

University of Novi Sad
Faculty of Sciences

Department of Mathematics
and Informatics

Analysis of Machine Learning and Deep
Learning Algorithms for Text Sentiment

Detection

Master Thesis

Stefan Dimitrijević

Supervisor: dr Miloš Savić

Novi Sad, 2023

Preface

Abstract
Sentiment analysis or opinion mining is the task of automatically extracting
and classifying the sentiment of the text. It can be applied in numerous elds
such as marketing, customer service, etc.

Sentiment analysis has gained much attention in recent years. The goal
of this thesis is to make a comparison of machine learning and deep learning
models. Such a comparison is key for understanding the potential limitations,
advantages, and disadvantages of popular methods.

In this thesis, we focus on three datasets: movie reviews (IMDB dataset),
coronavirus tweets (Corona dataset), and product and service reviews (YELP
reviews).

In chapter 1, we introduce the problem, and in the following chapter 2, we
go through the literature that tries to solve the sentiment analysis problem.
In chapter 3, we give an explanation of each dataset individually, whereas,
in chapter 4, we give dive into feature engineering from textual data. In
chapter 5 we go briey through some machine learning concepts. Chapters 6
and 7 consist of machine learning and deep learning models, respectively. In
chapter 8 we talk about the optimization of neural networks. In chapter 9
we go through experiments and results achieved. In the last chapter, chapter
10, we draw conclusions.

i

ii

Acknowledgements
I would like to express my deepest and most sincere gratitude to my thesis
supervisor dr. Miloš Savić for his motivation and support during research on
this topic.

Finally, I must express my profound gratitude to my parents and my
family for providing me with unfailing support and continuous encourage-
ment throughout my years of study and through the process of researching
and writing this thesis. This accomplishment would not have been possible
without them. Thank you.

ii

Contents

1 Introduction 2

2 Related Work 4

3 Datasets 6
3.1 Data preprocessing . 9

4 Features 15
4.1 Bag of words - BOW . 15
4.2 Term Frequency - Inverse Document Frequency (TF-IDF) . . . 16
4.3 Pretrained Word Embeddings 18

4.3.1 Word2Vec . 19
4.3.2 GloVe: Global Vectors for Word Representation 23
4.3.3 FastText . 25

4.4 Custom Word Embeddings . 26
4.5 Contextual Embeddings . 27

5 Machine Learning Concepts 28
5.1 Bagging . 28
5.2 Metrics . 29
5.3 Cross Validation . 31

6 Machine Learning Models 33
6.1 Naive Bayes Classier . 33

6.1.1 Training the Naive Bayes Classier 34
6.2 Logistic Regression . 35

6.2.1 Training Logistic Regression 36
6.3 Decision Tree . 38

iii

CONTENTS iv

6.3.1 Node Splitting . 39
6.3.2 Impurity Functions . 40

6.4 Random Forest . 43
6.4.1 Denition of Random Forest 43

6.5 Support Vector Machines . 44
6.5.1 Optimal Separating Hyperplanes 44
6.5.2 SVM for classication 46

7 Deep Learning models 49
7.1 ANN . 49

7.1.1 Perceptron . 49
7.1.2 Multi-layer Perceptron 52

7.2 RNN . 59
7.2.1 Vanilla RNN . 60
7.2.2 Bidirectional Networks 64
7.2.3 LSTM . 65

7.3 Transformers . 66
7.3.1 Attention Mechanism 66
7.3.2 Model Architecture . 66
7.3.3 BERT . 70

8 Optimization 72
8.1 Stochastic Gradient Descent (SGD) 72
8.2 Momentum . 74
8.3 Algorithms with Adaptive Learning Rates 74

8.3.1 AdaGrad . 74
8.3.2 RMSProp . 75

9 Experiments and Results 77
9.1 Hardware . 77
9.2 Libraries . 77
9.3 Results and Discussion . 77
9.4 Experiment results . 81

9.4.1 IMDB reviews results 81
9.4.2 Yelp reviews results . 83
9.4.3 Corona tweets results 85

10 Conclusions 90

iv

CONTENTS v

Bibliography 96

Biography 97

v

List of Figures

3.1 IMDB reviews data distribution 7
3.2 YELP reviews data distribution 8
3.3 Corona tweets data distribution 9
3.4 IMDB raw text . 10
3.5 IMDB preprocessed text . 10
3.6 IMDB tokenized text . 10
3.7 YELP raw text . 11
3.8 YELP preprocessed text . 12
3.9 YELP tokenized text . 13
3.10 Corona tweets raw text . 13
3.11 Corona tweets preprocessed text 14
3.12 Corona tweets tokenized text 14

4.1 CBOW architecture . 21
4.2 Skip-gram architecture . 23
4.3 Bert input embeddings [15] . 27

5.1 K-cross validation . 32

6.1 Example of decision tree [37] 39
6.2 Example of pruned decision tree [37] 43
6.3 Example of SVM with separable classes [31] 47
6.4 SVM classier [31] . 48

7.1 Example of a biological neuron [38] 49
7.2 Example of a perceptron [40] 50
7.3 Perceptron algorithm [39] . 51
7.4 Multi-layer Perceptron . 53
7.5 Example of minima, maxima, and saddle point [12] 56

vi

LIST OF FIGURES vii

7.6 RNN type 1 [12] . 61
7.7 RNN type 2 [12] . 62
7.8 RNN type 3 [12] . 62
7.9 Bidirectional Recurrent Network [12] 64
7.10 LSTM Cell [41] . 66
7.11 Attention model architecture [14] 67
7.12 Attention model block [14] . 69
7.13 Multiple attention model block [14] 69

8.1 Gradient descent . 73
8.2 SGD without and with momentum 74

9.1 (a) Custom embeddings model (b) Pretrained FastText model
(c) Pretranied GloVe model (d) BERT embeddings model . . . 80

9.2 IMDB models results . 81
9.3 IMDB confusion matrix . 82
9.4 IMDB normalized confusion matrix 83
9.5 YELP models results . 84
9.6 Yelp confusion matrix . 85
9.7 Yelp normalized confusion matrix 86
9.8 Corona tweets models results 87
9.9 Corona tweets confusion matrix 88
9.10 Corona tweets normalized confusion matrix 89

vii

List of Tables

4.1 Example of TF-IDF values . 17
4.2 Example of TF-IDF vector . 18

5.1 Confusion Matrix . 29
5.2 Confusion Matrix for 5-classes 31

6.1 Example of tabular data . 38

viii

List of Abbreviations

DT - Decision Tree

RF - Random Forest

SVM - Support Vector Machine

LR - Logistic Regression

NB - Naive Bayes

MLP - Multi-layer Perceptron

RNN - Recurrent Neural Network

LSTM - Long Short-Term Memory

BERT - Bidirectional Encoder Representations from Transformers

SGD - Stochastic Gradient Descent

BOW - Bag of Words

TF-IDF - Term Frequency Inverse Document Frequency

1

Chapter 1

Introduction

Sentiment analysis also referred to as opinion mining, is the task of auto-
matically extracting and classifying the sentiment of text [1]. It can be used
in dierent elds such as marketing [2], customer service [3], social media
[4], etc. Getting accurate sentiment prediction of text can help businesses
understand their customers, opinions, and emotions, allowing them to make
strategic planning based on this information [5].

Sentiment analysis is a part of Natural Language Processing (NLP). Early
approaches to sentiment analysis were not sophisticated as they are today.
Mostly, they were based on lexicon-based methods, where dictionaries of
words and phrases were created manually with positive and negative senti-
ments [6]. This is a very simple approach and easy to implement but it had
its limitations in terms of accuracy and generalization to new domains and
languages [1].

These algorithms used a variety of features, such as word n-grams [7],
part-of-speech tags [8], and syntactic parsing [9], to learn the relationship
between text and sentiment. These techniques demonstrated greater accu-
racy compared to lexicon-based methods they still had certain limitations,
such as they could not grasp the complex relationship between words and
contextual information.

Recently, deep learning started to emerge as a very strong tool for senti-
ment analysis [10]. Deep learning models such as convolution neural networks
(CNN) [11] and recurrent neural networks (RNN) [10], have achieved state-
of-the-art in sentiment analysis, as well as in other NLP tasks. These deep
learning models can capture complex patterns in text data [12]. However,
they also have their limitation, such as requiring large computational re-

2

3

sources and huge amounts of training data [12], and it is dicult to explain
their decision-making process [13].

A few years ago, completely new architectural models emerged using so-
called attention which dealt with long-term dependencies and complex prop-
agation through time [14]. Based on the attention architecture, many models
were developed for NLP tasks, including BERT [15].

In this thesis, we present a comprehensive study of sentiment analysis,
the current state of the art, and future directions. We review the various
techniques and algorithms that have been developed for this task and dis-
cuss the challenges and limitations of these methods. We also present our
contributions to the eld of sentiment analysis and suggest directions for
future research.

3

Chapter 2

Related Work

In this section, we review sentiment analysis, including the various techniques
and algorithms that have been developed for this task. Sentiment analysis
started to gain more attention and research at the beginning of the 2000s.

The initial approach to solving this problem is to apply lexicon-based
methods. There was a lot of feature crafting and all this led to overall ac-
curacy between 50% and 70%, depending on the dataset [16]. For sentiment
analysis in blogs, authors in [17] have done a comparison between the lexicon-
based method and Naive Bayes (NB), which showed that lexicon-based meth-
ods seriously underperform in comparison to Naive Bayes, accuracy can be
20% lower. Some authors tried even a rule-based [18] approach which only
lead to 55% accuracy.

At the end of the rst decade in 2000, researchers started using more
statistical algorithms for sentiment analysis. Researchers and practitioners
also started comparing dierent statistical models. Authors in [19] have done
a comparison of Naive Bayes and Support Vector Machine (SVM), which lead
to NB outperforming SVM by more than 10%. In study [20], authors tried
SVM, NB, Random Forest (RF), and Logistic Regression (LR). The nal
results showed that there was less than a 1% dierence between dierent
algorithms.

All previous approaches treated the text as a bag of words where the order
is not important. Word order can have a large impact on the overall meaning
of the sentence. That is where word embeddings come from. They tackle
the issue of high dimensionality and word order. The rst word embedding
was Word2Vec [21], followed by GloVe [22], and FastText [23]. They are
trained using neural networks. At the same time, other deep neural networks

4

5

become popular, such as CNN and RNN, which have promised good results
in classication tasks. Authors in [24] have done benchmarks of Word2Vec
and GloVe and also used renement techniques for better performance in
sentiment analysis. GloVe gave a better performance than Word2Vec in
combination with CNN and Long-Short Term Memory, one variant of RNN,
giving a few percentages of accuracy. Authors in [10] also showed that CNN
with GloVe achieved 2% and 4% greater accuracy than LR and NB with bag-
of-words, respectively. They also showed that BERT outperformed Glove in
combination with CNN. Authors in [25] showed that a combination of BERT
embeddings with CNN and LSTM consistently outperformed Word2Vec and
GloVe with CNN and LSTM.

5

Chapter 3

Datasets

For sentiment analysis, three dierent datasets are used movie reviews (re-
ferred to as the IMDB dataset), tweets about the coronavirus, and reviews
about products and services (referred to as the YELP dataset).

1. IMDB reviews
IMDB dataset1 contains 25k movie reviews in CSV format. Labels for
movies are:

(a) Positive

(b) Negative

Data distribution is balanced, with 12500 examples of both positive
and negative classes, as shown in Figure 3.1.

2. YELP reviews
The original YELP dataset2 contains 650k yelp reviews. In order to
have a similar number of instances across dierent datasets, and to
make training possible, only 40k instances are sampled from the original
dataset. It has ve labels:

(a) Extremely Negative

(b) Negative
1Link towards IMDB dataset https://www.kaggle.com/datasets/

lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
2Link towards YELP dataset https://www.kaggle.com/datasets/ilhamfp31/

yelp-review-dataset

6

7

Figure 3.1: IMDB reviews data distribution

(c) Neutral

(d) Positive

(e) Extremely Positive

Data distribution is balanced, with 8101, 8067, 8064, 7899, and 7870 ex-
amples of extremely positive, positive, neutral, negative, and extremely
negative classes, respectively, as shown in Figure 3.2.

3. Corona tweets

The corona tweets3 dataset has 41157 tweets. It has ve labels:

(a) Extremely Negative
3Link towards corona tweets dataset https://www.kaggle.com/datasets/

datatattle/covid-19-nlp-text-classification

7

8

Figure 3.2: YELP reviews data distribution

(b) Negative

(c) Neutral

(d) Positive

(e) Extremely Positive

Data distribution is somewhat balanced, with 6624, 11422, 7713, 9917,
and 7870 examples of extremely positive, positive, neutral, negative,
and extremely negative classes, respectively, as shown in Figure 3.3.

8

3.1. DATA PREPROCESSING 9

Figure 3.3: Corona tweets data distribution

3.1 Data preprocessing
Before text is used for vectorization, preprocessing steps are applied to the
raw text. For the IMDB reviews and YELP reviews, the same preprocessing
techniques have been applied, in contrast to the corona tweets dataset, which
had one more step because the scraped text on Twitter comes with hashtags.
In the case of regular text, regex is used to clean all non-alphabetic and all
non-numeric letters. All letters are lower-cased. For tweets, hashtags are
removed using the tweet preprocessor library.
Two forms of text are saved: clean text and tokenized clean text, which used
NLTK tokenizer to split the clean text into tokens (words). Either tokenized
text is used as the input or the cleaned text, depending on the vectorization.

9

3.1. DATA PREPROCESSING 10

In Figure 3.4, Figure 3.5, and Figure 3.6 we have examples of raw, pre-
processed, and tokenized dataset from the IMDB dataset, respectively.

Figure 3.4: IMDB raw text

Figure 3.5: IMDB preprocessed text

Figure 3.6: IMDB tokenized text

10

3.1. DATA PREPROCESSING 11

In Figure 3.7, Figure 3.8, and Figure 3.9 we have examples of raw, pre-
processed, and tokenized dataset from the YELP dataset, respectively.

Figure 3.7: YELP raw text

In Figure 3.10, Figure 3.11, and Figure 3.12 we have examples of raw,
preprocessed, and tokenized dataset from the Corona tweets dataset, respec-
tively.

11

3.1. DATA PREPROCESSING 12

Figure 3.8: YELP preprocessed text

12

3.1. DATA PREPROCESSING 13

Figure 3.9: YELP tokenized text

Figure 3.10: Corona tweets raw text

13

3.1. DATA PREPROCESSING 14

Figure 3.11: Corona tweets preprocessed text

Figure 3.12: Corona tweets tokenized text

14

Chapter 4

Features

In order to use text for sentiment analysis (or for any task using machine
learning), the text needs to be converted to vectors before passing it to the
classication models. This process is known as vectorization. There are a
couple of dierent vectorization techniques.

4.1 Bag of words - BOW
A bag of words [26] is a technique used in text modeling to extract features
from the text. The idea here is to treat the words as a bag of words, with no
notion of order and context.
Bag of words maps unique integer IDs between 1 and V , where V is vocab-
ulary and V  is vocabulary size. Each document in a corpus c is converted
into a vector of V  dimensions, where the i-th index is the number of times
word wi appear in a document.

Some advantages of BoW:

1. BoW is easy to implement and understand.

2. Documents having the same words will be closer than documents with
dierent words.

3. Fixed length encoding.

Some disadvantages of BoW:

1. The size of the vocabulary increases the vector size, so sparsity becomes
an issue.

15

4.2. TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY
(TF-IDF) 16

2. It does not capture the similarity between dierent words. Sentences
"I ran", "I run", and "I ate" will have the same distance between each
pair of them.

3. It is hard to handle out-of-vocabulary words.

4. Word order information is lost.

4.2 Term Frequency - Inverse Document Fre-
quency (TF-IDF)

Term frequency-inverse document frequency [27] consists of two parts:

1. Term Frequency (TF)

2. Inverse Document Frequency (IDF)

Term Frequency (TF)

Term frequency is a measure to count how many times a word appears
in a document. In dierent document lengths, words may appear a dierent
number of times in a document, based on the length, thus not giving a similar
impact on a word appearing in a short versus a long document. That is why
the score is normalized with the document length. For a given document d,
and word t, the TF score is:

TF (t, d) =
Number of occurrences of the term t in document d

Total number of words in document d
(4.1)

Inverse Document Frequency (IDF)

Inverse document frequency is a measure of how relevant a word is in a
document. In terms of frequency, all words are equally important. For ex-
ample, the most common words in English are ‘a‘, ‘the‘, etc., but they do not
have any relevance (known as stop words). Taking that into consideration,
IDF gives a low score to words that are very common in the collection of
documents (corpus) and a high to words that are less common in a corpus.

16

4.2. TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY
(TF-IDF) 17

IDF (t) = log(
Total number of documents containing word t

Number of documents in corpus
) (4.2)

If a corpus c contains d documents and t number of dierent words, TF-
IDF is a matrix of shape (d, t), where the i-th row represents the vectorization
of the i-th document in a corpus, and the j-th column is the TF-IDF score
of the j-th term across the collection.

Term Frequency - Inverse Document Frequency (TF-IDF)

Term frequency-inverse document frequency is a product of the previous
two scores. TF-IDF score of a word t, in document d from corpus, is:

TFIDF (t, d) = TF (t, d) ∗ IDF (d) (4.3)

To illustrate the previous concepts we use the following corpus of docu-
ments:

1. Dog bites man.

2. Man bites dog.

3. Dog eats meat.

4. Man eats food.

TF-IDF scores for the previous corpus of documents are shown in Table
4.1.

Word TF score IDF score TF-IDF score

dog 13 = 033 log2(43) = 04114 04114 ∗ 033 = 0136
bites 16 = 017 log2(42) = 1 1 ∗ 017 = 017
man 033 log2(43) = 04114 04114 ∗ 033 = 0136
eats 017 log2(42) = 1 1 ∗ 017 = 017
meat 112 = 0083 log2(41) = 2 2 ∗ 00083 = 017
food 0083 log2(41) = 2 2 ∗ 00083 = 017

Table 4.1: Example of TF-IDF values

17

4.3. PRETRAINED WORD EMBEDDINGS 18

TF-IDF score of the document ‘Dog bites man.’ from corpus, is shown
in Table 4.2.

Dog bites man eats meat food
0136 017 0136 0 0 0

Table 4.2: Example of TF-IDF vector

TF-IDF [26] is a naive approach to vectorization since it does not take into
account the order of words. Two dierent sentences with the same words have
the same vector representations. This is known as a Bag of Words (BoW).
The drawback of TF-IDF:

• They can’t capture the relationship between words.

• The feature vectors are sparse and highly dimensional. Dimensionality
increases with the size of the vocabulary, and most values are zero for
any vector. This makes computation inecient.

• They can’t handle out-of-vocabulary words.

4.3 Pretrained Word Embeddings
TF-IDF approach treated words as atomic units - there is no notion of sim-
ilarity between words, as they are represented as indices in a vocabulary.
This is a simple and robust approach, but very limited. The dimensionality
of embedded space is high and sparse. Instead of using the TF-IDF approach,
we can try to vectorize words more carefully to have low, dense embedding
space with the notion of similarity. Some of these approaches are:

• Word2Vec

• GloVe

• FastText

18

4.3. PRETRAINED WORD EMBEDDINGS 19

4.3.1 Word2Vec

Word2Vec paper has been published in 2013 by Google researchers [21] and
it was a state-of-the-art vectorization, opening a new chapter in word vec-
torization.

Model architecture

Base architecture for Word2Vec has been inspired by the feedforward neural
net language model (NNLM) from [28]. The neural network has a couple of
layers: input, projection, hidden, and output.

For the input, previous N words are encoded using 1-of-V coding, where V
is the size of the vocabulary. The input layer is then projected to a projection
layer P that has dimensionality NxD, using a shared projection matrix. Since
only N words are taken, this is a cheap operation.

Two new architectures are proposed for learning distributed representa-
tion of words.

Continuous Bag-of-Words Model (CBOW)

CBOW [29] architecture, as shown in Figure 4.1, is similar to feedforward
NNLM, except that the non-linear hidden layer is removed and the projection
layer is shared for all words. It’s called the bag-of-words model because the
order of words does not inuence the projection. In other terms, the context
of a word is taken and based on context, the model tries to detect which
word is it from the vocabulary. We use the following notation in the rest of
this section:

• wi: Word i from vocabulary V

• V  IRnx|V|: Input word matrix

• vi: i-th column of V , the input vector representation of word wi

• U  IR|V|xn: Output word matrix

• ui: i-th row of U , the output vector representation of word wi

We create two matrices V  IRnx|V| and U  IR|V|xn, where n is an ar-
bitrary size that denes the size of our embedding space. V is the input
word matrix such that the i-th column of V is the n-dimensional embedded

19

4.3. PRETRAINED WORD EMBEDDINGS 20

vector for word wi when it is an input to this model. We denote this n × 1
vector as vi. Similarly, U is the output word matrix. The j-th row of U is
an n-dimensional embedded vector for word wj when it is an output of the
model. We denote this row of U as uj. Note that we do in fact learn two
vectors for every word wi (i.e. input word vector vi and output word vector
ui).

Firstly, input words are converted to one hot vector of size m:

(xc−m, , xc−1, xc+1, , xc+m) (4.4)

After getting one hot vectors, they are passed to the input word matrix V
to get context

vc−m = V xc−m, vc−m+1 = V xc−m+1, , vc+m = V xc+m (4.5)

All these context words are averaged to get one vector v̂, where:

v̂ =
vc−m + vc−m+1 + vc+m−1 + vc+m

2m
(4.6)

The output vector score is generated by passing averaged vector to the out-
put matrix, z = Uv̂. The output vector is then passed through the softmax
function to get the output probabilities, ŷ = softmax(z). The output proba-
bilities should represent the actual one-hot vector of the input.

For training this model, the cross-entropy loss function is used H(ŷ, y).
H(ŷ, y) = −∥V |

j=1 yj log(ŷj). Because y is one hot encoded, previous for-
mula becomes: H(ŷ, y) = −yi log(ŷi). Index c is where one hot vector has
1. If ŷc = 1, perfect prediction, then H(ŷ, y) = −1 log(1) = 0. ŷc = 0001,
very bad prediction, H(ŷ, y) = −1 log(0001) ≈ 4605. Thus cross entropy
provides a good measure of distance. Now, the objective which is being op-
timized is

minimize L = − logP (wcwc−m, , wc−1, wc+1, , wc+m)

= − logP (ucv̂)

= − log
exp(uT

c)|V |
j=1 exp(u

T
j v̂)

(4.7)

The stochastic gradient is used to update all relevant word vectors uc and vj
[29].

20

4.3. PRETRAINED WORD EMBEDDINGS 21

Figure 4.1: CBOW architecture

Skip-gram Model

Skip-gram [29] architecture, as shown in Figure 4.2 is similar to CBOW, but
we have an inverted problem, input and output are switched. Instead of pre-
dicting the word based on the context, it tries to maximize the classication
of a context based on the middle word. Increasing the range improves the
quality of vectors, but also introduces additional computational complexity.
More distant words are usually less related than close words, and less weight
is given to them.

We use do the following notation:

• wi: Word i from vocabulary V

• V  IRnx|V|: Input word matrix

• vi: i-th column of V , the input vector representation of word wi

• U  IR|V|xn: Output word matrix

• ui: i-th row of U , the output vector representation of word wi

In order to use the model, input needs to be converted into a one-hot
vector x. The input vector is passed through the input word matrix V to

21

4.3. PRETRAINED WORD EMBEDDINGS 22

get embedded context word vector vc = V x. This embedded vector is then
passed through the output word matrix U , to get a score z = Uvc. This will
generate score vectors:

uc−m, , uc−1, uc+1, , uc+m (4.8)

Each vector is passed through the softmax function for the probabilities:

ŷc−m, , ŷc−1, ŷc+1, , ŷc+m (4.9)

These probabilities should be close to the initial one-hot vectors.

The dierence here compared to CBOW is we use the Naive Bayes as-
sumption to compute the probabilities. Given the center word, all output
words

minimize L = − logP (wc−m, , wc−1, wc+1, , wc+mwc)

= − log
2m∏

j=0,j ̸=m

P (wc−m+jvc)

= − log
2m∏

j=0,j ̸=m

P (uc−m+jvc)

= − log
2m∏

j=0,j ̸=m

exp(uT
c−m+jvc)|V |

k=1 u
T
k vc

(4.10)

Note that

L = −
2m∑

j=0,j ̸=m

logP (uc−m+jvc)

=
2m∑

j=0,j ̸=m

H(ŷ, yc−m+j)

(4.11)

where H(ŷ, yc−m+j) is the cross-entropy between the probability vector ŷ
and the one-hot vector yc−m+j .

22

4.3. PRETRAINED WORD EMBEDDINGS 23

Figure 4.2: Skip-gram architecture

Word2Vec Results

Comparing the quality of dierent versions of word vectors is usually done to
show example words and their most similar words, or relationships between
pairs of vectors. For example, if we take the word small and want to nd a
word that will have the same relationship between them as between words
biggest and big. X = vector(biggest) − vector(big) + vector(small). After
this vector is calculated, cosine distance is done to nd the closest vector. In
this case, it is the word smallest. Some more relationship founds: France is
to Paris, what Germany is to Berlin.

The Word2Vec [21] model used is trained on 6B tokens from the Google
News corpus. Vocabulary is restricted to 1 million most frequent words.
Architecture is CBOW with a projection dimensionality of 300.

4.3.2 GloVe: Global Vectors for Word Representation

The statistics of word occurrences in a corpus are the main source of infor-
mation available for unsupervised methods of learning. GloVe [22] stands
for Global Vectors because the global corpus statistics are captured directly

23

4.3. PRETRAINED WORD EMBEDDINGS 24

by the model. Let us rst introduce the notation. Let the matrix of co-
occurrences be X [30], whose entries Xij show the number of times word j
occurs in the context of the word i. Let Xi =


k Xik be the number of times

any word appears in the context of the word i. Let Pij = P (ji) = Xij

Xj
be the

probability of word j appearing in the context of the word i. To create this
matrix, a single pass is needed. If the corpus is large, this can take time, but
it happens only once.

The probability that word j appears in the context of the word i:

Qij =
exp(uT

j vi)|V |
k=1 exp(u

T
k vi)

(4.12)

Global cross-entropy loss can be calculated as

L = −
∑

i∈corpus

∑

j∈corpus(i)
logQij (4.13)

We can group words i and j that appear multiple times, and we get:

L = −
V∑

i=1

V∑

j=1

Xij logQij (4.14)

The drawback of the cross-entropy loss is that requires the distribution Q
to be properly normalized, which is an expensive summation over the entire
vocabulary. Factors P and Q can be discarded [30]:

L̂ =
V∑

i=1

V∑

j=1

Xi(P̂ij − Q̂ij)
2 (4.15)

where P̂ij = Xij and Q̂ij = exp(uT
j vi) are unnormalized distributions.

Xij can take on large values and makes the optimization dicult. Then
minimizing squared error of the logarithms of P̂ and Q̂:

L̂ =
V∑

i=1

V∑

j=1

Xi(log(P̂ij)− log(Q̂ij))
2

=
V∑

i=1

V∑

j=1

Xi(u
T
j vi − log(Xij))

2

(4.16)

24

4.3. PRETRAINED WORD EMBEDDINGS 25

The GloVe models create to take into account global statistical information.
It outperforms word2vec on the analogy tasks.
The GloVe is trained on 2010 Wikipedia data with 1 billion tokens, 2014
Wikipedia data with 1.6 billion tokens, Gigaword 5 data with 4.3 tokens,
and 42 billion tokens from Common Crawl [22].

4.3.3 FastText

FastText [23] represents words as the sum of the n-gram vectors. It is an
extension of the continuous skip-gram model. Given a word vocabulary of
size ∥V ∥, with an index of word w  1, ,V, the goal is to learn word
representation for the whole vocabulary V, trying to predict well words that
appear together. To dene it more formally if we have words w1, , wT , the
objective of the skip-gram model is to maximize log-likelihood:

T∑

t=1

∑

c∈Ct

log p(wcwt) (4.17)

where the context Ct is the set of indices of context words of word wt.
The probability of a context word is the softmax:

p(wcwt) =
es(wt,wc)

V
j=1 e

s(wt, j)
(4.18)

where s is a scoring function of pairs (word, context) into real number
scores.

We can convert the problem of predicting context words to a set of in-
dependent binary classication tasks. If a word is at position t, positive
examples are all context words, while negative examples can be sampled
from the dictionary. Then, for context c, with binary logistic loss, negative
log-likelihood is:

log(1 + e−s(wt,wc)) +
∑

n∈Nt,c

log(1 + es(wt,n)) (4.19)

where Nt,c is a set of negative examples sampled. If we use notation for
logistic loss: l : x → log(1 + e−x), then:

25

4.4. CUSTOM WORD EMBEDDINGS 26

T∑

t=1


∑

c∈Ct

l(s(wt, wc)) +
∑

n∈Nt,c

l(−s(wt, n))


 (4.20)

Vectors vw and vw are referred as input and output vectors from Rn. The
score s thus can be computed as s(wt, wc) = uT

wt
vwc , which is skip-gram

model.
Every word w is represented as a bag of character n-gram. Special sym-

bols < and > are added at the beginning and end of words. For example if
we take word where and n = 3, then the character n-grams are: <wh, whe,
her, ere, re>, with special sequence <where>.
For a given dictionary of size G and word w, let Gw ⊂ 1, , , , G be the set of
n-grams appearing in w. Then, the word can be represented by the sum of
the vector representations of its n-grams.

s(w, c) =
∑

g∈Gw

zTg vc (4.21)

This model allows sharing of the representations across words.
FastText is trained on Wikipedia data from nine languages: Arabic, Czech,
German, English, Spanish, French, Italian, Romanian and Russian [23].

4.4 Custom Word Embeddings
Instead of using pre-trained word embeddings we can either use our vocabu-
lary and built task-specic embeddings such as Word2Vec, GloVe, and Fast-
Text. These all are part of unsupervised learning. Instead of unsupervised
learning, we can use supervised learning and learn dense vector representa-
tion. PyTorch oers an Embedding layer from the nn module. Given the
vocabulary size of N most common words, and the dimensionality of embed-
ding, a dense layer is created with the input index of a word in a vocabulary.
During the classication task, this dense layer is found during model opti-
mization. This way, we have vocabulary created and trained for a specic
task. The downside of this approach is that all pre-trained word embed-
dings focus solely on nding the best vectorization, while this is only the side
output of the optimization of the overall model.

26

4.5. CONTEXTUAL EMBEDDINGS 27

4.5 Contextual Embeddings
So far, all previous embeddings had only one encoding for each word, even
though that does not want we always want. Take for example homonyms.
They are the same words, but with dierent meanings. None of the above
mentions vectorizations did not take into account that. Transformer models
[14] in deep learning are the rst model to have dierent vectorization for
dierent words. We will focus here on the Bidirectional Encoder Represen-
tation - BERT [15].
BERT embeddings take as an input the whole sentences, and tokenization is
done with a BERT tokenizer, which splits sentences into tokens, where tokens
can be also only parts of the word. For example, the word ‘playing‘ is tok-
enized into ‘play‘ and ‘###ing‘. We refer to this as token embeddings. Each
sentence has its own unique number, which is used as segment embedding.
Finally, each position of the token is embedded as positional embedding,
from the sinus/cosines function of the index of position. Adding token em-
beddings, sentence (segment) embeddings, and position embeddings, we get
nal embeddings. This is shown in Figure 4.3.

Figure 4.3: Bert input embeddings [15]

27

Chapter 5

Machine Learning Concepts

5.1 Bagging
Suppose we t a model to our training data Z = (x1, y1, , (xN , yN)), ob-
taining prediction f̂(x) at input x. Bootstrap aggregation or bagging [31]
calculates the average from all predictions of bootstrap samples. This way,
variance is reduced. For each bootstrap sample Z∗b, b = 1, 2, , B, model is
tted to obtain prediction f̂ ∗b(x). The estimate dened by bagging is dened
as:

f̂bag(x) =
1

B

∑

b=1

Bf̂ ∗b (5.1)

Let P̂ be the empirical distribution with equal probability 1
N

of choosing
data point (xi, yi). The “true” bagging estimate is dened by EP̂ f̂

∗(x), where
Z∗ = (x∗

1, y
∗
1), , (x

∗
N , y

∗
N). This is a Monte Carlo estimate of the true bagging

estimate, approaching it as B → ∞.
Let us suppose that tree creates a classier Ĝ(x) with K classes. Con-

sider vector function f̂(x) with one one value and rest K − 1 are zeros,
such that Ĝ(x) = argmaxk f̂(x). The bagged estimate f̂bag(x) is a K-vector
[p1(x), p2(x), , pK(x)], with pk(x) equal to the proportion of trees predicting
class k at x. The bagged classier selects the class with the most “votes” from
the B trees, Ĝbag(x) = argmaxk f̂bag(x).

28

5.2. METRICS 29

5.2 Metrics
To know which model performs better, we need to dene metrics that will
be indicators of how each model performs. In classication tasks, the most
common metrics are confusion matrix, accuracy, precision, and recall [32].

The confusion matrix in Table 5.1 represents the table of model predic-
tions for each class.

True sentiment
Positive Negative Total

Predicted sentiment Positive TP FP TP + FP
Negative FN TN FN + TN
Total TP + FN FP + TN N

Table 5.1: Confusion Matrix
[33]

True positive is the number of positive samples that the model correctly
classied (TP), false negative is the number of positive classes that which
model classied as negative (FN), false positive is the number of negative
classes that which model classied as positive (FP) and true negative is the
number of negative samples which model correctly classied (TN).

Accuracy is the sample metric for evaluating classication models. It is
dened as the number of correct predictions divided by the total number of
predictions, or:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

The recall is dened as the proportion of detected positive class with all
positive class instances, or:

Recall =
TP

TP + FN
(5.3)

29

5.2. METRICS 30

The precision is dened as the proportion of detected positive class with
all positive class predictions, or:

Precision =
TP

TP + FP
(5.4)

The F1 score is dened as a weighted average between precision and recall
(harmonic mean), or:

F1 =
2

1
recall

+ 1
precision

(5.5)

Precision and recall are here shown for the positive class, but they can
be also calculated for the negative class, in the same way.

Let the confusion matrix for n = 5 classes (C1, C2, C3, C4, C5) be as de-
ned in Table 5.2, where columns are actual classes, and rows are predicted,
classes. Entry Cij in the matrix represents the number of elements from class
j classied as class i. There are two types to calculate precision and recall,
micro and macro. In micro metrics, the binary classication matrix is created
as one-vs-all, where we treat the class of interest Ci as a positive class and
all others as negatives, and a sum of their values are combined (as shown
in binary classication metrics). In macro metrics, scores are calculated for
each class individually, and then global metrics are dened as the unweighted
mean of the measures. Macro scores, from confusion matrix dened in Table
5.2, are calculated as follows:

TPi = Cii

FPi =
5∑

l=1

Cil − TPi

FNi =
5∑

l=1

Cli − TPi

FNi =
5∑

l=1

5∑

k=1

Ckl − TPi − FPi − FNi

30

5.3. CROSS VALIDATION 31

Actual Classes

C1 C2 C3 C4 C5

P
re
di
ct
ed

C
la
ss
es

C1 C11 C12 C13 C14 C15

C2 C21 C22 C23 C24 C25

C3 C21 C32 C33 C34 C35

C4 C41 C42 C43 C44 C45

C5 C51 C52 C53 C54 C55

Table 5.2: Confusion Matrix for 5-classes
[33]

5.3 Cross Validation
Cross validation [34] is used for making results precise and robust, because
in one random split of the data, we may get really great results, which is not
realistic, but if that is repeated k-times, then we feel more condent in the
nal metrics. The more splits are done, the more robust results are. One of
the common techniques in cross validation is K-fold validation.
In K-fold validation, as shown in Figure 5.1, data is split into K folds, as in
name suggests. From K-folds, K − 1 fold is used for training, while K-th
fold is used for validation, and this procedure is repeated K-times. Every
data point is only once used in the test set and K − 1 times in the training
set.

31

5.3. CROSS VALIDATION 32

Figure 5.1: K-cross validation

32

Chapter 6

Machine Learning Models

6.1 Naive Bayes Classier
Let d be a document, c true class for the document, and C set of all classes.
Naive Bayes [35] is a probabilistic classier, which means that for a given doc-
ument d it outputs class probabilities and gives the class ĉ with the maximum
posterior probability.

ĉ = argmax
c∈C

p(cd) (6.1)

This is known as Bayesian inference and it is applied to text classi-
cation, amongst others. Using Bayes‘ rule, this is transformed to:

ĉ = argmax
c∈C

p(cd) = argmax
c∈C

p(dc)p(c)
p(d)

(6.2)

We used the property that all classes are divided by p(d), therefore we
can disregard it, which means that

p(dc)p(c)
p(d)

→ p(dc)p(c) (6.3)

Now, using (6.3), the output class can be calculated as:

ĉ = argmax
c∈C

p(cd) = argmax
c∈C

p(dc)p(c) (6.4)

The most probable class ĉ is calculated as the product of prior probability
p(c) and the likelihood of p(dc).

33

6.1. NAIVE BAYES CLASSIFIER 34

Let the document d has a set of features f1, , fn:

ĉ = argmax
c∈C

p(f1, f2, , fnc)p(c) (6.5)

where p(f1, f2, , fnc) is likelihood, and p(c) is prior.

Even with these modications, is still hard to compute the probability,
estimating the probability of every possible combination of features would
require huge numbers of parameters and a large dataset. Naive Bayes, there-
fore, makes some assumptions.
One of the assumptions is the bag of word assumption: the position of the
word does not matter and has the same eect whether is the rst, second,
or last word in a document. So features f1, f2, , fn only encode word, not
position.
The second assumption is the conditional independence assumption that the
probabilities p(fic) are independent given the class c and can be calculated
as follows:

p(f1, f2, , fnC) = p(f1c)p(f2c)p(fnc) (6.6)

The nal equation can be rewritten as:

cNB = argmax
c∈C

p(c)
∏

f∈F
p(f c) (6.7)

In order to apply Naive Bayes, we go through each word in the document:

cNB = argmax
c∈C

p(c)
∏

i∈positions
p(wic) (6.8)

Naive Bayes calculations are done in log space, to avoid underow and in-
crease speed. Thus:

cNB = argmax
c∈C

log p(c) +
∑

i∈positions
log p(wic) (6.9)

6.1.1 Training the Naive Bayes Classier

Let Nc be the number of documents in our training data with class c and
Ndoc be the number of documents in the corpus. Then:

p̂(c) =
Nc

Ndoc

(6.10)

34

6.2. LOGISTIC REGRESSION 35

Going back to (6.6) and to get probability p(fic), the existence of a
word in documents’ bag of words is a feature, and let that be p(wic). This
probability is calculated as the number of times the word wi appears from
all words in all documents in topic c.

p̂(wic) =
count(wi, c)

w∈W
count(w, c)

(6.11)

There is only one problem here with maximum likelihood training. If we
try to estimate some word for a specic class, but there are no examples
in training documents about that word and that class. In such a case, the
probability will be 0. But since naive Bayes naively multiplies all the feature
likelihoods together, zero probabilities in the likelihood term for any class
will cause the probability of the class to be zero.
One solution is add-one (Laplace) smoothing.

p̂(wic) =
count(wi, c) + 1

w∈W
(count(w, c) + 1)

=
count(wi, c) + 1

(


w∈W
count(w, c)) + V  (6.12)

If an unknown word is appearing in test data, then the solution is to
remove them. Stop words like a, the, and so on, appear very frequently
without bringing many contexts, so it is usually the best idea to ignore them.

6.2 Logistic Regression
Given predictor G, and input vector x, G can separate input space with
decision boundaries, giving all vectors from each boundary the same output.
Let us assume that there are K classes, and tted linear model for the k-th
class is f̂k(x) = β̂k0 + β̂T

k x. The decision boundary between class k and l

is that set of points for which f̂k(x) = f̂l(x), that is set x : (β̂k0 − β̂lo) +
(β̂k − β̂l)

Tx = 0, an ane set or hyperplane. Input space is divided with
piece-wise hyperplane decision boundaries.

The decision boundary [31] is the set of points for which the log odds are
zero, and this is a hyperplane dened by xβ0 + βT = 0

35

6.2. LOGISTIC REGRESSION 36

For K classes, the logistic regression gives posterior probabilities with
linear functions, making sure that the sum of probabilities for all classes is 1,
and all class probabilities stay between [0, 1]. Logistic regression has form:

log


p(G = 1X = x)

p(G = KX = x)


= β10 + βT

1 x

log


p(G = 2X = x)

p(G = KX = x)


= β20 + βT

2 x







log


p(G = KX = x)

p(G = KX = x)


= β(K−1)0 + βT

K−1x

(6.13)

The model uses K − 1 log odds or logit transformations. If we the drop
last class as the denominator:

p(G = 1X = x) =
exp(βk0 + βT

k x)

1 +
K−1

l=1 exp(βl0 + βT
l x)

, k = 1, , K − 1 (6.14)

p(G = KX = x) =
1

1 +
K−1

l=1 exp(βl0 + βT
l x)

(6.15)

Let the entire parameter set θ = (β10, β
T
1 , , β

T
K−1). Let p(G = kX =

x) = pk(x; θ). If K = 2, there is only one linear function.

6.2.1 Training Logistic Regression

Logistic regression [31] is t with maximum likelihood using conditional like-
lihood G given X. The log-likelihood for N observation is

l(θ) =
N∑

i=1

log pgi(xi; θ) (6.16)

where pk(xi; θ) = p(G = kX = xi; θ). In case of two classes we can write
p1(x; θ) = p(x; θ) and p2(xi; θ) = 1− p(xi; θ). Log-likelihood now becomes:

36

6.2. LOGISTIC REGRESSION 37

l(β) =
N∑

i=1

yi log p(xi; β) + (1− yi) log(1− p(xi; β))

=
N∑

i=1

yiβTxi − log(1 + eβ
T xi)

(6.17)

where β = β10, β1, and vector xi includes constant term 1 to accommo-
date the intercept.
Now, to maximize log-likelihood, we take the derivative and set it to zero.

∂l(β)

∂β
=

N∑

i=1

xi(yi − p(xi; β)) = 0 (6.18)

This is a system of p + 1 non-linear equations in β. Because in xi rst
component is 1, then

N
i=1 yi =

N
i=1 p(xi; b). To solve the previous equa-

tion, we use the Newton–Raphson which requires the Hessian matrix (second
derivative):

∂2l(β)

∂β ∂βT
= −

N∑

i=1

xix
T
i p(xi; β)(1− p(xi; β)) (6.19)

Starting with βold, a single Newton update is and derivatives are evaluated
at βold:

βnew = βold −


∂2l(β)

∂β ∂βT

−1
∂l(β)

∂β
(6.20)

Let y be the vector of yi, X the N × (p + 1) matrix of xi values, and p
the vector of tted probabilities with with i-th element p(xi; β

old) and W a
N ×N diagonal matrix of weights with i-th diagonal element p(xi; β

old)(1−
p(xi; β

old)). Then:

∂l(β)

∂β
= XT (y − p) (6.21)

∂l(β)

∂ββT
= −XTWX (6.22)

37

6.3. DECISION TREE 38

The Newton step is [31]:

βnew = βold +

XTWX

−1
XT (y − p) =

=

XTWX

−1
XTW (Xβold +W−1(y − p)) =

=

XTWX

−1
XTWz

(6.23)

Newton’s step has been re-expressed as a weighted least squares step with
the response:

z = Xβold +W−1(y − p) (6.24)
which is known also as an adjusted response. These equations get solved
repeatedly since at each iteration p changes, and hence so do W and z. This
algorithm is known as iteratively re-weighted least squares or IRLS since each
iteration solves the weighted least square problem:

βnew ← argmin
β

(z −Xβ)TW (z −Xβ) (6.25)

It looks like β = 0 is a good starting value for the iterative procedure,
although convergence is never guaranteed. Typically the algorithm does con-
verge since the log-likelihood is concave, but overshooting can occur. In the
rare cases that the log-likelihood decreases, step size halving will guarantee
convergence [31].

6.3 Decision Tree
A decision tree [36], as shown in Figure 6.1, is one of the most intuitive
models for classication. It partitions input space and to each subspace
gives a label. They are easy to use and easy to interpret. Decision trees are
non-parametric. models: there are no weight parameters. It can be used
both in for numerical and categorical attributes. Typically, data comes in
tabular form Table 6.1.

Data point Feature 1 ... Feature K Label

Data point 1 feature 1 ... feature k label
Data point 2 feature 1 ... feature k label

Table 6.1: Example of tabular data
[37]

38

6.3. DECISION TREE 39

Figure 6.1: Example of decision tree [37]

Let us set up the notation. Let x be a data point with d features, A1, , Ad

and class y, and set of all training data is X. Let S be the partitioning
rule which splits the training dataset X into X1, , Xk. A decision tree is a
rooted tree in which each set of children of each parent node corresponds to
a partitioning (XS) of the parent’s data set, with the full data set associated
with the root. The number of items in Xi that belong to class yj is Xij. The
probability that a randomly selected member of Xi is of class yj is pij = Xij.

6.3.1 Node Splitting

During the splitting of a tree, one should think about which split is the best.
There are a couple of dierent possible splits [36]:

• Binary attributes: Only one split is possible.

• Categorical attributes: If attribute A is unordered, then the domain of
A is a mathematical set. Any nonempty proper subset S of A denes a
binary split S,A\S. After ruling out redundant and empty partitions,
we have 2(k−1) − 1 possible binary splits. However, some algorithms
make k-way splits instead.

• Numerical attributes: If there are k dierent values, then we can make
either (k-1) dierent binary splits or one single k-way split.

39

6.3. DECISION TREE 40

Algorithm 1 Decision tree algorithm [37]
1: Assign all training instances to the root of the tree. Set the current node

to the root node.
2: For each attribute

• Partition all data instances at the node by the value of the attribute.

• Compute the information gain ratio from the partitioning.

3: Identify a feature that results in the greatest information gain ratio. Set
this feature to be the splitting criterion at the current node.

4: If the best information gain ratio is 0, tag the current node as a leaf and
return.

5: Partition all instances according to the attribute value of the best feature.
6: Denote each partition as a child node of the current node.
7: For each child node:

• If the child node is “pure” (has instances from only one class) tag it
as a leaf and return.

• If not, set the child node as the current node and go to step 2.

We need somehow to measure the goodness of the splits. An ideal scenario
would be that each split contains only one class. To optimize the decision
tree, we want a splitting rule that minimizes the impurity function [36].

Denition 1. An impurity function F for an m-state discrete variable Y
is a function dened on the set of all m-tuple discrete probability vectors
(p1, p2, , pm) such that:

1. F is maximum only at (1
m
, 1
m
, , 1

m
)

2. F is minimum only at the "purity points" (1, 0, , 0), (0, 1, 0, 0), , (0, 0, , 0)

3. F is symmetric with respect to p1, p2, , pm

6.3.2 Impurity Functions

The following impurity functions [36] are commonly used when training de-
cision tree models:

40

6.3. DECISION TREE 41

1. Error Rate
This is a measure of misclassied items and it is the most simple one.
If yj is the class that makes the majority of all classes in split, then
the error rate for Xi is E(Xi) =

|y ̸=yj :(x,y)∈Xi|
|Xi

= 1− pij. The error rate
for the entire split XS is the weighted sum of the error rates for each
subset. This equals the total number of misclassications, normalized
by the size of X.

∆Ferror(S) = E(X)−
∑

i∈S

Xi

X
E(Xi) (6.26)

2. Entropy and Information Gain
Information entropy is dened as the degree of uncertainty of a (dis-
crete) random variable Y

HX(Y) = −
∑

y∈Y
py log(py) (6.27)

Information entropy can be thought of as the expected amount of in-
formation, needed to describe the state of a system. The purer the
system is, the less information is required. If the system has all ob-
jects in the same state, then the entropy is 0. In contrast, the more
equal the distribution of classes is, the higher entropy is. If we have a
system with split criteria, If the system is pre-partitioned into subsets
according to some splitting rule S, then the information entropy of the
overall system is the weighted sum of the entropies for each partition,
HXi

(Y). This is equivalent to the conditional entropy HX(Y S)

∆FinfoGain(S) = −
∑

y∈Y
py log py +

∑

i∈S

Xi
X

∑

y∈Y
piy log piy =

= HX(Y)−
∑

i∈S
HXi

(Y) =

= HX(Y)−HX(Y S)

(6.28)

A shortcoming of the information gain criterion is that it is biased
towards splits with larger k. Given a candidate split, if subdividing any
subset provides additional class dierentiation, then the information
gain score will always be better.

41

6.3. DECISION TREE 42

3. Gini Criterion (CART)
The Gini index is used as a splitting criterion. This can be treated as an
expected error of splitting criteria as opposed to randomly classifying
the algorithm.

Gini(Xi) =
∑

y∈Y
piy(1− piy) = 1−

∑

y∈Y
p2ij (6.29)

∆FGini(S) = Gini(X)−
∑

i∈S

Xi
XGini(Xi) (6.30)

The Gini index is biased towards splits with larger k. [37]

Based on the splitting rules, the decision tree starts splitting recursively,
as long as there is a decrease in the error function, but this can cause the
model to overt. If there are no hard limits in the depth of a tree, the model
can learn exact splitting criteria to achieve a perfect score on the training
set, which is not realistic. To reduce overtting, tree pruning, as in Figure
6.2, techniques are used to get a more shallow tree with slightly less accuracy.

1. Cost Complexity Pruning
In cost complexity pruning, sometimes also called error complexity
pruning, idea is to replace a subtree with a single node. If LX is the
set of leaf node data subset of X, then:

error_complexity =
E(X)−

Li∈LX
E(Li)

LX  − 1
(6.31)

For each node, compute the complexity error, a, and choose the one
with the smallest value. Compute error complexity for each internal
node, and convert the one with the smallest value (least increase in
error per leaf) to a leaf node. Based on the test data error, with the
smallest standard error, the best tree is chosen.

2. Critical Value Pruning
The idea is similar to the previous approach, except that measure for
pruning is the same as for the growing tree. If all the splitting criteria
values in nodes are below some threshold, then the subtree is replaced
with a single leaf value.

42

6.4. RANDOM FOREST 43

Once a decision tree is learned, it can be used to evaluate new instances
to determine their class. The instance is passed down the tree, from the root,
until it arrives at a leaf. The class assigned to the instance is the class for
the leaf. [36]
In the Figure 6.2 we have pruned the decision tree. In comparison to the
original tree Figure 6.1, we can see it has fewer subtrees and it is more
shallow.

Figure 6.2: Example of pruned decision tree [37]

6.4 Random Forest
Random forest is based on bagging or bootstrap aggregation [31]. Bagging
seems to work, especially well for high-variance, low-bias procedures, such
as trees. Random forest is a modication of bagging that builds a large
collection of de-correlated trees and then averages them.

6.4.1 Denition of Random Forest

The idea in bagging is to deal with many noisy unbiased models, and reduce
variance. Trees are good for bagging since they can have a low bias and are
able to capture the relationship between features and output class. They

43

6.5. SUPPORT VECTOR MACHINES 44

can be noisy, so by averaging them one can get better predictions. A tree
expectation is the same as the average expectation of trees.
For an average tree B, created from independent and identically distributed
trees, where each tree has variance σ2, has a variance 1

B
σ2.

Before creating trees, only a subset of instances of data is used for the train-
ing.

Algorithm 2 Random Forest Algorithm [31]

1. For b=1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a decision tree Tb to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree,
until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among them.
iii. Split the node into two daughter nodes.

2. Output the ensemble of Trees Tb
B
1 To make a prediction for a new point

let Ĉb be the class prediction of the b-th random forest tree. Then ĈB
rf

= majority vote Ĉb(x)
B
1 .

6.5 Support Vector Machines

6.5.1 Optimal Separating Hyperplanes

Let us look at the optimization problem [\cite {statistical_learning}]:

max
β,β0,∥β∥

M

subject to yi(x
T
i β + β0 = 1) ≥ M, i = 1, ,M

(6.32)

Here, constraints in optimization make sure that all points are at least M
distance away from the decision boundary dened by β and β0. M is chosen

44

6.5. SUPPORT VECTOR MACHINES 45

to be the largest and to satisfy all constraints. We can replace constraint
∥β∥ = 1 by changing it with:

1

∥β∥yi(x
T
i β + β0) ≥ M (6.33)

or equivalently:
yi(x

T
i β + β0) ≥ M∥β∥ (6.34)

We can set ∥β∥ = 1
M
, getting (6.32) reformed optimization problem:

min
β,β0

1

2
∥β∥2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, , N

(6.35)

Margin is of thickness 1
∥β∥ . We choose β and β0 such that thickness is

maximized. This is a convex optimization problem. The Lagrange function,
to be minimized with respect to β and β0 is:

Lp =
2

∥β∥2 −
N∑

i=1

αi[yi(x
T
i β + β0)− 1] (6.36)

Taking derivatives and setting them to zero:

β =
N∑

i=1

αyixi (6.37)

0 =
N∑

i=1

αiyi (6.38)

If the substitution is made to (6.35), we have Wolfe’s dual

LD =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

k=1

αiαkyiykx
T
i xk

subject to αi ≥ 0 and
N∑

i=1

αiyi = 0

(6.39)

45

6.5. SUPPORT VECTOR MACHINES 46

The solution is found by maximizing LD in the positive orthant. The
solution must satisfy Karush-Kuhn-Tucker conditions, (6.37), (6.38), (6.39):

αi[yi(x
T
i β + β0)− 1] = 0, ∀i (6.40)

We can observe that:

• if αi > 0, then yi(x
T
i β + β0), xi is on the boundary

• if yi(xT
i β + β0) > 1, xi is not on the boundary and αi = 0

From (6.37), vector β is dened as a linear combination of xi, or support
vectors xi. Those are the points that dene boundaries.
The optimal separating hyperplane is a function f̂(x) = xT β̂+ β̂0 for making
new predictions:

Ĝ(x) = sign f̂(x) (6.41)

Some test examples may fall inside of the separating boundary, that’s why
it is important to have it as thick as possible margin.

In the Figure 6.3, we have green and red points from dierent classes,
and blue points, where two blue points closer to red points belong to the red
class, while a blue point close to green points belongs to the green class. Blue
points represent support vectors and they are used to create a hyperplane
between them. The thick yellow color indicates the width of the margin.

6.5.2 SVM for classication

Let the training data consists of N pairs (x1, y1), (x2, y2), , (xN , yN) with
xi  IRp and yi  −1, 1 are classes. Let the hyperplane be dened by:

x : f(x) = xTβ + β0 = 0 (6.42)

where β is a unit vector ∥β∥ = 1. Then, the rule for the classication is:

G(x) = sign[xTβ + β0] (6.43)

The distance from point x to the hyperplane is given by function f with
f(x) = xTβ + β0. If classes are linearly separable, we can nd a function
f(x) = xTβ + β0 with yif(xi) > 0, ∀i. For linearly separable problems,
hyperplane can be found with the biggest margin between training points.

46

6.5. SUPPORT VECTOR MACHINES 47

Figure 6.3: Example of SVM with separable classes [31]

The optimization dened in (6.32) describes this problem, and it can be
transformed into (6.35).

If data points are not linearly separable, then there is no perfect solution
[31], but still, a hyperplane can be found to maximize M and tries to classify
as many as possible data points correctly. If we dene slack variables ξ =
(ξ1, , ξN), then constraints can be modied as followed:

yi(x
T
i β + β0) ≥ M − ξi (6.44)

Or
yi(x

T
i β + β0) ≥ M(1− ξi) (6.45)

∀i, ξi ≥ 0,
N

i=1 ξi ≤ constant.
Two dierent choices lead to two dierent solutions. The rst one is a

nonconvex problem and measures the overlap in actual distance from the
margin, while the second is convex and measures the overlap in the relative
distance, which changes with width margin M width.
In the constrain yi(x

T
i β + β0), the value ξi is proportional amount by which

the prediction f(xi) = xT
i β + β0 is on the wrong side of the margin. If ξi,

then misclassication occurs. Bounding


ξ by some value K sets a limit to
the number of wrongly classied samples.

47

6.5. SUPPORT VECTOR MACHINES 48

We can dene M = 1
∥β∥ , and write:

min∥β∥ subject to

{
yi(x

T
i β + β0) ≥ 1− ξi, ∀i

ξi ≥ 0,


ξi ≤ constant
(6.46)

Using Lagrange multipliers and KKT conditions, support vectors are
found.

In Figure 6.4, we have two examples of SVM classication. In the image
on the left, data is separable, while on the right image is not. In both cases,
a hyperplane is dened with equation xTβ + β0 = 0. The yellow area is
margin width and it is dened with 2M , where M = 1

∥β∥ . The points ξi are
on the wrong side of the hyperplane by amount ξ∗i = Mξi, where points on
the correct side have ξi = 0. The total distance of points on the wrong side
is


i ξi.

Figure 6.4: SVM classier [31]

Sometimes, not all data points are linearly separable, and it is desirable
to map input space into some feature space where classes will be linearly
separable. This is known as the kernel trick. The kernel does not map directly
data points into new feature space, rather it maps pair of vectors into a dot
product. This way, SVM becomes a more powerful tool for classication
tasks.

48

Chapter 7

Deep Learning models

7.1 ANN
Articial neural networks were inspired by the brain cells, as in Figure 7.1,
and how they send information. If there is enough excitement between cells,
over some threshold, information from one cell is passed to the next cell.
This was used as the initial logic for making articial neural networks.

Figure 7.1: Example of a biological neuron [38]

7.1.1 Perceptron

The most simplied neural network is perception [39], as in Figure 7.2. Per-
ceptron is dened as:

y(x) = f(wTg(x)) (7.1)

and f is a step function

49

7.1. ANN 50

f(a) =

{
+1, a ≤ 0

−1, a ≥ 0
(7.2)

Vector g(x) contains bias component g0(x) = 1. In perceptron, it is
convenient to write output classes as -1 and 1, instead of 0 and 1. Learning
parameters w can be found using error function minimization. This is not
easy, because the error is a piece-size constant function of w. Changing w
based on the gradients cannot be applied.

Therefore a dierent function needs to be used for perceptron. Vector w
should satisfy that xTg(xn) > 0, if xn is in class C1, otherwise xT g(xn) < 0,
if xn is in class C2. This criterion is dened as:

Figure 7.2: Example of a perceptron [40]

EP (w) = −
∑

n∈M
wTgntn (7.3)

where M is set of all misclassied patterns and tn is class value. Only
the misclassied item contributes to the loss, and it is a linear function of w.
Applying the stochastic gradient descent algorithm, we have:

w(τ+1) = w(τ) − ηEP (w) = w(τ) + ηgntn (7.4)

50

7.1. ANN 51

where η is the learning rate parameters and τ is index of the step. With-
out losing generality, we can set η to 1.

It is easy to interpret the perceptron algorithm. Going through the data,
if it is classied correctly, weights are not changed. If it is misclassied,
then for class C1 we add vector g(xn) onto the current estimate of weights
vector w, while for class C2 we subtract. An illustration of the perceptron
algorithm is shown in Figure 7.3. The color indicates class, and we have
linearly separable points. After picking the initial point, and running the
perceptron algorithm, we get a hyper-plane that denes two classes.
If classes are linearly separable, then the solution exists and it is found in
a nite number of steps. Even if classes are linearly separable, the nal
solution may depend on the initialization parameters. If classes are not
linearly separable then the algorithm will never converge.

The perceptron algorithm [39] does not provide probabilistic outputs, nor
does it scale well for more than 2 classes. [39]

Figure 7.3: Perceptron algorithm [39]

51

7.1. ANN 52

7.1.2 Multi-layer Perceptron

Multi-layer perceptron [39] (MLP), as shown in Figure 7.4, is an expansion
on the previous perceptron. In perceptron, we had only one layer, while in
MLP we can extend a number of layers and thus have greater model capac-
ity. The rst and last layers are called input and output layers, respectively,
while all other in between are hidden layers.

The MLP can be described as a series of functional transformations. Let
x1, x2, , xN be the input data and their linear combinations:

aj =
N∑

i=1

w
(1)
ij xi + w

(1)
j0 (7.5)

where j = 1, ,M and the superscript (1) indicates in which layer are
parameters corresponding. In this case, it is the rst layer. The parameters
w

(1)
ji are known are weights, and w

(1)
j0 are known as biases. The aj is known

as an activation. The goal is to have a nonlinear transformation function, h,
which is dierentiable to get:

zj = h(aj) (7.6)

The zj is called hidden units. For transformation functions, the most
common is used sigmoid, tanh, ReLU , etc. Now passing the outputs from
the previous to the next layer:

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0 (7.7)

where k = 1, , K is the total number of outputs. The nal output is
noted as yk. For binary classication, the output is denoted as:

yk = σ(ak) (7.8)

Putting it all together:

yk = σ

(
M∑

j=1

w
(2)
kj h

(
N∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(7.9)

52

7.1. ANN 53

For multi-class problems, a softmax function is used to get outputs.

This function can be represented in the form of a network diagram, known
as feed-forward neural networks, since the result is propagated only forward,
and there are no loops or cycles. [39]

Figure 7.4: Multi-layer Perceptron

Training Network

If target vectors are tn, then we minimize the error function:

E(w) =
1

2

N∑

n=1

∥y(xn, w)− tn∥2 (7.10)

Let us assume that t has a Gaussian distribution with an x dependent
mean:

p(tx, w) = N(ty(x, w), β−1) (7.11)

where β is the inverse variance of the Gaussian noise. Log-likelihood can
be written as:

53

7.1. ANN 54

p(tX,w, β) =
N∏

n=1

N(tnxn, w, β) (7.12)

Applying the negative logarithm, the error function is:

β

2

N∑

n=1

y(xn, w)− tn2 −
N

2
ln β +

N

2
ln(2π) (7.13)

Here it is often preferred to do minimization of an error function rather
than maximization of log-likelihood. The value of w found by minimizing
E(w) will be wML. After substitution, the value of β can be found from:

1

βML
=

1

N

N∑

n=1

y(xn, wML)− tn2 (7.14)

If the identity function is used as the output activation function, yk = ak,
then:

∂E

∂ak
= yk − tk (7.15)

In the case of binary classication, we have logistic sigmoid activation for
the output:

y = σ(a) =
1

1 + exp(−a)
(7.16)

Interpretation of y(x, w) can be as conditional probability with p(class1x),
and p(class2x) = 1− y(x, w). The conditional distribution of targets can be
written as:

p(tx, w) = y(x, w)t1− y(x, w)1−t (7.17)

For a training set with independent observation, the error function is the
cross-entropy loss function:

E(w) = −
N∑

n=1

tn ln yn + (1− tn) ln(1− yn) (7.18)

For K labels, and K binary classication, if we assume that class labels
are independent, the error function is:

54

7.1. ANN 55

E(w) = −
N∑

n=1

K∑

k=1

tnk ln ynk + (1− tnk) ln(1− ynk) (7.19)

In the case of multi-class classication, where labels are mutually exclu-
sive and have an encoding scheme of one-hot-encoding, outputs are yk(x, w) =
p(tk = 1x), which gives an error function:

E(w) = −
N∑

n=1

K∑

k=1

tkn ln yk(xn, w) (7.20)

where output is given from the softmax function:

yk(x, w) =
exp(ak(x, w))
j exp(aj(x, w))

(7.21)

Parameter Optimization

Let us focus now on nding the best parameters for our neural network [39].
For a small step δ in weight space from w to w+ δw, then the error function
is changed δE ≈ δwTE(w), and vector E(w) points in the direction of
greatest increase in the error function. Since the error function is a contin-
uous, smooth function of parameters w, the minimum will be at the point
such that gradient error vanishes:

E(w) = 0 (7.22)

If the gradient is not 0, then we make the step in the direction of E(w)
and reduce the error. Stationary points are the points where the gradient
vanishes, and they could be minima, maxima, or saddle points, as shown in
Figure 7.5. The global minimum is a point in weight space where the error
function is smallest. All other minima are called local minima.

Since there are no analytical solutions for E(w) = 0, iterative pro-
cedures need to be applied. Usually, for initial w(0) are some predened
procedures. After that, weights are changing through each step:

w(τ+1) = w(τ) + δw(τ) (7.23)

55

7.1. ANN 56

Figure 7.5: Example of minima, maxima, and saddle point [12]

If we consider Taylor expansion of E(w) at some point ŵ:

E(w) ≈ E(ŵ) + (w − ŵ)T b+
1

2
(w − ŵ)TH(w − ŵ) (7.24)

Gradient at point ŵ is dening b:

b ≡ Ew=ŵ (7.25)

and H = E is the Hessian matrix with elements:

Hij ≡
∂E

∂wiwj

∣∣∣∣
w=ŵ(7.26)

Now, we can approximate the local gradient as:

E ≈ b+H(w − ŵ) (7.27)

If we look at the local quadratic optimization from (7.24), around a point
w∗ which is minimum, then there is no linear term since E = 0 at w∗:

E(w) = E(w∗) +
1

2
(w − w∗)TH(w − w∗) (7.28)

Hessian is evaluated at w∗.
The gradient of the error function can be eciently calculated by back-
propagation, leading to signicant improvements, as opposed to error quadratic
approximation.

Using gradient information, and going in the direction of a negative gra-
dient, weights can be updated as:

w(τ+1) = w(τ) − ηE(w(τ)) (7.29)

56

7.1. ANN 57

where parameter η is called the learning rate, and it is a positive number.
After the forward pass, the gradient is calculated, weights are updated and
this is repeated. If the whole dataset is used, then this is known as the
batch method, and if only a subset of data is used for the pass, then this is
called mini-batch gradient descent. Gradient descent or steepest descent is
the direction of the greatest rate of decrease of the error function. Gradient
descent in this form looks good, it’s not ecient.

If the error function is represented as a sum of individual observations,
then:

E(w) =
N∑

n=1

En(w) (7.30)

Sequential gradient descent or stochastic gradient descent makes an up-
date after each observation has been evaluated:

w(τ+1) = w(τ) − ηEn(w
(τ)) (7.31)

There is also an alternative to this, where weights are updated on a batch of
points.

Back propagation

Back-propagation [39] is a term to describe the evaluation of derivatives. The
rst stage of back-propagation denotes evaluating derivatives and the second
is updating the weights.

Let us assume we have a simple neural network with one layer, a sigmoid
hidden activation function, and a sum-of-squared error. We can represent
error as the sum of individual data points errors:

E(w) =
N∑

i=1

En(w) (7.32)

If we have linear model with inputs xi and the outputs yi:

yk =
∑

i

wkixi (7.33)

57

7.1. ANN 58

and the error function:

En =
1

2

∑

k

(ynk − tnk)
2 (7.34)

where ynk = yk(xn, w). Now gradient with respect to the wji is:

∂En

∂wji

= (ynj − tnj)xni (7.35)

When we run feed-forward, the output is a weighted sum of input:

aj =
∑

i

wjizi (7.36)

where zi is the activation unit. Previous sum in (7.36) is transformed
with nonlinear activation function h to get activation zj:

zj = h(aj) (7.37)

This process is called forward propagation [39].

Now, let us consider derivatives of the En with respect to the weight wij.
Subscript n will be omitted so it is more clearly written. Error En depends
on the weight wij only on summed input aj to unit j. Applying the chain
rule for partial derivatives we get:

∂En

∂wji

=
∂En

∂aj

∂aj
∂wji

(7.38)

If we set:
δj ≡

∂En

∂aj
(7.39)

δ is referred to as an error. Using using (7.37), we can write:

∂aj
∂wji

= zi (7.40)

And nally, using (7.38), (7.39), and (7.40):

∂En

∂wji

= δjzi (7.41)

58

7.2. RNN 59

The previous equation (7.41) tells us that in order to get the deriva-
tive, we need to multiply the value δ with the output end of the weight. In
order to evaluate the derivatives, we need only to calculate the value of δj
for each hidden and output unit in the network, and then apply the equation.

For the nal layer:
δk = yk − tk (7.42)

For the hidden layers:

δj ≡
∂En

∂aj
=

∑

k

∂En

∂ak

∂ak
∂aj

(7.43)

where sum is evaluated over all units in which j sends connection. Substi-
tuting δ from (7.39) in (7.40), and use with previous equations (7.36) and
(7.37):

δj = h′(aj)
∑

k

wkjδk (7.44)

Algorithm 3 Back-propagation algorithm [39]
1: For input vector xn run forward pass
2: Evaluate δk for all output units
3: Back-propagate the δ′s to obtain δj for each hidden unit
4: Evaluate derivatives using (7.41)

7.2 RNN
MLP suers from a couple of things. As the input size is increased, the
number of hidden layers and their size, and computational complexity grows
exponentially, thus making them hard to train. On top of that, they do not
utilize the possibility of dependencies between input features. In text mod-
eling, there is dependence between consecutive input words and that is what
recurrent neural networks try to solve.

Recurrent neural networks [12] (RNNs), are a family of neural networks
for processing sequential data. Let RNNs operate on a sequence x(t) with the

59

7.2. RNN 60

time step index t in the range from 1 to τ . Now the computational graph
is extended to cycles since the input of a cell can be the output of the same
cell, in the previous moment.

Let the dynamical system be:

s(t) = f(s(t−1); θ) (7.45)

where s(t) is called the state of the system at moment t, and it is recurrent
because time t refers back to the same denition at time t− 1.

For example, if set t = 3, and unfold sequence, we get:

s(3) = f(s(2); θ) = f(f(s(1); θ); θ) (7.46)

Let us know to consider a dynamical system that is driven by external
signal x:

s(t) = f(s(t−1), x(t); θ) (7.47)

In order to make an indication that the state is the hidden unit of the
network, we can use h for it, and rewrite the previous equation:

h(t) = f(h(t−1), x(t); θ) (7.48)

Hidden states try to capture information from the input, and this is generally
lossy because maps arbitrary sequence length to a xed vector size.

If we change a bit representation at time step t with function g(t):

h(t) = g(t)(x(t), , x(1)) = f(h(t−1), x(t); θ) (7.49)

Now, the function g(t) takes all the previous sequence (x(t), , x(1)) as input
and gives output current state. No matter what the sequence length is, the
model has the same input size, and it is possible to use the same transition
function f at each state.

7.2.1 Vanilla RNN

There are a couple of dierent variations of recurrent neural networks [12]:

60

7.2. RNN 61

1. Recurrent neural networks that produce an output at each step and
have the recurrent connection between hidden layers, which is shown
in Figure 7.6.

2. Recurrent neural networks that produce an output at each step and
have recurrent connection only from the output of one-time step to the
hidden in the next time stamp, which is shown in Figure 7.7.

3. Recurrent neural networks with recurrent connections between hidden
units, read entire sequences and produce only one output, which is
shown in Figure 7.8.

Figure 7.6: RNN type 1 [12]

Let us assume that the activation function is a hyperbolic tangent. Also,
let us assume that the output is discrete (i.e. words). Output o can be
represented as an unnormalized log probability of each discrete value. After
that, the softmax function can be applied to get vector ŷ of normalized
probabilities. Let h(0) be the initial state, then for time stamps from t = 1
to t = τ we get next equations:

a(t) = b+Wh(t−1) + Ux(t) (7.50)

61

7.2. RNN 62

Figure 7.7: RNN type 2 [12]

Figure 7.8: RNN type 3 [12]

h(t) = tanh(a(t)) (7.51)

62

7.2. RNN 63

o(t) = c+ V h(t) (7.52)

ŷ(t) = softmax(o(t)) (7.53)

where b and c are bias vectors and matrices U , V and W weights for
input-hidden, hidden-output, and hidden-hidden sequences. If L(t) is loss,
then the negative log-likelihood of y(t) given x(1):

L(x(1), , x(τ), y(1), , y(τ)) =
=

∑

t

L(t)

= −
∑

t

log pmodel(y
(t)x(1), , x(τ))

(7.54)
where log pmodel(y

(t)x(1), , x(τ)) is the entry from the output vector
ŷ(t).

The gradient of this loss with respect to the parameters is a very ex-
pensive operation because forward bass needs to be made, followed by a
backward propagation pass, and this is a sequential operation. The back-
propagation applied to the unrolled graph is called back-propagation through
time (BPTT) [12].

Back-propagation through time (BPTT)

We assume that outputs o(t) are input to the softmax function to get the
vector of probabilities ŷ. Loss is the negative log-likelihood of real target
values y(t), for a given input. Applying chain rule:

∂L

∂V
=

τ∑

t=1

∂L(t)

∂V
=

τ∑

t=1

∂L(t)

∂ot

∂o(t)

∂V
(7.55)

If case when we want to nd the gradient with respect to W at timestamp
t for hidden state h(t), it is not straightforward as in the previous case, since
state h(t) also depends on the previous state h(t−1).

∂L(t)

∂W
=

∂L(t)

∂o(t)
∂o(t)

∂h(t)

∂h(t)

∂h(t−1)

∂h(t−1)

∂W
(7.56)

63

7.2. RNN 64

∂L

∂W
=

τ∑

t=1

∂L(t)

∂o(t)
∂o(t)

∂h(t)

∂h(t)

∂h(t−1)

∂h(t−1)

∂W
(7.57)

Gradients for the input weight, in the same way, we get:

∂L

∂V
=

τ∑

t=1

∂L(t)

∂o(t)
∂o(t)

∂h(t)

∂h(t)

∂h(t−1)

∂h(t−1)

∂V
(7.58)

7.2.2 Bidirectional Networks

In all previous approaches, we have only discussed that at time step (t) we
pass collected information at (t− 1). Sometimes, for a better prediction, we
need to know the whole input sequence to make a better judgment (this is
particularly important for speech-to-text).
Bidirectional RNNs [12], as in Figure 7.9, are using a combination of forward
and backward input sequences through time.

Figure 7.9: Bidirectional Recurrent Network [12]

64

7.2. RNN 65

7.2.3 LSTM

Of all RNN variations, the most used are gated RNN, which includes long
short-term memory [12], amongst others (gated recurrent networks). They
are based on creating paths through time so the gradients do not explode or
vanish. They allow networks to accumulate information.

The input gate determines how much of the input node’s value should be
added to the current memory cell’s internal state. The forget gate determines
whether to keep the current value of the memory or ush it. And the output
gate determines whether the memory cell should inuence the output at the
current time step. [41]

Let the state cell be s
(t)
i , which is controlled by forgetting gate unit f (t)

i ,
where t is time step, x(t) is the current input vector and h(t) is currently
hidden layer vector, containing the outputs of all LSTM cells, and bf , U f ,
and W f are respectively biases, input weights and recurrent wights for the
forget gate. The external input gate is noted as g(t)i , and q

(t)
i is output gate.

LSTM cell is now updated by:

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ(bi +

∑

j

Ui,jx
(t)
j +

∑

j

Wi,jh
(t−1)
j) (7.59)

f
(t)
i = σ(bfi +

∑

j

U f
i,jx

(t)
j +

∑

j

W f
i,jh

(t−1)
j) (7.60)

g
(t)
i = σ(bgi +

∑

j

U g
i,jx

(t)
j +

∑

j

W g
i,jh

(t−1)
j) (7.61)

h
(t)
i = tanh(s

(t)
i)q

(t)
i (7.62)

q
(t)
i = σ(boi +

∑

j

U o
i,jx

(t)
j +

∑

j

W o
i,jh

(t−1)
j) (7.63)

An example of an LSTM cell is given in Figure 7.10.

65

7.3. TRANSFORMERS 66

Figure 7.10: LSTM Cell [41]

7.3 Transformers

7.3.1 Attention Mechanism

RNN, LSTM, and GRU have been established ad state of the art techniques
in sequence modeling. Recurrent models use their output as input, there-
fore making it sequentially and without the possibility for parallelization.
Attention mechanisms [14] are developed for sequence modeling, allowing
dependencies without regard to their distance in the input or output.

7.3.2 Model Architecture

Let the input sequence be (x1, , xn), and encoded sequence z = (z1, , zn).
Given z, the decoder then generates an output sequence (y1, , ym) of sym-
bols one element at a time. The model in Figure 7.11 is using previous output
also as an input. [14]

Encoder: The encoder is composed of N = 6 identical layers. Each
layer has two sub-layers. The rst is a multi-head self-attention mechanism,
and the second is a simple, position-wise fully connected feed-forward net-
work. There are residual connections between two sub-layers, followed by a
normalization layer.

66

7.3. TRANSFORMERS 67

Figure 7.11: Attention model architecture [14]

67

7.3. TRANSFORMERS 68

Decoder: The decoder is similar to the encoder with N = 6 identical
layers. In the sub-layer of the decoder, on top of all sub-layers in the encoder,
the decoder also has a third sub-layer that performs.

An attention function can be described as mapping a query and a set of
key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of
the query with the corresponding key.

Attention in Figure 7.12 consists of keys and queries are dimensions dk
and values are dimensions dv. The dot product is computed of queries and
keys and normalized with

√
dk. After division, values are run through the

softmax function. Let K, V, and Q be the matrices of keys, values, and
queries. Then, the output is calculated as follows:

Attention(Q, K, V) = softmax(
QKT

√
dk

)V (7.64)

Instead of doing single attention, multi-head attention, as in Figure 7.13,
allows dierent representations to be captured jointly.

MultiHead(Q, K, V) = Concat(head1, , headh)WO (7.65)

where

headi = Attention(QWQ
i , KWK

i , V W V
i) (7.66)

Positional encoding is dened as follows:

PE(pos,2i) = sin


pos

10000
2i

dmodel



PE(pos,2i+1) = cos


pos

10000
2i

dmodel



There are a couple of reasons to use the attention mechanism compared
to RNN: total complexity per layer, amount of parallelization, and ability to
capture long-range dependencies. Also, it is more interpretable, since we can
visualize which words are more contributing to overall prediction.

68

7.3. TRANSFORMERS 69

Figure 7.12: Attention model block [14]

Figure 7.13: Multiple attention model block [14]

69

7.3. TRANSFORMERS 70

7.3.3 BERT

BERT [15] (Bidirectional Encoder Representations from Transformers) is a
framework built on top of the attention mechanism. It consists of two phases:
pre-training and ne-tuning. In the pre-training phase, the model is trained
on unlabeled data, on a couple of pre-training tasks. In the ne-tuning phase,
the initial model is taken and trained with downstream tasks.

Model architecture

BERT’s model architecture is a multi-layer bidirectional Transformer en-
coder based on the attention mechanisms. Let the number of layers be L,
the hidden size as H, and the number of self-attention heads as A. Then,
BERTBASE consists from L=12, H=768, A=12, and total number of param-
eters=110M.

In order to make BERT work in any downstream tasks, the model is able
to handle both a single sentence and a pair of sentences. The rst token of
every sequence is a special token noted with [CLS]. Sentence pairs are packed
together with separation token [SEP]. Also, all tokens in one sequence have
an indication of which sequence tokens belong. If we note E as the input
embedding, special token [CLS] token as C  RH and the Ti  RH input
token.

BERT pre-training tasks

Task 1. Masked LM To train a deep bidirectional representation, we
simply mask some percentage of the input tokens at random and then predict
those masked tokens. We refer to this procedure as a “masked LM”. Around
15% of the tokens are masked randomly. This comes with a little cost since
in the ne-tuning, there are no [MASK] tokens. Instead, if i-th token is
selected for masking, there is an 80% chance to mask it with a mask token,
a 10% chance to change it with the random token, and a 10% chance to stay
the same.

Task 2. Next Sentence Prediction (NSP) The model is trained
to learn the next sentence prediction task with binary outputs. During the
training process, 50% of sentences are the true next sentences, and 50% of
sentences are random sentences.

70

7.3. TRANSFORMERS 71

Fine-tuning BERT

Fine-tuning BERT is a simple procedure. For each task, the inputs and
outputs are passed into BERT and all parameters are ne-tuned.
Compared to pre-training, ne-tuning is relatively inexpensive.

Pre-training data used for BERT are BooksCorpus (800M words) and
English Wikipedia (2,500M words) [15]. From pre-trained BERT, the em-
bedding matrix is extracted and used for vectorization with the classication
model.

71

Chapter 8

Optimization

Optimization of neural networks is focused on one thing: nding weight
parameters in order to reduce loss [12]. Optimization is done using gradient-
based principles.

8.1 Stochastic Gradient Descent (SGD)
Let L(w) be the objective function of parameters of the model, and η be the
learning rate. Gradient descent is an optimization technique [42] to mini-
mize an objective function L(w) by updating the parameters in the opposite
direction of the gradient of the objective function L(w) w.r.t. to the pa-
rameters. Stochastic gradient descent (SGD) performs a parameter update
for each mini-batch of m training example.

Algorithm 4 Stochastic gradient descent [12]
Require: Learning rate η
Require: Initial parameter w
for epoch in range of maximum epochs do do

Sample a mini-batch of m examples from the training set x1, , xm
with corresponding targets yi .

Compute gradient estimate g ← 1
m
w


i L(f(x

i;w), yi).
Apply update: w ← w − ηg

end for

To guarantee the convergence of SGD [12], the next conditions need to

72

8.1. STOCHASTIC GRADIENT DESCENT (SGD) 73

be satised: ∞∑

k=1

η = ∞ (8.1)

∞∑

k=1

η2 < ∞ (8.2)

Deciding what would be the learning rate is usually done after a couple
of iterations of experiments, and it is desired to decrease it over time. If it is
too low, the model will not converge. If it is too high, too many oscillations
will be done.

In Figure 8.1 blue lines represent points with the same loss, and minima
is in the middle. The initial point is x0. SGD calculates the gradient and
updates the weights in the opposite direction (red lines). Repeating this
procedure we get the sequence of points (x1, x2, x3, x4), going to the minima.

Figure 8.1: Gradient descent
[43]

73

8.2. MOMENTUM 74

8.2 Momentum
SGD does not capture information about past gradients that could speed up
the optimization part, especially in the face or high curvature. The momen-
tum algorithm [12] accumulates an exponentially decaying moving average
of past gradients and continues to move in their direction. Formally, the mo-
mentum algorithm introduces a variable v that plays the role of velocity—it
is the direction and speed at which the parameters move through parame-
ter space. The velocity is set to an exponentially decaying average of the
negative gradient.

In Figure 8.2, we have a quadratic loss and examples of the convergence
of SGD with and without momentum. The plain gradient goes back and
forth, makes large jumps and it takes more time to converge.

Figure 8.2: SGD without and with momentum
[44]

8.3 Algorithms with Adaptive Learning Rates

8.3.1 AdaGrad

The AdaGrad adapts the learning rate to the o the parameters, performing
larger updates for infrequent and smaller updates for frequent parameters.

74

8.3. ALGORITHMS WITH ADAPTIVE LEARNING RATES 75

Algorithm 5 Stochastic gradient descent with momentum [12]
Require: Learning rate η, momentum parameter α
Require: Initial parameter w, initial velocity v
for epoch in range of maximum epochs do do

Sample a mini-batch of m examples from the training set x1, , xm
with corresponding targets yi .

Compute gradient estimate g ← + 1
m
w


i L(f(x

i;w), yi)
Compute velocity update v ← αv − ϵg
Apply update: w ← w + v

end for

It is well-suited for dealing with sparse data [42].

Algorithm 6 The AdaGrad Algorithm [12]
Require: Global learning rate η
Require: Initial parameter w
Require: Small constant δ for numerical stability
Initialize gradient accumulation variable r = 0
for epoch in range of maximum epochs do do

Sample a mini-batch of m examples from the training set x1, , xm
with corresponding targets yi.

Compute gradient estimate ← 1
m
w


i L(f(x

i;w), yi)
Accumulate squared gradient: r ← r + g ⊙ g
Compute update: w ← − η√

δ+r
⊙ g (Division and square root are

applied element-wise)
Apply update: w ← w +w

end for

8.3.2 RMSProp

The RMSProp algorithm [12] is a modication of the AdaGrad algorithm, to
perform better in nonconvex problems. Instead of accumulating gradients, it
takes an exponentially weighted moving average.

75

8.3. ALGORITHMS WITH ADAPTIVE LEARNING RATES 76

Algorithm 7 The RMSProp Algorithm [12]
Require: Global learning rate η, decay rate ρ
Require: Initial parameter w
Require: Small constant δ for numerical stability
Initialize gradient accumulation variable r = 0
for epoch in range of maximum epochs do do

Sample a mini-batch of m examples from the training set x1, , xm
with corresponding targets yi.

Compute gradient estimate g ← + 1
m
w


i L(f(x

i;w), yi)
Accumulate squared gradient: r ← ρr + (1− ρ)g ⊙ g
Compute update: w ← − η√

δ+r
⊙ g

Apply update: w ← w +w
end for

76

Chapter 9

Experiments and Results

9.1 Hardware
All the experiments use Python programming language, with Anaconda
and PyCharm as the environments. The graphics processing unit used was
NVIDIA GeForce GTX 1080 Ti with 3584 CUDA cores with 11GB memory,
AMD Ryzen 3700x central processing unit with 8 cores and 16 threads, and
32GB of random access memory.

9.2 Libraries
For the preprocessing, the following libraries are used: NumPy, SpaCy,
NLTK, Tweet preprocessor, Gensim, HuggingFace, and Transformers. For
the training, the following libraries are used: Scikit-Learn and PyTorch. For
visualization, the following libraries are used: Tensorboard, Matplotlib, and
Seaborn.

9.3 Results and Discussion
All models are trained using 10-fold validation and results are summed across
all validation folds. Metrics used for comparisons are accuracy, recall, pre-
cision, and F1. Machine learning models from scikit-learn are found using a
random grid search for the best results. In the case of deep learning models,
only one set of parameters is used for training all models on all datasets,

77

9.3. RESULTS AND DISCUSSION 78

since time and resources have been limited.
Text is rst normalized using preprocessing techniques and saved in two

formats: cleaned text and tokenized cleaned text, since BERT embedding
requires input to be string, while other embeddings require input to be tok-
enized. The following embedding techniques are used for text vectorization:

• TF-IDF

• Word2Vec

• GloVe

• FastText

• Custom embeddings

• BERT embeddings

Vectorized text is used as input to the following classication models:

• Naive Bayes

• Logistic regression

• SVM

• Random Forest

• LSTM

Embedding vocabulary and dimensions:

• TF-IDF: 18000 words (each word had to appear at least 10 times) and
the same embedded dimension

• Word2Vec: 300000 words and 300 embedded dimension

• GloVe: 40001 words and 300 embedded dimension

• FastText: 100000 words and 300 embedded dimension

• Custom embeddings: 30001 words and 300 embedded dimension

• BERT embeddings: 30572 tokens and 768 embedded dimension

78

9.3. RESULTS AND DISCUSSION 79

LSTM model is used with all embeddings, except word2vec because of
the size, while other models are used with all embeddings except custom and
BERT embeddings.

In the case of pretranied embedding, words that do not appear in the
vocabulary (OOV words) are handled in such a way, that a random vector
is initialized and assigned to all of them. In comparison, BERT splits each
word into subpart and then create word embedding. For pretrained word
embeddings and BERT embeddings, the embedding layer was frozen during
the training, but it can also be ne-tuned for better embeddings, for a spe-
cic use case.

LSTM hyper-parameters used for the training:

• Hidden dimension: 128

• Last ANN layer dropout: 0.5

• Bidirectional: True

• Learning rate: 0.0006

• Batch size: 64

• Number of epochs: 30

• Maximum sequence length: 512

For hidden dimension 128 and bidirectional LSTM, LSTM output is a
matrix of shape maximum sequence length and 256, where vectors from both
directions are concatenated. These outputs are combined in multiple ways
to get a richer representation. Three dierent vectors are concatenated: last
LSTM output averaged vectors and mean vectors, similar to pooling opera-
tions in convolutional neural networks.
All deep neural networks model summaries are shown in Figure 9.1.

79

9.3. RESULTS AND DISCUSSION 80

Figure 9.1: (a) Custom embeddings model (b) Pretrained FastText model
(c) Pretranied GloVe model (d) BERT embeddings model

80

9.4. EXPERIMENT RESULTS 81

9.4 Experiment results

9.4.1 IMDB reviews results

The results for the IMDB reviews dataset are displayed in Figure 9.2. The
maximum achieved metric is 89.4% F1-macro score. A notable mention is the
LR classier with TF-IDF, with 88.7% F1-score. After that, we have a drop
in the F1 score. The lowest accuracy is achieved with the RF classier and
GloVe embeddings, with a 77% F1-score. There is around a 12% dierence
between the best and the worst model.

Figure 9.2: IMDB models results

The best results are achieved with the TF-IDF vectorization technique
with the parameters:

• max_features: 30000

• min_df: 10

81

9.4. EXPERIMENT RESULTS 82

• stop_words: english

and classication model SVM with the following parameters:

• C: 10

• kernel: rbf

Looking at the F1 score, the best model performance is very good, even
though there are only two classes in the dataset. From the confusion matrix,
we can conclude that both classes are captured with similar accuracy, with
90% for negative reviews and 89% for positive reviews. The confusion matrix
with raw number is shown in Figure 9.3, and the normalized version in Figure
9.4.

Figure 9.3: IMDB confusion matrix

82

9.4. EXPERIMENT RESULTS 83

Figure 9.4: IMDB normalized confusion matrix

9.4.2 Yelp reviews results

The results for the YELP reviews dataset are displayed in Figure 9.5.
The maximum achieved metric is a 55.15% F1-macro score. Notable mentions
mention is the LR classier with TF-IDF vectorization with 54.3% F1-score.
The lowest achieved metric score is 42.1% with the RF classier and FastText.
There is a 12% dierence between the best and worst models.

The best results are achieved with the TF-IDF vectorization technique
with the parameters:

• max_features: 30000

• min_df: 10

• stop_words: english

83

9.4. EXPERIMENT RESULTS 84

Figure 9.5: YELP models results

and classication model SVM with the following parameters:

• C: 1

• kernel: rbf

Looking at the F1 score, the best model performance is decent, at best.
From the confusion matrix, we can conclude that not all classes are captured
equally. Accuracies are 68%, 48%, 46%, 48%, and 65% for extremely nega-
tive, negative, neutral, positive, and extremely positive classes, respectively.
From the confusion matrix, is easy to detect that classes "near each other"
get often mistaken, while there is far less probability of error if classes are
more distant. This suggests that maybe there is a ne line between classes,
hence the lower score. The confusion matrix with raw number is shown in
Figure 9.6, and the normalized version in Figure 9.7.

84

9.4. EXPERIMENT RESULTS 85

Figure 9.6: Yelp confusion matrix

9.4.3 Corona tweets results

The results for the Corona tweets dataset are displayed in Figure 9.8.
The maximum achieved accuracy is 65% F1-macro score. The second best
model is the LR classication model with TF-IDF, with 62% F1-score. After
that, there is a huge drop in terms of accuracy, and the worst model is RF
with TF-IDF, with 14% F1-score, indicating huge dierences in F1-metrics,
larger than in the two previous cases.

The best results are achieved with the TF-IDF vectorization technique
with the parameters:

• max_features: 30000

• min_df: 10

85

9.4. EXPERIMENT RESULTS 86

Figure 9.7: Yelp normalized confusion matrix

• stop_words: english

and classication model SVM with the following parameters:

• C: 10

• kernel: rbf

Looking at the F1 score, the best model performance is a bit better than
the best model performance for yelp reviews. Accuracies are 73%, 57%,
70%, 60%, and 77% for extremely negative, negative, neutral, positive, and
extremely positive classes, respectively. But, as opposed to yelp class scores,
classes "near each other" are less likely to be mistaken, but some classes
which are more distant, are being mistaken. Negative and positive classes
are mistaken in 13% in both cases. This dataset can, in some cases, can

86

9.4. EXPERIMENT RESULTS 87

Figure 9.8: Corona tweets models results

be very problematic, because upon removal of hashtags, only a few words
are left, and sometimes that is not enough to make relevant predictions. The
confusion matrix with raw number is shown in Figure 9.9, and the normalized
version in Figure 9.10.

87

9.4. EXPERIMENT RESULTS 88

Figure 9.9: Corona tweets confusion matrix

88

9.4. EXPERIMENT RESULTS 89

Figure 9.10: Corona tweets normalized confusion matrix

89

Chapter 10

Conclusions

In this thesis, we tried to unify all features of engineering techniques on
the textual data and compare them with machine learning and deep learn-
ing algorithms. We started with a bag-of-word approach such as TF-IDF,
then move to word embeddings such as Word2Vec, GloVe, and FastText.
We nished this with BERT contextual embeddings. From machine learning
models we tried SVM, NB, LR, and RF and from deep learning models, we
tried LSTM. We provided benchmarks on three dierent datasets. The goal
was to provide an in-depth analysis of dierent approaches.

These results may come as a bit surprising, based on the previous work,
because one of the most naive embedding technique, TF-IDF, in combination
with SVM, consistently outperform other embedding techniques and models.
Based on the results, one may conclude that deep learning techniques are not
necessarily better in comparison to the classical statistical model, and they
are trained much faster than deep learning models. Only one preprocessing
technique has been used, which is a pipeline with multiple normalization
techniques. A dierent combination of normalization techniques could have
been used, something like stemming and lemmatization.

One of the reasons that machine learning models are performing better,
is because their hyper-parameters were optimized, were in the deep learning
case, they are xed and all models are trained with them. The reason for this
is the computational complexity of training deep learning models. In further
work, one can focus only on deep learning hyper-parameter optimizations.
Even though machine learning model parameters were optimized with greed

90

91

search, the space of parameters was also limited because of training time.
In the case of deep learning hyper-parameter optimizations, there is huge
parameter space for someone to congure, starting from the learning rate,
LSTM depth, batch size, ne-tuning embedding, and so on.
From transformer models, only BERT embeddings were used in training.
Now, there are plenty of dierent models which can perform better or have
the same performance with smaller embedding space, which gives more room
for building a more complex network.

91

Bibliography

[1] Bo Pang and Lillian Lee. Opinion Mining and Sentiment Analysis.
Foundations and trends in information retrieval, Vol. 2, Nos. 1–2 (2008)
1–135. 2008.

[2] Meena Rambocas and João Gama. “Marketing Research: The Role of
Sentiment Analysis”. In: FEP WORKING PAPER SERIES (2013).
url: https://wps.fep.up.pt/wps/wp489.pdf.

[3] Daekook Kang and Yongtae Park. “Review-based measurement of cus-
tomer satisfaction in mobile service: Sentiment analysis and VIKOR
approach”. In: Expert Systems with Applications (2014). url: https://
www.sciencedirect.com/science/article/abs/pii/S0957417413006027.

[4] Federico Neri, Carlo Aliprandi, and Federico Capeci. “Sentiment Anal-
ysis on Social Media”. In: (2012). url: https://ieeexplore.ieee.
org/abstract/document/6425642.

[5] Minqing Hu and Bing Liu. “Mining and Summarizing Customer Re-
views”. In: Proceedings of the tenth ACM SIGKDD international con-
ference on Knowledge discovery and data mining (2004). url: https:
//www.cs.uic.edu/~liub/publications/kdd04-revSummary.pdf.

[6] Andrea Esuli and Fabrizio Sebastiani. “SentiWordNet: A Publicly Avail-
able Lexical Resource for Opinion Mining”. In: (2006). url: http:
//www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf.

[7] Yoon Kim et al. “Temporal Analysis of Language through Neural Lan-
guage Models”. In: (2014). url: https://arxiv.org/pdf/1405.3515.
pdf.

[8] CHRIS NICHOLLS and FEI SONG. “IMPROVING SENTIMENT ANAL-
YSISWITH PART-OF-SPEECHWEIGHTING”. In: (2009). url: https:
//ieeexplore.ieee.org/abstract/document/5212278.

92

BIBLIOGRAPHY 93

[9] Li Dong et al. “IMPROVING SENTIMENT ANALYSIS WITH PART-
OF-SPEECH WEIGHTING”. In: (2009). url: https://ieeexplore.
ieee.org/abstract/document/5212278.

[10] Lei Zhang et al. “Deep learning for sentiment analysis: A survey”. In:
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery (2018). url: https://wires.onlinelibrary.wiley.com/doi/
10.1002/widm.1253.

[11] Yoon Kim. “Convolutional Neural Networks for Sentence Classica-
tion”. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (2014). url: https://arxiv.org/pdf/
1408.5882.pdf.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. url: http://www.deeplearningbook.org.

[13] Zachary C. Lipton. “The Mythos of Model Interpretability”. In: Com-
munications of the ACM (2016). url: https://arxiv.org/pdf/
1606.03490.pdf.

[14] Ashish Vaswani et al. “Attention Is All You Need”. In: (2017). url:
https://arxiv.org/abs/1706.03762.

[15] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: (2018). url: https://arxiv.
org/pdf/1810.04805.pdf.

[16] Maite Taboada et al. “Lexicon-Based Methods for Sentiment Analysis”.
In: Computational Linguistics (2011). url: https://direct.mit.
edu/coli/article/37/2/267/2105/Lexicon-Based-Methods-for-
Sentiment-Analysis.

[17] Prem Melville, Wojciech Gryc, and Richard D. Lawrence. “Sentiment
Analysis of Blogs by Combining Lexical Knowledge with Text Classi-
cation”. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 09 (2009). url: https://dl.acm.
org/doi/abs/10.1145/1557019.1557156.

[18] Guang Qiu et al. “DASA: Dissatisfaction-oriented Advertising based
on Sentiment Analysis q”. In: Expert Systems with Applications (2010).
url: https://www.sciencedirect.com/science/article/abs/
pii/S095741741000148X.

93

BIBLIOGRAPHY 94

[19] Hanhoon Kang, Seong Joon Yoo, and Dongil Han. “Senti-lexicon and
improved Naïve Bayes algorithms for sentiment analysis of restaurant
reviews”. In: Expert Systems with Applications (2012). url: https://
www.sciencedirect.com/science/article/abs/pii/S0957417411016538.

[20] María-Teresa Martín-Valdivia et al. “Sentiment polarity detection in
Spanish reviews combining supervised and unsupervised approaches”.
In: (2013). url: https://www.sciencedirect.com/science/article/
abs/pii/S0957417412013267.

[21] Tomas Mikolov et al. “Ecient Estimation of Word Representations
in Vector Space”. In: Proceedings of Workshop at ICLR (2013). url:
https://arxiv.org/abs/1301.3781.

[22] Jerey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: (2014). url: https://
nlp.stanford.edu/pubs/glove.pdf.

[23] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Infor-
mation”. In: (2016). url: https://arxiv.org/abs/1607.04606.

[24] Liang Chih Yu et al. “Rening Word Embeddings for Sentiment Analy-
sis”. In: Journal of ICT Standardization (2017). url: https://aclanthology.
org/D17-1056/.

[25] Sayyida Tabinda Kokab, Sohail Asghar, and Shehneela Naz. “Transformer-
based deep learning models for the sentiment analysis of social media
data”. In: Array (2022). url: https://www.sciencedirect.com/
science/article/pii/S2590005622000224.

[26] Sowmya Vajjala et al. Practical Natural Language Processing. O’Reilly,
2020.

[27] Akiko Aizawa. “An information-theoretic perspective of tf–idf mea-
sures”. In: Information Processing and Management (2003). url: https:
//www.sciencedirect.com/science/article/abs/pii/S0306457302000213.

[28] Yoshua Bengio et al. “Neural Probabilistic Language Model”. In: Jour-
nal of Machine Learning Research (2003). url: https://www.jmlr.
org/papers/volume3/bengio03a/bengio03a.pdf.

[29] Rohit Mundra et al. CS 224D: Deep Learning for NLP. [Online; ac-
cessed December 17, 2022]. Winter 2019. url: https://web.stanford.
edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.
pdf.

94

BIBLIOGRAPHY 95

[30] Rohit Mundra et al. CS 224D: Deep Learning for NLP. [Online; ac-
cessed December 17, 2022]. Winter 2019. url: https://web.stanford.
edu/class/cs224n/readings/cs224n-2019-notes02-wordvecs2.
pdf.

[31] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. Springer, 2008.

[32] David M W Powers. “Evaluation: From Precision, Recall and F-Factor
to ROC, Informedness, Markedness and Correlation”. In: Mach. Learn.
Technol. (2010). url: https://arxiv.org/abs/2010.16061.

[33] How to construct a confusion matrix in LaTeX? [Online; accessed 03
December, 2023]. url: https://tex.stackexchange.com/questions/
20267/how-to-construct-a-confusion-matrix-in-latex.

[34] Thomas G. Dietterich. “Approximate Statistical Tests for Compar-
ing Supervised Classication Learning Algorithms”. In: Neural Com-
putation (1998). url: https://direct.mit.edu/neco/article-
abstract/10/7/1895/6224/Approximate- Statistical- Tests-
for-Comparing.

[35] Daniel Jurafsky and James H. Martin. Speech and Language Process-
ing. Pearson/Prentice Hall, 2008. url: https://web.stanford.edu/
~jurafsky/slp3/4.pdf.

[36] Victor E.Lee, Lin Liu, and Ruoming Jin. Data Classication: Algo-
rithms and Applications. Chapman and Hall/CRC. url: http://www.
odbms.org/wp-content/uploads/2014/07/DecisionTrees.pdf.

[37] Bhiksha Raj. Decision Tree. [Online; accessed October 20 , 2022]. url:
https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/.

[38] Neves Ana et al. A New Approach to Damage Detection in Bridges
Using Machine Learning. [Online; accessed 10 Feb, 2020]. url: https:
//www.researchgate.net/profile/Ana_Neves9/publication/
320384373 / figure / fig2 / AS :682337809469452 @1539693419868 /
The-biological-neuron.png.

[39] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[40] DeepAI. Perceptron. [Online; accessed 28 October, 2022]. url: https:
//deepai.org/machine-learning-glossary-and-terms/perceptron.

95

BIBLIOGRAPHY 96

[41] Long Short-Term Memory (LSTM). [Online; accessed November 3,
2022]. url: https://d2l.ai/chapter_recurrent-modern/lstm.
html.

[42] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: (2016). url: https://arxiv.org/pdf/1609.04747.pdf.

[43] Wikipedia. Gradient descent. [Online; accessed 17 December, 2022].
url: https://en.wikipedia.org/wiki/Gradient_descent.

[44] Stochastic Gradient Descent on your microcontroller. [Online; accessed
28 December, 2022]. url: https://eloquentarduino.github.io/
2020/04/stochastic-gradient-descent-on-your-microcontroller/.

96

Biography

Stefan Dimitrijević was born on the 19th of Novem-
ber 1994 in Leskovac. In 2013 he started his bach-
elor’s studies in Pure Mathematics at the Faculty
of Sciences, University of Niš, and nished in 2017.
In the same year, he started his master’s studies in
Data Science at the Faculty of Sciences, University
of Novi Sad, where he passed all exams in 2019. He
attended ECMI Mathematical Modelling Week in
the summer of 2018 where he was included in the
project "Modelling eect of time delay for a large
network of the seismic monitor".

97

BIBLIOGRAPHY 98

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCE

KEY WORD DOCUMENTATION
Accession number:
ANO
Identication number:
INO
Document type: monograph type
DT
Type of record: printed text
TR
Contents code: master thesis
CC
Author: Stefan Dimitrijević
AU
Mentor: Miloš Savić, PhD
MN
Title:
XI
Language of text: English
LT
Language of abstract: English
LA
Country of publication: Republic of Serbia
CP
Locality of publication: Vojvodina
LP
Publication year: 2023.
PY
Publisher: author’s reprint
PU
Publishing place: Novi Sad, Trg Dositeja Obradovića 4
PP
Physical description:
(10/99/44/5/45/0/0)
(chapters/pages/references/tables/gures/graphs/additional lists)
PD
Scientic eld: mathematics

98

BIBLIOGRAPHY 99

SF
Scientic discipline: applied mathematics
SD
Key words: Text Analysis, Sentiment Analysis, Natural Language Process-
ing, Machine Learning, Deep Learning
UC
Holding data: Department of Mathematics and Informatics Library, Faculty
of Sciences, Novi Sad
HD
Note:
N
Abstract: Three datasets are used for text sentiment detection. Before text is
used for detection, it needs to be vectorized. From vectorization techniques,
TF-IDF, Word2Vec, FastText, custom embeddings, and BERT embeddings
are used. For classication algorithms from machine learning algorithms
SVM, NB, RF, and LR are used, and from deep learning algorithms LSTM
is used.
AB
Accepted by the Scientic Board on:
10.1.2023.
ASB
Defended:
DE
Thesis defend board:
DB
Chair: Dušan Jakovetić, PhD, Associate Professor, Faculty of Science, Uni-
versity of Novi Sad
Mentor: Miloš Savić, PhD, Associate Professor, Faculty of Science, Univer-
sity of Novi Sad
Member: Vladimir Kurbalija, PhD, Full Professor, Faculty of Sciences, Uni-
versity of Novi Sad

99

