to limit
the rapid spread of misinformation. Additionally, machine learning and data
mining techniques can model the dynamics of rumor propagation using large
datasets, enabling the development of predictive models for forthcoming rumor
outbrakes.
Better insight into the mechanics of rumor diffusion in complex social networks
and its consequences can relieve the establishment of a more wholesome and
educated online realm. This, in turn, can promote critical thought, digital media
awareness and the advancement of technologies for identifying and countering
the issues presented by misinformation in the digital era.

Knowledge about network models has implications for understanding the
spread of computer viruses, diseases, information and rumors. The connec-
tion between these graph structures and rumor spreading lies in the different
propagation patterns they enable. In random graphs, for instance, due to the
more homogeneous connectivity, rumors tend to spread more slowly and less ex-
tensively. The lack of highly connected hubs restricts the ability of rumors to
propagate rapidly across the network. Consequently, random graphs generally
exhibit a slower and localized diffusion of rumors. On the other hand, scale-
free graphs provide an environment convenient for rapid and widespread rumor
spreading. The presence of highly connected hubs in scale-free networks enables
rumors to quickly propagate from a small set of influential nodes to a significant
portion of the network. These hubs serve as information spreaders, capable of
disseminating rumors to numerous connections efficiently. Once a hub has heard
the rumor, it will pass it to numerous other nodes, eventually compromising other
hubs, which will then spread the rumor through the entire network. As a result,
scale-free graphs often exhibit a faster and more extensive spread of rumors, with
the potential for global reach.

Understanding the connection between various network models and their im-
pact on rumor spreading dynamics is crucial in various fields, such as social net-
work analysis and epidemiology. By studying how information or rumors spread
through these different network structures, researchers can gain insights into the
mechanisms underlying the propagation of ideas, diseases or opinions in real-world
networks.
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Chapter 5

Epidemics on networks

The dynamics of information and rumor diffusion in complex networks are of-
ten modeled as contagion processes, resembling the spread of epidemics among
neighboring individuals. The study of social networks has gathered substantial
attention from the scientific community, particularly due to their association with
disease transmission. Diseases propagate through networks of interpersonal con-
tacts, where airborne illnesses like influenza or tuberculosis can be transmitted
through shared air in enclosed spaces, while contagious diseases and parasites
spread through physical contact. These contact patterns can be represented as
networks, and extensive empirical research has been dedicated to understanding
the structure of these networks. In this section, we delve into the relationship
between network structure and disease dynamics.

The biological processes that unfold when an individual, known as a "host"
in epidemiological terms, acquires an infection are complex. Upon infection,
the pathogen generally undergoes replication within the host’s body, while the
immune system initiates a response to counteract its presence, often leading
to the manifestation of symptoms. Ultimately, either the pathogen or the im-
mune system gains the upper hand, although there are instances where neither
prevails, leading to outcomes such as the individual’s recovery, mortality or the
establishment of a chronic infection state.

5.1 Compartmental models of the disease spread
To completely understand how diseases disseminate throughout populations would,
in theory, require the understanding of all the intricate biological aspects in-
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volved. Thankfully, in practice, there exist more manageable approaches that
employ simplified models of disease spread, which offer valuable insights into
disease dynamics in numerous scenarios. Infectious disease modeling has proven
invaluable in unraveling the intricate mechanisms governing the transmission of
diseases, enabling us to gain insights into their propagation, anticipate the tra-
jectory of outbreaks and assess the effectiveness of epidemic control strategies.
Within this realm, the SI, SIR and SIS models stand as fundamental dynamical
frameworks for infectious diseases. The aforementioned models fall under the
category of deterministic compartmental models presented in the form of ordi-
nary differential equations. Deterministic models operate under the assumption
that the observed population precisely behaves as the model’s description, thus
excluding any random events within the population. In compartmental models
individuals within a population are allocated into distinct subgroups or compart-
ments, each representing a particular stage of the epidemic. In this chapter, our
focus lies on these tractable approaches.

Historical background

Mathematical modeling in the realm of epidemics has a rich historical back-
ground that predates the study of networks. The foundations of mathemati-
cal modeling in the context of disease transmission can be traced back to the
groundbreaking work of Daniel Bernoulli in 1760. Bernoulli, a trained physician,
embarked into the realm of mathematics to construct a model that aimed to
defend the practice of smallpox vaccination. Through his calculations, Bernoulli
demonstrated that widespread vaccination against smallpox had the potential to
increase life expectancy from 26 years and 7 months to 29 years and 9 months.

In 1906, William Hubert Hamer made a significant contribution to the un-
derstanding of infection spread by proposing that it depends on the number of
susceptible and infective individuals [23]. This idea outlined in Hamer’s work
introduced the concept of a so-called mass-action law to describe the rate of
new infections. Since then, this fundamental concept has formed the basis of
compartmental models in epidemiology.

An illustrative example highlighting the power of mathematical modeling
in epidemiology is the revolutionary work of doctor Ronald Ross on malaria.
Dr. Ross’s significant contributions earned him the prestigious Nobel Prize in
Medicine in 1902, recognizing his remarkable explanation of the intricate dynam-
ics underlying the transmission of malaria between mosquitoes and humans. At
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that time, it was widely believed that complete removal of malaria was impossible
as long as mosquitoes persisted within a population. However, Dr. Ross’s work
presented a concise compartmental model in 1911, incorporating both mosquitoes
and humans, that challenged this prevailing notion [24]. His model demonstrated
that reducing the mosquito population below a critical threshold could indeed lead
to the elimination of malaria. Field trials subsequently provided empirical support
for Dr. Ross’s conclusions, paving the way for remarkable achievements in malaria
control efforts. These triumphs stand as a testament to the remarkable effective-
ness of applying mathematical models to combat infectious diseases. In addition,
also dating back to the early twentieth century, the innovative efforts of Ander-
son McKendrick, a military medical practitioner and self-taught mathematician,
laid the foundation for the emergence of compartmental models. The theoreti-
cal frameworks developed by McKendrick and his contemporaries constitute the
core principles of traditional mathematical epidemiology, a well-established and
extensively explored discipline.
It is noteworthy that the groundwork for the entire approach to epidemiology
using compartmental models was laid not by mathematicians, but by esteemed
public health physicians such as Sir R. Ross, W.H. Hamer and A. McKendrick
between 1900 and 1935.

5.1.1 The SI model
In the conventional mathematical depiction of an epidemic, the intricate dynam-
ics occurring within individual hosts are reduced to transitions between a limited
number of fundamental disease states. In its simplest form, the model comprises
two states: susceptible and infected. Individuals in the susceptible state have
not yet contracted the disease but are susceptible to infection upon contact with
an infected individual. On the other hand, individuals in the infected state have
contracted the disease and have the potential to transmit it if they come into
contact with susceptible individuals. While this binary classification overlooks
many detailed biological complexities, it captures some fundamental characteris-
tics of disease dynamics and serves as a valuable simplification, particularly when
our focus is primarily on the interplay between networks and populations rather
than the internal dynamics of individual host organisms.

The traditional approach to studying disease spread takes a rather simplified
perspective, avoiding any explicit discussion of contact networks. It adopts a
fully mixed or mass-action approximation. The Law of Mass Action is a term
widely applicable in the realm of chemistry, and it is an assumption that ensures
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that the rate of a chemical reaction is directly proportional to the concentration
of the reactants.
In the context of population dynamics and epidemic modeling, the Law of Mass
Action is used to describe how individuals move between two interacting cate-
gories within a population and presumes that people within a population interact
homogeneously which in fact means that every individual has an equal chance,
over a given time period, of encountering any other individual. In addition, the
frequency of interaction between two distinct subgroups of the population is di-
rectly linked to the product of the respective sizes of those subgroups. In this
model, people interact in a random and unrestricted manner. However, it is im-
portant to acknowledge that this representation does not accurately reflect the
complexities of the real world. In reality, people have limited contact with only
a fraction of the global population, and these interactions are far from random.
This is precisely why the study of networks becomes pivotal in understanding
the transmission of diseases. Despite its lack of realism, this assumption enables
the use of reached conclusions about the spread of a disease in one population
to predict the spread of that disease in another population, regardless of their
size. So, it is still worthwhile to explore the principles underlying the traditional
approaches, as they provide a foundation for our investigation into network epi-
demiology.

Let us imagine a scenario where a disease is spreading throughout a population
of individuals. In this context, we define S(t) as the number of individuals who
are susceptible to the disease at time t, and X(t) as the number of individuals
who are infected at time t. However, it is important to note that due to the
random nature of disease transmission, these numbers are not fixed and can vary.
If we were to repeat the disease spreading process multiple times under similar
conditions, we would likely obtain different numbers each time. To address this
variability, we can purify our understanding of S and X as the average or expected
numbers of susceptible and infected individuals. This means that we consider
running the disease spreading process multiple times under identical conditions
and calculate the average values of S and X based on the outcomes.
Naturally, the number of individuals who become infected increases when suscep-
tible individuals contract the disease from infected individuals. Assume a scenario
where people randomly interact and make contacts, which are sufficient for the
spread of the disease. We can presume that the rate at which these contacts
occur is β per individual, meaning that each person has an average of β con-
tacts with randomly chosen individuals per unit time. To visualize the transitions
between different states, we can use flow charts. Here is a simple flow chart
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representing the SI model:

Figure 5.1: SI model flow chart.

The transmission of the disease occurs only when an infected person comes
into contact with a susceptible individual. If the total population consists of
n people, then the average probability of encountering a susceptible person at
random is S

n
. Therefore, an infected person has contact with an average of β S

n

susceptible individuals per unit time. Considering that there are, on average, X
infected individuals in the population, the overall average rate of new infections
can be expressed as β SX

n
. We can now formulate a differential equation to

describe the rate of change with respect to time t of the number of infected
individuals X:

dX

dt
= β

SX

n
(5.1)

At the same time, the number of susceptible individuals S decreases at the
same rate as new infections occur. Therefore, we can write the corresponding
differential equation for the rate of change of S with respect to time t:

dS

dt
= −β

SX

n
(5.2)

To simplify the analysis, it is commonly preferred to introduce variables that
represent the fractions of susceptible and infected individuals. As such, we express
the following relations:

s = S

n
, x = X

n
. (5.3)

Hence the equations Eq.(5.1) and (5.2) can be written as
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dx

dt
= βsx, (5.4)

ds

dt
= −βsx (5.5)

The mathematical model described, where individuals are either susceptible
or infected, is known as the fully mixed susceptible-infected (SI) model. In the
SI model, there is no recovery or removal of individuals from the infected state.
Once an individual becomes infected, they remain infected throughout the course
of the epidemic. Therefore, the total population size remains constant, so we can
express the relationship between the susceptible and infected individuals using the
equation S + X = n, or equivalently s + x = 1. By substituting s = 1 − x
in the Eq.(5.4), we can eliminate the variable s and express the dynamics of
the system solely in terms of the variable x, which represents the proportion of
infected individuals. This simplification allows us to focus on the dynamics of
the infection without explicitly considering the susceptible individuals. We gain:

dx

dt
= β(1 − x)x. (5.6)

The previous equation, known as the logistic growth equation, is encountered
in various fields such as biology, physics and other domains. By employing con-
ventional mathematical techniques, the equation can be solved, resulting in the
expression

x(t) = x0e
βt

1 − x0 + x0eβt , (5.7)

where x0 represents the initial value of x at time t = 0. The resulting pattern,
as depicted in Figure 5.2, takes the form of an S-shaped "logistic growth curve",
representing the proportion of infected individuals. During the initial phase, the
curve experiences exponential growth, signifying the high susceptibility of the
population. However, as the number of susceptibles diminishes over time, the
disease encounters increasing difficulties in finding new victims, causing the curve
to reach a saturation point.
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Figure 5.2: The classic logistic growth curve of the SI epidemic model. Source:
[2]

5.1.2 The SIR model
The SI model represents the most elementary approach of infection modeling.
Nevertheless, to increase realism or to better capture the characteristics of spe-
cific diseases, various extensions can be employed. One common extension ad-
dresses the concept of recovery from the disease. In the SI model, once individuals
become infected, they remain in the infected state indefinitely and continue to
spread the infection. However, in reality, many diseases involve a recovery period
during which the immune system successfully eliminates the pathogen, leading
to the restoration of health. Moreover, individuals often develop immunity to the
disease following recovery, making them resistant to reinfection. To incorporate
these aspects into the model, a third disease state is introduced, typically referred
to as "recovered" and denoted by R. This extended framework is known as the
susceptible-infected-recovered (SIR) model.

In certain diseases, individuals do not experience recovery but instead suc-
cumb to the infection after a certain interval and pass away. Although this
outcome stands in direct contrast to the notion of recovery in human terms,
it holds little significance in the field of epidemiology. From an epidemiological
perspective, whether an individual is immune or deceased, they are effectively
eliminated as potential hosts for the disease. In our model, both recovery and
death are represented by the R state. Diseases characterized by mixed outcomes,
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where individuals can either recover or die, can also be accommodated within this
framework. Mathematically speaking, it is inconsequential whether individuals in
the R state are classified as "recovered" or "dead". Hence, some individuals opt
to interpret the R state as "removed" to encompass both possibilities, leading to
the usage of the susceptible-infected-removed (SIR) model.

Figure 5.3: SIR model flow chart.

In the fully mixed susceptible-infected-recovered (SIR) model, the dynamics
unfold in two stages. In the initial stage, susceptible individuals become infected
through contact with infected individuals. The rate of contact between individu-
als remains β per person, as discussed earlier. In the subsequent stage, infected
individuals recover (or pass away) at a constant average rate γ. Also, once some
individual recovers or dies, it will never get infected again.

By knowing the value of γ, we can determine the expected duration of in-
fection, denoted as τ , for an infected individual prior to their recovery. The
probability of recovering within a small time interval δτ is γδτ , while the proba-
bility of not recovering within that interval is 1 − γδτ . This information allows
us to determine the probability of an individual still being infected after a total
time τ , as shown in the upcoming equation:

lim
δτ→0

(1 − γδτ) τ
δτ = e−γτ (5.8)

Furthermore, the probability, p(τ)dτ , that the individual remains infected for
a duration between τ and τ + dτ , and then recovers, is obtained by multiplying
this previous probability by γdτ , as expressed in equation which corresponds to
a standard exponential distribution:

p(τ)dτ = γe−γτ dτ (5.9)

42



5.1 Compartmental models of the disease spread

Consequently, although an infected person is most likely to recover shortly
after infection, there exists the possibility of remaining in the infected state for
an extended period, potentially exceeding the mean infectious time of 1

γ
.

Contrary to the exponential distribution assumed in the SIR model, the actual
distribution of infection durations in most diseases exhibits a narrow peak cen-
tered around an average value. Nevertheless, these behaviors do not accurately
capture the dynamics observed in most real diseases. In real-world scenarios,
the duration of infection for the majority of individuals tends to group around a
specific time period, such as a week or a month. Deviations from the average
duration are relatively rare. Despite this limitation, we will continue employing
this model for the sake of mathematical convenience.

The SIR model equations, which describe the fractions of individuals in the
susceptible (s), infected (x), and recovered (r) states, can be expressed as fol-
lows:

ds

dt
= −βsx, (5.10)

dx

dt
= βsx − γx, (5.11)

dr

dt
= γx. (5.12)

These equations capture the transitions between the different states, reflect-
ing the transmission of the disease from susceptible to infected individuals, the
recovery or death of infected individuals, and the acquisition of immunity, respec-
tively. It is through these equations that the SIR model elucidates the dynamics
of infectious diseases.

In addition, the total population size remains invariant. Hence, the three
variables satisfy

s + x + r = 1. (5.13)
We can obtain the value of s from these equations, by first eliminating x

from equations (5.10) and (5.12) and gaining

1
s

ds

dt
= −β

γ

dr

dt
,

and then integrating both sides with respect to t to obtain

43



5.1 Compartmental models of the disease spread

s = s0e
− βr

γ (5.14)
where s0 is the value of s at the initial time t = 0, and the constant of integration
was chosen so that there are no individuals in the recovered state at t = 0. Other
options are possible but this one will be used for now.

Now using that x = 1 − s − r and placing it in the equation (5.12) with the
help of (5.14), we get

dr

dt
= γ

(
1 − r − s0e

− βr
γ

)
. (5.15)

If this equation is solved for r, and s is found from Eq.(5.14) and x from
Eq.(5.13), the solution is given by

t = 1
γ

∫ r

0

du

1 − u − s0e
− βu

γ

. (5.16)

Unfortunately, in practice we cannot evaluate the integral in closed form, but we
can however evaluate it numerically, for which an example is shown in the figure
below. Here, the three curves demonstrate the fractions of the population in the
susceptible, infected and recovered states as a function of time. The parameters
are β = 1, γ = 0.4, s0 = 0.99, x0 = 0.01 and r0 = 0.

Figure 5.4: Time evolution of the SIR model. Source: [2]
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Several noteworthy observations can be made regarding this figure. Firstly, the
fraction of susceptible individuals in the population decreases monotonically as
more susceptibles become infected, while the fraction of recovered individuals
monotonically increases. Conversely, the fraction of infected individuals initially
rises as infections occur, then declines as individuals recover, ultimately approach-
ing zero as the time approaches infinity.
Importantly, the susceptible population does not reach zero. The curve rep-
resenting s(t) concludes slightly above the axis. This is due to the absence of
infected individuals (x → 0), resulting in no further transmission to the remaining
susceptibles. Individuals who manage to avoid infection for a prolonged period
are unlikely to contract the disease at all, symbolizing their fortunate survival
throughout the outbreak. Similarly, the fraction of recovered individuals fails to
reach one as time progresses.

The asymptotic value of r represents the total number of individuals who
become infected throughout the entire epidemic duration, serving as a measure of
the outbreak’s overall magnitude. This value can be derived by solving equation
(5.15) at the point where dr

dt
= 0, resulting in

r = 1 − s0e
− βr

γ (5.17)
When determining the initial conditions for the model, there are different

approaches to consider, but the most common one assumes that the disease
originates from either a single infected individual or a small group of c individuals,
while the remaining population is in the susceptible state. In other words, the
initial values of the variables are

s0 = 1 − c

n
, x0 = c

n
, r0 = 0

In the scenario of a substantial population size (n → ∞), we can simplify the
notation to s0 ≈ 1, leading to the expression r = 1 − e− βr

γ for the final value of
r.

If β ≤ γ, the size of the epidemic gradually diminishes until it reaches zero.
This occurs because when β ≤ γ, the recovery rate of infected individuals sur-
passes the rate at which susceptible individuals become infected preventing the
disease from establishing a strong presence in the population. As a result, the
number of infected individuals, which starts at a small value, decreases instead
of increasing, resulting in the extinction of the disease rather than its spread.

The fundamental epidemiological metric is the basic reproduction number,
denoted as R0, which signifies the potential for an epidemic’s development and its
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speed. R0 is calculated by considering the early stages of a disease outbreak when
there are only a few cases, and the majority of the population is susceptible. This
is called a naive population. It represents how many more people, on average,
one infected person will infect before recovering. For instance, if each infected
person infects two others on average, R0 = 2. If half of them infect one person,
and the rest infect none, R0 = 1

2 , and so on.

• In the case of R0 = 2 (R0 > 1), each infected person, on average, infects
two others. This means that the number of new cases doubles in each
iteration, resulting in exponential growth and epidemic.

• Conversely, if R0 < 1, the disease experiences exponential decline, even-
tually dying out. The pivotal point is R0 = 1, serving as the threshold
between these growth and decline scenarios. Below R0 = 1, the disease
shrinks, while above it, the disease spreads.

• If R0 = 1, it indicates that one infected person, on average, infects one
susceptible person. In this context, the disease becomes endemic, that is,
always present in the population with a relatively unchanging number of
infected individuals.

To calculate R0 in our model, we consider that if an individual remains in-
fectious for a duration τ , they will come into contact with approximately βτ
other individuals during this period. R0 is defined for a naive population where
all individuals in contact are susceptible, so βτ represents the total number of
individuals the infected person will infect. We find the average R0 by taking the
τ distribution into account, as described in Eq. (5.9).

R0 = βγ
∫ ∞

0
τe−γτ dτ = β

γ

5.1.3 The SIS model
An alternative variation of the SI model explores the concept of reinfection, where
individuals can be infected multiple times due to diseases that either do not
provide immunity for their victims after recovery or offer limited immunity. This
model is useful for simulating the transmission of diseases caused by bacteria. In
these situations, individuals do not acquire immunity to further infections caused
by the same bacterium.
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Hence, this leads to the development of the SIS model, a simplified framework
consisting of two states: susceptible and infected. In this model, individuals
transition back to the susceptible state upon recovery.

Figure 5.5: SIS model flow chart.

The mathematical differential equations managing the dynamics of the SIS
model are as follows:

ds

dt
= γx − βsx, (5.18)

dx

dt
= βsx − γx. (5.19)

Once more, the rate of contact between individuals is β per person. Once
an individual recovers, there exists a distinct probability, γ, for them to be rein-
fected, which is different from the probability of initial infection for susceptible
individuals. Additionally, the total population size remains constant, leading to
the equation s + x = 1.
By substituting s = 1 − x into equation (5.19), we derive

dx

dt
= (β − βx − γ)x (5.20)

for which the solution is

x(t) =
(

1 − γ

β

)
Ce(β−γ)t

1 + Ce(β−γ)t , (5.21)
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where the integration constant C is fixed by the initial value of x to be

C = βx0

β − βx0 − γ
. (5.22)

In scenarios where the population size is large and the number of initial disease
carriers is small, leading to x0 approaching zero and C = βx0

β−γ
, we can derive a

simpler solution expressed as

x(t) = x0
(β − γ)e(β−γ)t

β − γ + βx0e(β−γ)t . (5.23)

Figure 5.6: Fraction of infected individuals in the SIS model. Source: [2]

If β is greater than γ in the SIS model, a logistic growth curve similar to
the basic SI model is observed in the figure above. However, a key distinction is
that the entire population does not become infected by the disease. Instead, the
system reaches a stable state in the long run, where the infection and recovery
rates are perfectly balanced. Consequently, a constant fraction of the population
remains infected at any given time. It is important to note that the identity of
the infected individuals changes over time as some recover and others become
infected.

By setting the derivative dx
dt

to zero in Equation (5.20), the fraction of infected
individuals can be obtained as
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x = β − γ

β
. (5.24)

In the field of epidemiology, as mentioned, this stable state is commonly
referred to as an endemic disease state.

An interesting observation in the SIS model is that as the rate β approaches
rate γ, the fraction of infected individuals in the endemic state tends towards
zero. Conversely, when β is smaller than γ, the disease is projected to diminish
exponentially, as predicted by Eq. (5.23).

In the vast landscape of epidemiology, numerous other models have emerged
to capture the dynamics of specific diseases. These models go beyond the basic
frameworks and introduce additional states to account for various aspects of
disease transmission. For instance, the SIRS model, where individuals experience
recovery from infection and acquire immunity, similar to the SIR model. However,
this immunity is not permanent, and individuals eventually lose it after a specified
time, rendering them susceptible once more. Also, an "exposed" state may be
incorporated to represent individuals who have contracted the disease but have
yet to reach the infectious stage in order to transmit it to the rest. Alternatively,
an initial immune state can be included prior to the susceptible state to reflect
the immunity passed on from mothers to newborns. Furthermore, there exist
models that account for population dynamics, allowing for the arrival of new
individuals through birth or immigration. Additionally, certain models make a
distinction between individuals who fully recover from the disease and those who
become carriers capable of transmitting the infection to others. However, we will
not pursue these models further since the models already seen will be sufficient
for our subject of interest.

5.2 Epidemic models on networks
In the preceding section, we explored the standard approach to epidemic model-
ing, which assumes full mixing of the population. This assumption implies that
each individual has the potential to come into contact with any other individual,
and these contacts, with a transmission probability of β per unit time, contribute
to the spread of the disease.
However, in reality, it is unreasonable to assume that any two individuals have
the potential to cross paths. Instead, most individuals have a defined circle of
acquaintances, family, friends, neighbors and coworkers, with whom they interact
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regularly. Consequently, the majority of the world’s population can be safely
disregarded.
To capture the essence of these interpersonal dynamics, the concept of a contact
network emerges, shedding light on the underlying structural complexities that
shape the trajectory of disease transmission throughout the population.

When it comes to modeling disease dynamics, network models function in a
manner similar to the fully mixed models we have previously encountered, albeit
with a key difference - the utilization of a network of potential contacts instead
of assuming universal contact within the entire population. The population’s
contact network is portrayed as a graph. Here, individuals are nodes, and the
edges denote contact links that enable infection transmission. Within the graph,
each node symbolizes an individual within the population. The degree of a node
denotes the count of connections associated with that individual. In this context,
we define the transmission rate or infection rate as the probability per unit time
that infection will be transmitted between two individuals who are connected by
an edge in the network, one being susceptible and one infected. To put it differ-
ently, it represents the rate at which sufficient contact for disease transmission
occurs between any two individuals linked by an edge. It is important to note
that the transmission rate in the fully mixed case differs from its counterpart in
the network case. In the fully mixed models, it represents the rate of contacts
between an infected individual and all others in the population. In contrast, in the
network models, it denotes the rate of contacts with only one other individual.
Despite this distinction, we employ the same notation β to facilitate comparison
and comprehension.

The transmission rate, as a crucial factor in disease dynamics, encompasses
both disease-specific characteristics and social and behavioral parameters of the
population. On one hand, some diseases are inherently more transmissible than
others, resulting in distinct transmission rates. On the other hand, it is important
to recognize that the transmission rate is not solely determined by the disease
itself. The social and behavioral norms within a population also play a significant
role. For instance, in certain countries, it is customary for individuals with minor
respiratory infections like colds to wear surgical face masks as a preventive mea-
sure. By adopting such practices, the transmission of the disease can be reduced.
In contrast, other countries may lack such conventions, leading to a disparity in
transmission rates.

By assigning a specific value to the transmission rate, it becomes possible to
develop models that depict the spread of disease within a network. The models
previously introduced in the initial section of this chapter can be extended to
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accommodate network scenarios. In the network variant of the SI model, for
example, the network’s vertices represent n individuals, the majority of whom
are initially in the susceptible state at time t = 0. Only a small fraction x0,
or even a solitary vertex, is in the infected state. Through a probability β per
unit time, infected nodes transmit the disease to their susceptible neighbors,
resulting in the gradual dissemination of the disease throughout the network. In
the context of this model, it is evident that as t → ∞, every individual who
is susceptible to the disease will eventually become infected. This is due to
the fact that infected individuals remain infectious indefinitely. Consequently,
their susceptible neighbors will inevitably contract the disease, regardless of the
transmission rate (as long as it is not zero). The only requirement for infection is
that a vertex must have at least one path connecting it to an infected individual
in the network, enabling the disease to reach and affect them.

A graph is considered connected if there exists a sequence of edges connecting
any two nodes. In reality, most contact networks are described by disconnected
graphs, which consist of components. These components exhibit the property
that nodes from different components lack a connection, yet nodes within the
same component are mutually reachable. In real-world networks, a common
observation is that one substantial component predominates, encompassing more
than half of the total graph, while numerous smaller components exist.
In the scenario where an outbreak originates from a single infected individual, over
an extended period, only individuals within the same component of the network
will be affected. Other distinct components remain unaffected by the outbreak.
Consequently, in the asymptotic limit of prolonged durations, the disease will
spread from each initial carrier to infect all vertices that are reachable within the
carrier’s component. In the simplest instance, where the disease initiates with a
solitary infected carrier, only one component will experience infection.
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Figure 5.7: Network components with a single infected individual. Source: [2]

Accordingly, the magnitude of the disease’s influence on the population is
directly determined by two key factors: the underlying network structure and the
initial location of the infected individual within the network. In the event that
the infected individual is situated within a large component of the network, it is
highly probable that the disease will propagate extensively, infecting a significant
fraction of the population. Conversely, if the individual is positioned within a
small component, the disease may have a limited reach, initially infecting only a
few individuals before eventually diminishing and dying out.

Besides the structure of the network, its connectivity, contact patterns mean-
ing how frequently individuals interact and with whom they interact, the starting
point of the transmission, and the transmission rate β along with social and be-
havioral changes, there are numerous factors that influence the spread, both for
epidemic and information. One that can also significantly alter the dynamics is
the implementation of interventions, such as vaccination campaigns, quarantine
measures or information dissemination strategies. In some cases, the physical
location of individuals within a network or geographic factors can also have an
affect on the spread. Furthermore, real-world processes often exhibit stochastic
behavior, with probabilistic transmission contributing to variability in epidemic
outcomes. In addition, the ability of a network to withstand and recover from
disruptions, such as targeted interventions or the removal of influential nodes, is
a critical aspect worth evaluating.
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In order to predict and control the epidemic and information dissemination
precisely, it is crucial to gain an understanding of how these factors combine
in specific network models. Researchers utilize mathematical models, compu-
tational simulations and data analysis in their investigations, offering valuable
insights for shaping public health strategies or adjusting marketing campaigns,
depending on the context of the study.
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Chapter 6

Rumor propagation models

The examination of rumors found its early motivation and influence within the
realm of epidemic study. During the period spanning the 1940s to the 1960s,
it was commonly viewed as a component of the extensive investigation into
epidemics. Although often coupled in discussion, the research of rumors is sig-
nificantly less progressed than the study of epidemics. This divergence is partly
due to the relatively intricate nature of the rumor dynamics. This complexity
primarily originates from differences in the way removal occurs, which makes the
analysis distinct and more challenging than the one in epidemics. In epidemic
scenarios, individuals attain immunity through mortality or recovery. Conversely,
in rumors, those who spread the rumor can transition to not spreading the ru-
mor in two distinct ways: through interactions between people who transmit the
rumor, or through interactions with people who do not transmit the rumor.

Rumors can be viewed as an "infection of the mind", and within the interper-
sonal connections, the diffusion of rumors mirrors certain aspects of infectious
disease spread, particularly in propagation principles and population classifica-
tion. Consequently, this has led several scholars to analyze rumor propagation
processes by drawing insights from the study of infectious disease transmission.
However, they are not entirely equivalent. The earliest exploration into parallels
and distinctions between rumors and epidemics was initiated in 1965 by scientists
D.J. Daley and D.G. Kendall. Following this, the study of rumor propagation has
evolved as an independent phenomenon, distinct from the realm of epidemics.



6.1 Stochastic models

6.1 Stochastic models
The models elucidating the dissemination of information or the propagation of
rumors serve as analytical tools to enhance our comprehension of social phe-
nomena. Distinct mathematical models are typically constructed as stochastic
models, from which deterministic counterparts are derived. This represents the
logical methodology for developing mathematical models in discrete populations,
whether they are finite or infinite. It is worth noting that, under appropriate
conditions within the model, differential equations are used to approximate the
stochastic formulation, rather than the other way around.

"Stochastic", a term originating from Greek, signifies randomness or chance.
Stochastic models are mathematical representations used to predict outcomes of
experiments or random events unfolding over time, their probabilities considered.
These models have broad applicability, spanning fields like geophysics, social sci-
ence, earthquake size and location prediction, pressure pulsations, atmospheric
temperature, environmental problem-solving, stock prices in finance, purchas-
ing behavior, many examples in service and control theory, and manufacturing
systems. This chapter particularly focuses on the extensive use of stochastic
modeling in examining the dissemination of information or rumors within popu-
lations of individuals.

The deterministic approach represents the process as a system of differen-
tial equations while the stochastic approach describes the process as either a
discrete or continuous finite state Markov process. Frequently, it becomes neces-
sary to resort to a deterministic model to facilitate numerical solution procedures.
Nonetheless, it is essential to recognize that the deterministic model is funda-
mentally an approximation.

6.1.1 The Daley-Kendall model
Suppose a closed, homogeneously mixing population of total size S (where
S = N + 1). In other words, suppose a constant collection of the same set
of individuals who are equally likely to interact with each other in a given (small)
interval of time.
At any given time, individuals from this population can be categorized into three
distinct, non-overlapping categories consisting at time t > 0 of:

(A) X(t) individuals who remain uninformed about the rumor,
(B) Y (t) individuals actively involved in disseminating the rumor, and
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(C) Z(t) individuals who have encountered the rumor but have discontinued
their involvement in its dissemination.

Initially, X(0) = N, Y (0) = 1 and Z(0) = 0, while the overall population
size remains constant, ensuring that the equation

X(t) + Y (t) + Z(t) = N + 1 (6.1)
holds true at all times.

This mathematical relation offers a means for eliminating any mention to the
variable Z.

The classes labeled as (A), (B) and (C) whose members are called ignorants,
spreaders and stiflers, respectively, may initially feature resemblance to the groups
of susceptibles, infectious and removed commonly encountered in epidemic SIR
model.

The propagation of the rumor throughout the population relies on interactions
between ignorants and spreaders, following the Law of Mass Action. To be
specific, in any pairwise encounter involving a spreader, an attempt is made
to transmit the rumor to the other person. This other individual could be an
ignorant, a spreader or a stifler. In the first scenario, the ignorant becomes
a spreader, while in the other two scenarios, those engaged in the encounter
realize that the rumor is already known, prompting them to refrain from further
dissemination, thus joining the stiflers as a result of this "stifling experience". In
the context of pairwise meetings happening at rate β, there are three types of
encounters that occur at any given time t with rates relative to the populations
of each category, that is:

• ignorant ↔ spreader, with rate βX(t)Y (t)

• spreader ↔ spreader, with rate β 1
2Y (t)[Y (t) − 1]

• stifler ↔ spreader, with rate βY (t)Z(t)

To conveniently express the changes over a small time interval (t, t + h), we
can use the following format:

∆h(X, Y )(t) ≡ (X, Y )(t + h) − (X, Y )(t) (6.2)
Hence, for the sake of an illustration, the interaction between an ignorant

and a spreader yields ∆h(X, Y )(t) = (−1, 1).
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The transition rates governing state changes in the population are determined
by the frequencies of these meetings. From there, we derive relationships while
making approximations that ignore terms with minimal impact (o(h)):

Pr {∆h(X, Y )(t) = (−1, 1) | (X, Y )(t) = (x, y)} = βxyh,

Pr {∆h(X, Y )(t) = (0, −2) | (X, Y )(t) = (x, y)} = β
1
2y(y − 1)h,

Pr {∆h(X, Y )(t) = (0, −1) | (X, Y )(t) = (x, y)} = βyzh,

Pr {∆h(X, Y )(t) = (0, 0) | (X, Y )(t) = (x, y)} = 1 − βy
(

N − 1
2(y − 1)

)
h.

(6.3)
with all other transitions having probability o(h).
It is evident that β functions as a time constant, so through an appropriate se-
lection of time units, we can set β to 1.

We will now present two straightforward variations of the basic Daley-Kendall
model, maintaining our focus on models where rumor transmission occurs through
pairwise interactions. In the first variant, referred to as the "k-fold stifling model",
we suppose that a spreader continues to disseminate the rumor until encountering
k stifling experiences, where k is a positive integer (k ≥ 1). In essence, a spreader
persists until they have had "unsuccessful tellings" k times. By categorizing the
Y (t) spreaders into one of k exclusive groups, each representing individuals with
j stifling experiences (j = 0, . . . , k − 1), we can maintain a Markovian descrip-
tion of the process. This involves employing an augmented (k+1) -dimensional
vector (X, Y1, . . . , Yk) (t), where (Y1 + · · · + Yk) (t) = Y (t) = N + 1 − X(t)−
Z(t), just like before.
Of course, more intricate models can be developed, such as introducing random-
ness into the critical number, k, of rebuffs.

We recognize that the original Daley-Kendall model oversimplifies certain
aspects. Specifically, it assumes that

(1) every encounter between two spreaders inevitably leads to an attempt to
propagate the rumor, and

(2) a spreader transforms into a stifler solely after one stifling experience.
Therefore, in the second variant, known as the (α, p)-probability variant,

consider a scenario where, during a pairwise meeting, a spreader attempts to
disseminate the rumor with a probability p. Furthermore, suppose that upon such
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an attempt, each spreader involved independently decides, with a probability α to
become a stifler. In the original model, both p and α are set to 1. However, we
now introduce variations where 0 < p ≤ 1 and 0 < α ≤ 1. In this context, when
(X, Y )(t) = (x, y), several events can unfold within the time interval (t, t + h).
These include (neglecting terms of order o(h)):

• (X, Y ) meeting resulting in ∆h(X, Y ) = (−1, 1) with probability of pxyh,
or

• (Y, Y ) meeting resulting in ∆h(X, Y ) = (0, −1) with probability of p(2 −
p)α(1− α)y(y − 1)h, or

• (Y, Y ) meeting resulting in ∆h(X, Y ) = (0, −2) with probability of p(2 −
p)α2 1

2y(y−1)h, or

• (Y, Z) meeting resulting in ∆h(X, Y ) = (0, −1) with probability of payzh,
or

• no change with probability 1−p
[
(1 + α)x +

(
1 − 1

2p
)

α(2 − α)(y − 1)
]

yh.

6.1.2 The Maki-Thompson model
Another classic model for rumor propagation was presented by scholars D.P. Maki
and M. Thompson in 1973. Continuing in our established manner, we categorize
and quantify the population as (X, Y, Z). The propagation of the rumor occurs
through directed interactions involving the Y (t) spreaders at time t and others
within the population. These interactions result in two fundamental outcomes:

(a) when a specific spreader encounters an ignorant individual, the ignorant
becomes a spreader, and

(b) when the spreader interacts with another spreader or a stifler, the initiating
spreader becomes a stifler.
There are no other micro-level transitions considered in this model.

Consequently, the model encompasses merely two elementary transitions at
infinitesimal rates: ∆h(X, Y ) = (−1, 1) at rate XY h + o(h) and ∆h(X, Y ) =
(0, −1) at rate Y (Y − 1 + Z)h + o(h).

Accordingly, disregarding terms o(h) :

Pr {∆h(X, Y )(t) = (−1, 1) | (X, Y )(t) = (x, y)} = xyh,

Pr {∆h(X, Y )(t) = (0, −1) | (X, Y )(t) = (x, y)} = y(y − 1 + z)h,

Pr {∆h(X, Y )(t) = (0, 0) | (X, Y )(t) = (x, y)} = 1 − Nyh.

(6.4)
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It is worth highlighting that due to the spreader having directed contact, the
term 1

2y(y − 1) found in Eq. (6.3) is replaced by y(y − 1) in Eq.(6.4). Apart
from this change, the model remains akin to the Daley-Kendall model, as it still
operates on the premise that a spreader transitions into a stifler solely through
interactions between the initiating spreader and other members of the population.

The SI, SIR and SIS epidemic models have also been proposed as potential
models for explaining how rumors circulate [29], [33], [35]. The SIR epidemic
model involves two possible fundamental transitions over a small time interval of
length h, specifically ∆h(X, Y )(t) = (−1, 1) or (0, −1). While the first transition
can arise from an (X, Y ) contact, the second does not necessitate any interaction
between individuals in the population at all. It is sufficient for the cessation of
rumor spreading to happen solely due to a spreader permanently "forgetting" to
share the rumor with those they encounter in the population.

When it comes to modeling factors that contribute to the decline in the
spread of a rumor, we might consider things like forgetfulness or simply not
feeling like sharing the rumor anymore. However, it does not seem very realistic
to describe human behavior by making forgetfulness the sole reason for a rumor
to stop spreading, just as it would be unreasonable to rely entirely on the stifling
mechanism. Diseases come in different strengths, so rumors can also vary in
how urgently people want to spread them. Hence, it might make sense to use
both stifling and forgetfulness mechanisms. In that case, the relative rates of
pairwise contact (for spreading and stifling) and individual forgetfulness would
likely impact how far the rumor spreads.

6.2 Deterministic analysis of rumor models
The models we have outlined to describe how rumors spread can be mathemat-
ically represented as continuous-time Markov processes. Analyzing them using
explicit algebra is not straightforward, especially when it comes to finding the
transition probabilities for the various parameter values. Particularly, our primary
concern revolves around the fraction f within the initial ignorant population
X(0) = N who eventually become aware of the rumor, so that

lim
t→∞

X(t) = N − Nf, lim
t→∞

Y (t) = 0, lim
t→∞

Z(t) = 1 + Nf (6.5)

For this reason, we use deterministic versions of these models for our analysis.
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In the deterministic version of Eq. (6.2), we introduce continuous functions
x(t), y(t) and z(t), each of which is differentiable with respect to time t. These
functions share identical initial values: x(0) = X(0) = N, y(0) = Y (0) =
1, z(0) = Z(0) = 0. It is imperative that they adhere to the equation

x(t) + y(t) + z(t) = N + 1 (6.6)
which holds for a closed population.
The differential equations are given as:

ẋ = dx

dt
=

∑
simple transitions

(change in x) ∗ (rate of change) = (−1)xy

ẏ = dy

dt
= (+1)xy + (−2)1

2y(y − 1) + (−1)yz = y(x − y + 1 − z) = y(2x − N)
(6.7)

A point of significance here is that, because of our use of Eq. (6.6) to eliminate
z, N emerges as a coefficient within the differential equations. Additionally, N
is a consequence of its distinct appearance in the initial values.

The last two equations provide us with:

dy

dx
= −2 + N

x
. (6.8)

We will not delve into specifics, but they used the solution derived from their
deterministic model’s ordinary differential equations to establish a constant of
motion, λ(x, y), and replaced it with a random variable, λ(x(t), y(t)). An impor-
tant outcome was that, under the given initial conditions with N initial ignorants,
one initial spreader and no initial stiflers, the proportion of the population who
never heard the rumor asymptotically approaches 0.203188. For further details,
refer to [31], [32].

In a similar manner, the generalized (α, p)-probability variant of the funda-
mental Daley-Kendall model results in the following system of differential equa-
tions:
ẋ = (−1)pxy

ẏ = (+1)pxy + (−1)
[
p(2 − p)2α(1 − α)1

2y(y − 1) + pαyz
]

+ (−2)p(2 − p)α2 1
2y(y − 1)

= py[x − α(z + (2 − p)(y − 1))]
(6.9)
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6.2 Deterministic analysis of rumor models

Now these two equations yield

dy

dx
= −(1 + α) + α(N − 1 + p)

x
+ α(1 − p)y

x
(6.10)

In the limit as N approaches infinity, it can be deduced that the proportion
of a sizable population that remains uninformed about the rumor at the point of
its cessation is approximately 0.284668. For comprehensive information, refer to
[31], [32].

In addition, the deterministic version of the k-fold stifling model introduces a
set of equations for which now yi(t), for i = 1, . . . , k, tells how many spreaders
have met other spreaders or stiflers on different i − 1 occasions. By summing
them all up, we obtain y = y1 + · · · + yk, and so the equations take the form

ẋ = −xy,

ẏ1 = xy − y1 (y2 + · · · + yk + z) − 21
2y1 (y1 − 1) = xy − y1(N − x),

ẏi = yi−1 (N − x − yi) − yi (N − x − yi−1) = (yi−1 − yi) (N − x), i = 2, . . . , k,
(6.11)

The set of differential equations (6.11) seems to lack a fully solved closed-
form solution for k ≥ 2, thus necessitating numerical integration. For those
interested, more in-depth exploration is available in [31], [32].

The deterministic examination of Maki and Thompson’s model is outlined as
follows:

ẋ = (−1)xy

ẏ = (+1)xy + (−1)y(N − x) = y(2x − N)
(6.12)

In this case,

dy

dx
= −2 + N

x

from which we can observe is the same as Eq.(6.8), so the percentage of indi-
viduals who remain uninformed will be 0.203188 , mirroring the same proportion
as the Daley-Kendall model.
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6.3 Model variations

6.3 Model variations
A notable limitation of the class of models mentioned above is that they ei-
ther disregard the topology of the underlying social interaction networks through
which rumors propagate, assuming a homogeneous population, or employ overly
simplistic network models. While these simplistic models may adequately cap-
ture the dynamics of rumor spread within small-scale social networks, primarily
driven by person-to-person communication, they are unsuitable when applied to
the dynamics of rumor dissemination in large social interaction networks, partic-
ularly those facilitated by the Internet. These extensive networks often consist of
tens of thousands to millions of interconnected nodes with an exceptionally high
number of social connections that exhibit intricate and distinctive connectivity
patterns.

Up to this point, a multitude of researchers have delved into the examination
of rumor transmission dynamics. They have extended and adapted the two clas-
sical rumor propagation models in order to gain a more profound understanding
of how rumors spread. Here are some of the new directions and modifications
that researchers have investigated:

• Heterogeneous networks: A notable development in this field involves the
exploration of heterogeneous networks. In real-world scenarios, individuals
often exhibit diverse levels of connectivity and influence. Researchers have
analyzed how the dissemination of rumors varies within networks where cer-
tain individuals exhibit more extensive connections or influence compared
to others.

• Multi-layer networks: Rumors can propagate through different communica-
tion channels, such as social networks, mass media and face-to-face inter-
actions. This approach aims to capture the intricate nature of real-world
information diffusion.

• Behavioral factors: Scholars have embarked on investigations regarding the
influence of behavioral aspects, encompassing cognitive biases and emo-
tional reactions, in the context of rumor transmission. These factors exert
substantial influence on how individuals perceive and respond to rumors.

• Stochastic and agent-based approaches: Stochastic models and agent-
based simulations provide researchers with the means to introduce random-
ness and individual-level behavior enhancing comprehension of uncertainty
and unpredictability in the transmission of rumors.
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6.3 Model variations

• Geographical and spatial aspects: The emphasis on spatial models is par-
ticularly pronounced in contexts involving disease-related rumors or emer-
gency situations. So, investigations have been undertaken to discern the
impact of geography and spatial variables on the dynamics of rumor dis-
semination.

• Information integrity and the combat against misinformation: The studies
of information quality discuss the differentiation between accurate informa-
tion and falsehoods. They explain the mechanisms through which misinfor-
mation proliferates and explore strategies for countering its dissemination.

• Interventions and Control Measures: A segment of scholarly investigations
is dedicated to the formulation of comprehensive methodologies designed
to control and reduce the diffusion of rumors. This involves the strategic
identification of nodes with significant influence, facilitating precise inter-
ventions, along with the optimization of the timing of information releases.

The aforementioned cases represent just a fraction of the ongoing research
concerning the dynamics of rumor diffusion. Researchers are committed to con-
tinuous exploration and refinement of models to account for the complexity and
diversity of real-world circumstances. In the upcoming chapter, our focus will be
on an in-depth investigation of a more realistic model concerning the dissemina-
tion of rumors.
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Chapter 7

A rumour spreading model for
complex social networks

In this Chapter, I will present the review and results of the paper "Theory of
rumour spreading in complex social networks" by M. Nekovee et. al [1].

The rumor model

Consider a population comprising N individuals who are categorized into
three groups: ignorants, spreaders and stiflers. Building upon the work of Maki
and Thompson, suppose that the rumor spreads via directed interactions initi-
ated by spreaders with other individuals within the population. However, these
interactions are restricted to occur exclusively along the edges of an undirected
social interaction network denoted as G = (V, E) where, naturally, V represents
the network’s vertices and E represents its edges. The dynamics of interactions
between spreaders and the remaining population follow a set of specific rules:

1. In the event of a spreader interacting with an ignorant, the ignorant tran-
sitions to become a spreader at a rate λ.

2. In the event of a spreader interacting with another spreader or a stifler, the
initiating spreader transitions to become a stifler at a rate α.

The first rule can be interpreted as a probabilistic representation of individuals’
tendency to accept a rumor. This probability, loosely speaking, is influenced by
factors like the rumor’s urgency or credibility. On the other hand, the second rule



models the phenomenon where individuals tend to lose interest in propagating a
rumor upon learning, through interactions with others, that the rumor has grown
outdated or is incorrect.
As stated in the previous chapter, the discontinuation of rumor dissemination
can occur through the stifling mechanism as well as the spreader’s forgetfulness
to disseminate the rumor or they lose their motivation to continue doing so.
With regard to this crucial mechanism, individuals may cease rumor propaga-
tion spontaneously, without any external contact, at a rate denoted as δ. The
propagation process initiates when one or more individuals gain awareness of a ru-
mor and concludes when there are no longer any spreaders within the population.

Formulation of the model

The writers of this paper present an elucidation of this model in terms of Inter-
acting Markov chains. Within this framework, they proceed to derive mean-field
equations governing the dynamics of rumor propagation on complex networks
characterized by arbitrary degree correlations.

An interacting Markov chain(IMC) comprises N interacting nodes, each hav-
ing a state that evolves over time according to an internal Markov chain. Distinct
from traditional Markov chains, the corresponding internal transition probabilities
of an IMC depend not only on the individual node’s current state but also on
the states of all nodes to which it is linked. Consequently, the overall system’s
evolution adheres to a global Markov Chain, whose state space dimension is the
product of the states characterizing each individual node. Given the presence
of interactions between nodes within expansive networks, the task of solving the
dynamics associated with IMCs becomes exceptionally challenging. While Monte
Carlo simulations often provide viable solutions to such problems, there persists a
preference for analytical solutions, even if they necessitate approximations. When
it comes to the rumor model, each internal Markov chain can be in one of three
states - ignorant, spreader or stifler.
Within the domains of physics and probability theory, mean-field theory is dedi-
cated to the examination of the behavior exhibited by complex high-dimensional
stochastic models. It accomplishes this by examining a simplified model that
serves as an approximation to the original. This theory simplifies the represen-
tation of the actual contagion process by replacing specific local variables of
the dynamics with their corresponding global mean values. In the following, we
proceed to derive a set of coupled rate equations specifically tailored to this sce-
nario. These equations, functioning on a mean-field level, effectively capture the
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intricate dynamics of the Interacting Markov chains.
Let j be a node which in time t is in the ignorant state. Define pj

ii as the
probability that this node remains in the ignorant state during the time interval
[t, t + ∆t], while pj

is represents the complementary probability that it undergoes
a transition to the spreader state, that is, pj

is = 1− pj
ii. Consequently, we have

the following relationship:

pj
ii = (1 − λ∆t)g, (7.1)

where g = g(t) corresponds to the number of neighboring nodes connected to
node j that are in the spreader state at time t.
To simplify the microdynamics of our system, all nodes in the network are di-
vided into different classes based on their degrees, and statistical averages of the
transition probability discussed above are computed, grouping them by degree
classes.

Supposing node j possesses k links, g can be modeled as a stochastic variable,
following a binomial distribution characterized by

Π(g, t) =
(

k
g

)
θ(k, t)g(1 − θ(k, t))k−g, (7.2)

where θ denotes the probability at time t that an edge originating from an ig-
norant node with k links connects to a spreader node. This quantity can be
expressed as

θ(k, t) =
∑
k′

P (k′ | k) P (sk′ | ik) ≈
∑
k′

P (k′ | k) ρs (k′, t) . (7.3)

Within this equation, P (k′ | k) represents the degree-degree correlation function,
P (sk′ | ik) denotes the conditional probability that a node possessing k′ links
resides in the spreader state, given its connection to an ignorant node with a
degree of k, and ρs (k′, t) stands for the density of spreader nodes at time t that
fall within the connectivity class of k′.

The transition probability p̄ii(k, t) averaged over all possible values of g can
be expressed as:

p̄ii(k, t) =
k∑

g=0

(
k
g

)
(1 − λ∆t)gθ(k, t)g(1 − θ(k, t))k−g

=
(

1 − λ∆t
∑
k′

P (k′ | k) ρs (k′, t)
)k

(7.4)
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Similarly, we can derive an expression for the probability p̄ss(k, t) that a
spreader node with k links remains in the spreader state within the time interval
[t, t + ∆t]. In this scenario, we must also compute the expected value of the
stifler neighbors of the node at time t. Following previous procedures, we obtain

p̄ss(k, t) =
[
1 − α∆t

∑
k′

P (k′ | k) (ρs (k′, t) + ρr (k′, t))
]k

(1 − δ∆t) (7.5)

As for the corresponding probability of transitioning from the spreader to the
stifler state, p̄sr(k, t) it is defined as p̄sr(k, t) = 1 − p̄ss(k, t).

The transition probabilities discussed above enable the formulation of a sys-
tem comprising coupled Chapman-Kolmogorov equations, designed to describe
the probability distributions concerning the populations of ignorants, spreaders
and stiflers within each connectivity class. However, by disregarding fluctua-
tions around their expected values, we can alternatively derive a set of deter-
ministic rate equations governing the expected values of these quantities. Let
I(k, t), S(k, t) and R(k, t) signify the expected values of node populations be-
longing to connectivity class k which, at time t, occupy the ignorant, spreader or
stifler state, respectively. Consider the scenario where an ignorant node within
class k undergoes a transition to the spreader state within the interval [t, t+∆t].
This event can be modeled as a Bernoulli random variable with a success prob-
ability of 1 − pii(k, t). Since it involves the summation of independent and
identically distributed random Bernoulli variables, the total count of successful
transitions throughout this time span follows a binomial distribution, with an ex-
pected value equivalent to I(k, t) (1 − pii(k, t)). Accordingly, the rate of change
in the expected population of ignorant, spreader and stifler nodes, respectively,
within class k is expressed as

I(k, t+∆t) = I(k, t)− I(k, t)
1 −

(
1 − λ∆t

∑
k′

P (k′ | k) ρs (k′, t)
)k
 (7.6)

S(k, t + ∆t) = S(k, t) + I(k, t)
1 −

(
1 − λ∆t

∑
k′

P (k′ | k) ρs (k′, t)
)k


− S(k, t)
1 −

(
1 − α∆t

∑
k′

P (k′ | k) (ρs (k′, t) + ρr (k′, t))
)k

(1 − δ∆t)


(7.7)
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R(k, t + ∆t) = R(k, t)

+ S(k, t)
1 −

(
1 − α∆t

∑
k′

P (k′ | k) (ρs (k′, t) + ρr (k′, t))
)k

(1 − δ∆t)


(7.8)
Within the context discussed above, ρi(k, t), ρs(k, t) and ρr(k, t) denote the frac-
tions of nodes belonging to class k that occupy the ignorant, spreader and stifler
states, respectively. Also, the normalization condition holds, that is ρi(k, t) +
ρs(k, t) + ρr(k, t) = 1. As ∆t → 0, we have

dρi(k, t)
dt

= −kλρi(k, t)
∑
k′

P (k′ | k) ρs (k′, t) , (7.9)

dρs(k, t)
dt

= kλρi(k, t)
∑
k′

P (k′ | k) ρs (k′, t)

− kαρs(k, t)
∑
k′

P (k′ | k) (ρs (k′, t) + ρr (k′, t))) − δρs(k, t),
(7.10)

dρr(k, t)
dt

= kαρs(k, t)
∑
k′

P (k′ | k) (ρs (k′, t) + ρr (k′, t)) + δρs(k, t). (7.11)

It is worth noting that when it comes to the equations we have been dis-
cussing, the information about the underlying network is tied solely to the degree-
degree correlation function. This means that in the upcoming analytical and
numerical studies, there is no need to generate an actual network. The sole
prerequisites are either an analytical expression for P (k′ | k) or a numerical rep-
resentation of this quantity.

Analytical results

Now we will present the analytical findings for homogeneous social networks.
Homogeneous networks consist of nodes that serve identical roles and perform
the same functions within the network. On the contrary, heterogeneous networks
encompass networks characterized by the presence of two or more distinct node
classes, differentiated by both their function and utility, thus introducing greater
complexity into the analysis. Hence, we will refrain from delving into the intri-
cacies of inhomogeneous networks and the associated analytical findings. Those
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seeking a deeper understanding of this subject matter are encouraged to turn to
reference [1] for more detailed information.

To gain insight into fundamental aspects of our rumour model, we examine
the scenario of homogeneous networks. In such networks, degree fluctuations are
minimal and degree correlations are absent. As a result, the rumour equations
simplify to

dρi(t)
dt

= −k̄λρi(t)ρs(t), (7.12)

dρs(t)
dt

= k̄λρi(t)ρs(t) − k̄αρs(t) (ρs(t) + ρr(t)) − δρs(t), (7.13)

dρr(t)
dt

= k̄αρs(t) (ρs(t) + ρr(t)) + δρs(t) (7.14)

with k̄ signifying the network’s constant degree distribution (or the average value,
in cases where the probability of encountering a node with differing connectivity
decays exponentially).

The system of equations outlined above can be integrated analytically using
a standard approach. The scholars concluded that, in the infinite time limit,
when there are no spreaders remaining, the final fraction of nodes that have
encountered the rumor, commonly referred to as the final size of the rumor, is
obtained from the subsequent transcendental equation:

R = ρr(∞) = 1 − e−εR, (7.15)

where

ε = (α + λ)k̄
δ + αk̄

.

Equation (7.15) possesses a non-zero solution solely when ε > 1. In cases
where δ ̸= 0, this condition holds true as long as λ

δ
k̄ > 1.

However, in the specific scenario where δ = 0 (indicating the absence of the
forgetting mechanism), we have ε = 1 + λ

α
> 1, thus ensuring that Equation

(7.15) always accommodates a non-zero solution.
The outcome above elucidates that the introduction of a forgetting mech-

anism results in the emergence of a finite threshold in the rate of rumor prop-
agation, beneath which rumors cannot spread within homogeneous networks.
Notably, this threshold value remains unaffected by α which represents the sti-
fling mechanism. Consequently, in the initial stages of the spreading process,
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characterized by ρs ≈ 0 and ρr ≈ 0, the influence of stifling is insignificantly
minor in comparison to that of forgetting.

Numerical results

We now transition to the exploration of exact numerical solutions, enabling
us to analyse both the steady-state and the time-dependent behavior of the
model across various social network models. Initially, we focus on Erdős-Rényi
(ER) random graphs and uncorrelated scale-free networks(SF), followed by an
examination of scale-free networks with assortative degree correlations.

It is important to recall that ER random graphs, as we discussed in Chapter
3, exhibit a Poisson degree distribution for large values of N . Specifically, this
distribution is represented by

P (k) = e−<k> < k >k

k! ,

which attains its peak at an average value ⟨k⟩ and exhibits minor fluctuations
around this value.

Scale-free networks are characterized by a power law degree distribution:

P (k) =
{

Ak−γ,kmin ≤ k

0, otherwise
Within the aforementioned equation, kmin represents the minimum degree within
these networks, while A serves as a normalization constant.

Their investigations were conducted employing the aforementioned forms of
P (k) to represent ER and SF networks, with γ = 3, respectively. The network
size remained fixed at N = 106, with a consistent average degree of ⟨k⟩ = 7.
For each network variant, they generated a sequence of N random integers, dis-
tributed in accordance with the degree distribution. Subsequently, in order to
numerically solve the coupled set of differential equations (7.9)-(7.11), they em-
ployed a numerical technique for solving differential equations called the standard
finite difference scheme. Also, numerical convergence with respect to the step
size was evaluated numerically.
Throughout this paper the initiation of the rumor occurred from a randomly se-
lected initial spreader. The outcomes are based on averaging results obtained
from 300 runs, each commencing with different initial spreaders.
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In the initial series of computations, the value of δ was set at 1, and the
dynamics were examined as functions of the rumour spreading rate λ and the
stifling rate α. The initial focus was directed towards assessing the influence
of network topology on the final size of the rumor R, which for inhomogeneous
networks is derived from

R =
∑

k

ρr (k, t∞) ,

where t∞ represents a sufficiently extended period at which the propagation
process attains its steady state characterized by the complete absence of spreaders
within the network.

Figure 7.1: R for the ER network plotted as a function of λ for several values of
α. Source: [1]

In Figure 7.1, final size of the rumor corresponding to the ER network is
plotted as a function of λ showcasing various values of the stifling parameter α.
The key observation is the presence of a critical threshold λc, which is 0.12507,
below which the dissemination of a rumor is not possible. Intriguingly, akin to the
findings witnessed in homogeneous networks, the value of this threshold remains
unaffected by variations in α.

As far as the results for the scale-free network are concerned, the subsequent
Figure presents the outcomes concerning the final size of the rumor.
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Figure 7.2: R for the SF network plotted as a function of λ for several values of
α. Source: [1]

In this scenario as well, the rumor threshold remains independent of α, al-
though it manifests at considerably lower spreading rates when compared to the
ER network.

Besides assessing the influence of network topology on the steady-state char-
acteristics of the model, attention is also paid around comprehending the impact
of topology on the time-dependent behavior of the model. Temporal evolution of
the overall proportions of stiflers and spreaders within both ER and SF network
are observed, where the visualizations are constructed under the premise of λ = 1
and two distinct sets of cessation parameters:

• {α = 0; δ = 1}, where parameter set signifies a spreading process in which
cessation arises exclusively due to the spontaneous forgetting of a rumor
by spreaders or their disinclination to propagate the rumor further.

• {α = 1; δ = 0}, where parameter set corresponds to a situation in which
individuals persist in spreading the rumor until they transition to stiflers as
a consequence of their interactions with other spreaders or stiflers within
the network.
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Figure 7.3: Results for the time evolution of the spreader density where ER
network is represented with dashed lines and SF network with solid lines, for two
distinct parameter sets. Source: [1]

Figure 7.4: Results for the time evolution of the stifler density for the same
networks. Source: [1]
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As demonstrated in Figures above, within the first spreading scenario, the
initial propagation rate of a rumor across the SF network substantially surpasses
that of the ER network. In fact, findings indicate that the timeframe necessary
for the rumor to encompass 50% of the nodes in the ER random graph is nearly
twice as extended as the corresponding duration observed within the SF networks.
This substantial contrast in the propagation rate is expected and attributed to
the presence of highly connected nodes, hubs, within the SF network. These
hubs possess considerable influence, greatly accelerating the process of rumor
propagation once they become informed. Furthermore, not only does the rumor
propagate more rapidly during its initial phase within SF networks, but it also
ultimately encompasses a larger fraction of nodes by the culmination of the
dissemination process.
Within the second scenario of propagation, where stifling represents the sole ces-
sation mechanism, the initial rate of dissemination within the SF network once
again surpasses that witnessed within the ER network. However, in contrast to
the prior scenario, the final size of the rumor is immenser on the ER network.
This intricate behavior arises from the divergent roles played by hubs when the
stifling mechanism is activated. Initially, the presence of hubs expedites the prop-
agation, but as these hubs transition into stiflers, they effectively prevent further
dissemination of the rumor.

Our attention now turns to the examination of scale-free networks featuring
assortative degree correlation. Investigations have unveiled that social networks
tend to exhibit assortative degree correlations, signifying that highly connected
nodes rather establish connections with other highly connected nodes [8]. To ex-
plore the influence of such correlations on the dynamics inherent to the proposed
model a specific approach concerning the correlation parameter β, 0 ≤ β < 1 is
introduced.
Once again, equations (7.9) - (7.11) were solved with a specific focus on a SF
network characterized by a degree exponent γ = 3 and an average degree of
⟨k⟩ = 7. The network size remained constant at N = 105, while using two
distinct values for β, specifically β = 0.2 and β = 0.4. Figure 7.5 serves as the
visual representation of the outcomes, illustrating the behavior of the final size
of the rumor as a function of λ, while considering values of α at 0.5, 0.75 and 1.
Also, again, the value of δ was held at 1 during this analysis.
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Figure 7.5: R for the SF network plotted as a function of λ for several values of
α. The outcomes are showcased both in the absence of assortative degree-degree
correlations (represented by solid lines) and in their presence. The correlation
parameter β = 0.2 is indicated by short dashed lines and β = 0.4 by long dashed
lines. Source: [1]

Observations reveal that when λ is approximately less than 0.5, a rumor tends
to reach a somewhat smaller fraction of nodes within correlated networks com-
pared to uncorrelated ones. However, as λ surpasses this threshold, the behavior
reverses. In this scenario, the final extent of the rumor within assortatively corre-
lated networks surpasses that observed in uncorrelated networks. This observa-
tion leads us to the conclusion that the qualitative impact of degree correlations
on the ultimate rumor size is highly dependent on the rate of rumor propagation.

In a concluding exploration, the investigators wanted to understand the im-
pact of assortative correlations on the speed of rumor propagation. In Figure 7.6,
the results are presented, showcasing the time evolution of the total fraction of
spreaders, S(t). These observations were made within scale-free networks, each
composed of N = 105 nodes. The correlation strength, β, spanned from 0 to
0.4 in this analysis. Throughout these calculations, λ was kept constant at a
value of 1, and two distinct values of α, specifically 0 and 1, were considered.
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Figure 7.6: The influence of assortative correlations on the time dynamics of
rumor spreaders. The left panel showcases the outcomes when α = 0, while the
right panel illustrates the results when α = 1. Source: [1]

The graphical representation reveals that the initial rate of rumor dissemination
increases proportionally with the strengthening of assortative correlations, re-
gardless of the chosen value for α. However, when α = 1 the rumor’s lifespan
also diminishes more rapidly when such correlations are stronger.
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Chapter 8

Conclusion

In conclusion, the conducted analysis of rumor propagation within complex social
networks has unveiled the intricate interplay between network structure and rumor
dissemination. As discussed throughout this thesis, understanding the anatomy
of a network is of the greatest importance since the structure of the network
seriously affects its functioning, which includes the spread of rumors, information
and even diseases.

In initial chapters, we provided insight into the fundamental attributes char-
acterizing complex networks, which laid the foundation for comprehending net-
work’s structure. Subsequently, we discussed four prominent network models,
illuminating the distinct characteristics that differentiates them and elucidating
their implications for information dissemination. Following this, we pursued a
comparative analysis of rumor propagation and epidemic transmission. The uti-
lization of infectious disease models, SI, SIR and SIS, unveiled parallels between
these seemingly distinct processes. This exploration underscored the role of com-
partmental models in capturing the essence of propagation patterns.
Acknowledging rumors as a form of "mind infection", our inquiry led us from the
realm of disease modeling into the realm of developing models for the dissem-
ination of rumors. The pioneering models, for which Daley, Kendall, Maki and
Thompson are credited to, explained the dynamics of rumor transmission and
established a basis for more sophisticated investigations. In the final chapter, the
groundbreaking work of Nekovee et. al, introduced an innovative, realistic model
for the propagation of rumors across complex networks, which incorporates two
distinct mechanisms that cause cessation of a rumour, stifling and forgetting.
Their research reported the existence of a critical threshold in the rate of rumor
propagation within ER networks, below which the dissemination of a rumor re-



mains unattainable. This threshold has proven to be immune of the influence of
the stifling mechanism. In parallel, a similar threshold, although smaller in value,
has surfaced within the finite-size SF networks examined.
Additionally, their research marked a disparity in the initial rumor dissemination
rates between scale-free networks and ER random graphs. This phenomenon can
be attributed to the role assumed by hubs within scale-free networks, serving
as highly effective agents in the rapid propagation of rumors, once they attain
knowledge of the rumor. Moreover, an exploration was carried out to examine
the impact of assortative degree correlations on the speed of rumor propagation
within SF networks. It follows that these correlations speed up the initial rate of
propagation within such networks. Nevertheless, the magnitude of their influence
on the eventual proportion of nodes which hear the rumor depends on the rate
at which the rumor itself propagates.
Hence, their findings further emphasize the impact of network topology on rumor
spread, stressing the interconnectedness of network structure and function.

This study, despite its valuable insights, must be acknowledged to possess cer-
tain limitations. The ever-evolving area of communication and technology con-
tinually presents new challenges and promising opportunities for research within
this sphere. Future investigations may delve deeper into the underlying network
which, throughout this study, remains static, representing a fixed and unchang-
ing network topology. In reality, many social and communication networks are
often highly dynamic. For instance, consider the dynamic nature of Internet
chatrooms, where individuals establish new social connections and cease existing
ones on a continuous basis. The endeavor of modeling the propagation of infor-
mation on such dynamic networks becomes an exceedingly intricate task, which
could represent the forthcoming research.
In addition to that, within a single network, a multitude of spreading mechanisms
can exist. For example, consider a scenario in which two distinct rumors, labeled
"rumor 1" and "rumor 2", exhibit varying probabilities of acceptance as they
disseminate throughout the network [40]. This conceptual framework extends the
classical epidemic SIS model and introduces a level of complexity. Furthermore,
in traditional rumor spreading models, the transition probability from ignorants to
spreaders is typically treated as a fixed parameter. However, when examining real-
world scenarios, it becomes evident that an individual’s susceptibility to infection
by a neighboring spreader is contingent upon the strength of the interpersonal
ties between them. To address this, one can introduce a stochastic epidemic
model for rumor diffusion, where the infectious probability is explicitly defined as
a function of these tie strengths [41].
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Furthermore, one can also challenge the conventional notion that, in the dif-
fusion of rumors across networks, an individual exclusively acquires information
from their immediate neighbors. With the advent of the Internet and the in-
crease of popularity of online social networks, network participants now possess
convenient access to a diverse array of information sources, including television,
Facebook, newspapers, and more. Among these individuals, a subset may re-
ceive a rumor from alternative channels and subsequently disseminate it within
their network, all without necessarily obtaining the rumor from their immediate
neighbors within that network. This phenomenon transforms them into indepen-
dent spreaders, individuals engaged in multiple networks with access to diverse
information sources. Moreover, the scenario unfolds where participants engaged
in one network concurrently maintain membership in various other networks. Ad-
dressing this complexity necessitates the development of an innovative model in
which independent spreaders emerge, propagating rumors within a network while
not relying on information from network neighbors [42].

In closing, it is evident that the examination of rumor propagation continually
evolves through innovative research and a growing understanding of the factors
that govern how rumors spread. This field provides valuable insights into the
broader landscape of social networks and human interactions. Nevertheless, I
embrace the the idea that interdisciplinary approaches are key to unraveling the
intricacies of this phenomenon.

As responsible members of an information-rich world, we all have a role to
play in combating the spread of misinformation and nurturing a culture that
values critical thinking. By doing so, we can navigate the complex realm of
rumor propagation with greater resilience and wisdom.
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