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1. Introduction 

 

The world's population is growing drastically, and an increase of about 30 percent in the 

next 30 years is predicted [1]. Population growth requires greater and faster production of food, 

which must be stored in the right way. 

 
     Figure 1: Corn crop 

With 1.1 billion tons produced, corn represents the most produced crop in the world. It is 

followed by wheat (760.9 million tons) and rice (756.7 million tons) [2]. The latest technologies 

have succeeded in creating new corn hybrids. By doing so, they significantly increased the yield. 

[3]. On the other hand, a higher yield means a larger surplus later. Poor harvesting and storage 

organization results in an average of 40% of food being thrown away annually [1]. Therefore a 

planning tools to overcome these challenges must be created [4]. 
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    Figure 2: Corn harvesting and storing 

 The Crop Planting Schedule Problem (CPSP) [4,  5] algorithm, created for solving the 

optimization problem, make sure that an ideal planting schedule has almost constant weekly 

harvested quantities within storage capacity and the planting dates are within the preferred planting 

timeframe.  

Production is not an easy task; it consists of many different stages. It is important to 

determine each of them as precisely as possible in order to improve the yield. Each of these stages 

can be precisely determined by calculating the GDU. The GDU actually measures how much heat 

the plant has accumulated during the day, and therefore, daily temperatures are used to calculate 

this unit. With the help of GDU, we can determine every stage of the plant, from germination to 

maturation[1]. If a set of seeds is planted on the same day, in the same field, and later harvested 

together, we call it a population. Each population has its own amount of GDU which needs to be 

accumulated. So, when the plant accumulates enough GDU, we can say that it is ready for 

harvesting. All of this implies that an accurate prediction of GDU is crucial for solving this 

problem.   

GDUs prediction presents the input for the optimization problem, therefore we wanted to 

investigate how sensitive the model is to different GDUs predictions. For GDUs prediction in this 

thesis, two different approaches and three different models are used. In the first approach, a time 

series of daily accumulated GDUs from the year 2009 to the year 2019, is used for the prediction 

of GDUs for the next two years. Accumulated GDUs are given for two different planning sites, 

which are denoted as site 0 and site 1. 

 Since GDUs highly depend on daily temperatures, in the second approach historical data 

of daily minimum and maximum temperatures for the years 2009-2019 from two different sites, 

are used. The given time series helped in predicting daily minimum and maximum temperatures 

for the next two years, and then using a formula for GDUs calculation, daily accumulated GDUs 

were calculated.  

Predictions, in both approaches, are made using the following models for time series 

prediction: Moving Average (MA), Auto Regressive Integrated Moving Average (ARIMA) and 

Holt-Winters model. The GDUs predictions are input for the optimization model, which can also 

be divided into two different scenarios. In the first scenario, both sites have pre-defined capacity 
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values for each week. On the other hand, in the second scenario, pre-defined capacity does not 

exist. Therefore, the goal is to find which capacity will minimize the harvesting period and 

maximize the total harvest quantity. 

The task of this thesis is to investigate how different GDUs predictions impact the 

optimized planting schedule, expressed through the number of harvest weeks and quantities.  

This thesis is organized into 6 chapters, where the first and sixth chapters provide an 

introduction and a conclusion. Chapter 2 makes a review of a topic, going through the literature 

that solves the same or similar problems. Methodologies, models, and algorithms used in this thesis 

are described in Chapter 3 and Chapter 4, respectively. The planting schedule optimization is 

applied to each combination of site and scenario, and both approaches, independently. Each 

combination of results is presented and discussed in detail in Chapter 5. 
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2. Related work 

In the literature, several works tackling similar or related problems have been found. 
Different machine learning and deep learning algorithms can be successfully trained to predict 

GDUs, some of them are more successful than others. In the GDUs prediction stage, the selection 

of the prediction model is essential.  

TBATS is an acronym for key features of the model: T: Trigonometric seasonality B: Box-

Cox transformation A: ARIMA errors T: Trend S: Season. In [1] TBATS and 1D-Convolutional 

Neural Network were compared. 1D-CNN outperforms the TBATS, by reducing the number of 

weeks required for harvest. They give an advantage to 1D-CNN since it can deal with variance in 

data, and TBATS tends to smooth the predictions. Additionally, TBATS does not perform well for 

long-term predictions.     

In [6] a Gaussian process mode and a deep recurrent neural network are compared in the 

same manner. The authors demonstrated the model's capacity to capture the overall trend of 

historical GDUs as well as fluctuations in daily temperatures. Therefore,  models managed to 

reduce the deviation from capacity, in some cases by 70%. Additionally, they successfully created 

the periods with almost constant harvest quantities.    

Besides Machine learning and Deep Learning models, there are some other approaches for 

the estimation of future GDUs. The following approach is one of them. Instead of building a 

prediction model, daily temperatures are replaced by certain statistical values. Minimum 

temperatures are modeled by the first quartile, median, or third quartile, while maximum 

temperatures are modeled by the 80th or 90th percentile and maximum. The optimization model 

showed great dependence on the selection of the specified values [7]. 

 

 The literature once more offers a variety of problem-solving techniques for CPSP. For 

instance, in [7] the authors attempted to discover a mixed-integer linear programming solution to 

the problem. However, in [8], authors used evolutionary algorithms to find a solution. A type of 

meta-heuristic optimization algorithm called evolutionary algorithms draws its inspiration from 

biological mechanisms. As in biology, there are parents who give birth to children, and the 

"survival rate" depends on the environment in which they live. 
The ALNS meta-heuristic described in [4] is the foundation of this thesis. The algorithm is 

successful in solving the Crop Planting Scheduling Problem. However, the optimization 

algorithm's sensitivity to the GDUs forecast was discovered. The inspiration for this thesis lies in 

that information. 

 

 

 



   
 

  10 
 

  



   
 

  11 
 

3. Methodologies 

 

In this Chapter, the models for time series prediction together with the Adaptive Large 

Neighborhood Search (ALNS) meta-heuristic [4], will be presented. For the evaluation of the 

model's performance, Akaike’s Information Criterion (AIC) is used. 

3.1. Time series models 

For the GDU time series forecasting three different models are used: Moving Average (MA), Auto 

Regressive Integrated Moving Average (ARIMA), and Holt-Winters model for exponential 

smoothing. Each model is defined and explained in the following subsections. 

3.1.1. Moving Average model 

The Moving-Average model (MA), is a method for modeling and forecasting univariate 

time series in time series analysis. According to the Moving-Average model, the relationship 

between the current value and the present and previous error terms is linear. A moving average 

model is denoted as MA(q) where q is the order. Using a coefficient denoted with theta (𝜃 ), the 

impact of historical errors on the present value is evaluated. For a moving average model, the 

prediction formula is: 

                    𝑋𝑡  =µ+εt+θ1εt−1+θ2εt−2+⋯+θqεt-q                                              (1) 

where εt is white noise. 

The number of past error terms that have an impact on the current value is defined by the 

Moving Average model's order q. To fit the suitable model, it is crucial to establish its order. The 

parameter q can be determined if we follow the next steps. Firstly, test stationarity. Each time 

series can be decomposed into a level, trend, and seasonal component. The average value for a 

given time period represents the level component of the series. The movement of a series to 

relatively higher or lower values over an extended period of time is represented by a pattern in 

data known as a trend component. In other words, a trend can be seen when the time series has a 

rising or decreasing slope. The tendency often lasts for a while before disappearing; it does not 

continue. Seasonal variation is a repeating pattern that occurs throughout each year or any other 

fixed period. The term "seasonal component" refers to the repeating pattern [9]. If time series has 

a trend or seasonal component then it is not stationary. If our series is not stationary, we apply 

transformations, such as differencing, until the series is stationary. Time series must be stationary 

because we want to reduce or eliminate the dependence between the data. Denote the time series 

as X= {X1, X2, …, Xt, …, Xn}, where Xt  is value at time t. Discrete differentiation is defined as 

follows: 

 

If d=0:  yt  = Xt    (2)  

If d=1:  yt  =  Xt - Xt-1     (3)  

If d=2:  yt  =  (Xt - Xt-1) - (Xt-1 - Xt-2) =  Xt - 2Xt-1 + Xt-2   (4) 
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The second difference of X is the first-difference-of-the-first difference, which is the discrete 

equivalent of a second derivative, not the difference from two periods ago. After the first 

differentiation, if the time series becomes stationary, the parameter d is 1, then it is 2, and so on. 

The sample autocorrelation function can also indicate deviations from stationarity. 

Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) have graphs that 

slowly decay and are almost periodic, respectively. We once more use differentiation to remove 

trends and seasonality. For the stationarity test, in this case, we plot the Autocorrelation Function 

(ACF) graph and check it for outliers. The maximum value of q is the number of outliers. The MA 

algorithm sometimes does not perform well while predicting future values. In that case, it must be 

applied together with the Auto Regressive model to obtain better results [10]. 

3.1.2. Auto-Regressive Integrated Moving Average model 

Auto Regressive Integrated Moving Average (ARIMA) is a model for forecasting future 

outcomes of time series based on its own past values, that is, its own lags and lagged forecast 

errors. The ARIMA model is characterized by three parameters: 

• p-order of Auto Regressive term 

• d-number of differencing required to make time series stationery 

• p- order of Moving Average term 

Below each parameter of the ARIMA model has been explained as well as the way of finding each 

one of them. Parameter d stands for differentiation of time series. We perform differentiation to 

make time series stationary, and the reason for this is explained in subsection 3.1.1. Parameter p 

is referred to as the Auto Regressive part of the model. The term auto-regression indicates that it 

is a regression of the variable against itself. To determine the value of p we will look at the graph 

of PACF. The number of outliers in PACF provides the value for the parameter p of the model.  

If the 𝑋𝑡 is the value of time series X at time t that we want to predict, and p is the number 

of previous values of time series that we want to include in prediction, formula of an autoregressive 

model can be written as: 

 

                                   𝑋𝑡  =c+ϕ1yt−1+ ϕ2yt−2 +⋯+ ϕpyt−p +εt                       (5) 

where εt is white noise and yt-1,...yt-p are dth derivative of past values. 

A Moving Average model creates a regression-like model which uses previous prediction mistakes 

rather than past values of the forecast variable. The Moving Average model of order q has the 

following prediction formula: 

 

 𝑋𝑡=c+εt+θ1εt−1+θ2εt−2+⋯+θqεt-q                                           (6) 
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where εt is white noise. The way of finding value for parameter q is described in section above. If 

we sum up all this together, the formula for ARIMA(p,d,q) is:  

 

                               𝑋𝑡    =   μ + ϕ1 yt-1 +…+ ϕp yt-p - θ1 𝜀 t-1 -…- θq εt-q                   (7) 

 

where yt-1,...yt-p are dth derivative of past values, and ε1,…,εt−q are past forecast errors [11], [17]. 

3.1.3. Holt Winters model 

Holt-Winters or Triple Exponential Smoothing model belongs to a class of Exponential 

Smoothing models. The output of an ARIMA model is a linear weighted sum of previous 

observations. Weights in that sum do not exhibit any patterns. On the other hand, the output of the 

Holt-Winters model is again a linear combination of previous observations, but weights decrease 

exponentially as observations get older. That implies the following- Recent observations have 

bigger weights than older observations. ARIMA model cannot directly deal with time series with 

trend or seasonality, but Exponential Smoothing algorithms can. 

     Simple Exponential Smoothing and Double Exponential Smoothing cannot be applied 

in our case, since our time series has both trend and a seasonal component. That is why in this 

thesis the Holt-Winters model is applied. Let us start by explaining what Simple Exponential 

smoothing is made for, then the model will be upgraded for cases when time series express 

seasonality or have trends.   

Let an observed time series be X= {X1, X2, ..., Xt, …, Xn}, with the only level component. 

Formally, the simple exponential smoothing predicting equation takes the following form: 

 

                                            𝑋𝑖+1=αXi   +(1−α)𝑋𝑖                 (8) 

 

where Xi is the actual, known series value at the time  i, 𝑋𝑖  is the forecast value of the X at the time 

i,  𝑋𝑖+1 is the forecast value at time i +1 and α is the smoothing constant. Smoothing constant α is 

a selected number between zero and one, 0< α <1. 

Rewriting the model (8) to see one of the neat things about how the model  

 

                                                 𝑋𝑖+1 − 𝑋𝑖   = 𝛼(𝑋𝑖 − 𝑋𝑖)                                     (9)  

 

changes in forecasting value is proportionate to the forecast error. That is 

                                       

                                        𝑋𝑖+1 = 𝑋𝑖   + 𝛼𝑒𝑖                                              (10)                                                
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where  𝑒𝑖 = 𝑋𝑖 − 𝑋𝑖 is forecast error for a time i. So, the exponential smoothing forecast is the old 

forecast plus an adjustment for the error that occurred in the last forecast. By continuing to 

substitute previous forecasting values back to the starting point of the data in model (8) we receive: 

𝑋𝑖+1 = 𝛼𝑋𝑖 + (1 − 𝛼)(𝛼𝑋𝑖−1 + (1 − 𝛼)𝑋𝑖−1) = 𝛼𝑋𝑖 + 𝛼(1 − 𝛼)𝑋𝑖−1 + (1 − 𝛼)2 𝑋𝑖−1 (11) 

𝑋𝑖+1 = 𝛼𝑋𝑖 + 𝛼(1 − 𝛼)𝑋𝑖−1 + 𝛼(1 − 𝛼)𝑋𝑖−2 + (1 − 𝛼)3 𝑋𝑖−2 (12) 

𝑋𝑖+1 = 𝛼𝑋𝑖 + 𝛼(1 − 𝛼)𝑋𝑖−1 + 𝛼(1 − 𝛼)2 𝑋𝑖−2 + 𝛼(1 − 𝛼)3 𝑋𝑖−3 + (1 − 𝛼)4 𝑋𝑖−4 (13) 

If we continue substituting, the forecast equation in general form is: 

 

𝑋𝑖+1 = 𝛼𝑋𝑖 + 𝛼(1 − 𝛼)𝑋𝑖−1 + 𝛼(1 − 𝛼)2 𝑋𝑖−2 + ⋯   + 𝛼(1 − 𝛼)𝑖−2 𝑋2 + 𝛼(1 − 𝛼)𝑖−1 𝑋1(14) 

[10,  11]. 

   

There are two types of time series, additive-time series is represented as sum of its 

components, and multiplicative-time series is represented as a product of its components.  

If our time series has trend component, then that component is added to equations for level update 

and we get Double Exponential Smoothing model. The equation for trend update is: 

 

                                            𝑇𝑖 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡                                                  (15) 

 

where Tt is trend update at the moment t and Lt is level at moment t. 

If our time series has an additive trend, forecasting values are obtained as follows: 

           

𝑋𝑖+𝑘 = 𝐿𝑖 + 𝑘𝑇𝑖                                      (16) 

 

where number k is a number of predictions into the future. 

On the other hand, if our data has a multiplicative trend, the forecasting equation is: 

      

  𝑋𝑖+𝑘 = 𝐿𝑖 ∗  𝑇𝑖
𝑘                                                    (17) 

 

Parameter β is from the interval [0,1] and it is an additional parameter that we need to take into 

consideration while finding the best model. 

 Holt-Winters or Triple Exponential smoothing model is an extension of previous models 

for data with seasonal component. Seasonality components can be, as trend component, additive 

and multiplicative, which lead us to two equations for seasonal update: 
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      𝑆𝑖 = 𝛾(𝑋𝑖 − 𝐿𝑖) + (1 − 𝛾)𝑆𝑖−𝑚     (18) 

                                             𝑆𝑖 = 𝛾
𝑋𝑖

𝐿𝑖
+ (1 − 𝛾)𝑆𝑖−𝑚               (19) 

 

where m is the period-the length of that fixed period, and Si-m is seasonal estimation at time i. γ is 

the seasonality component parameter from the interval [0,1], the third to be tuned while finding 

the best model. In this case, our time series has both trend and seasonal component, therefore four 

different forecast equations will be listed below [11]: 

 

• Both components are additive:  𝑋𝑖+𝑘 = 𝐿𝑖 + 𝑘𝑇𝑖 + 𝑆𝑖+𝑘−𝑚                     (20) 

 

• Trend component is additive, seasonal component is multiplicative:             

                𝑋𝑖+𝑘 = (𝐿𝑖 + 𝑘𝑇𝑖) ∗ 𝑆𝑖+𝑘−𝑚               (21) 

• Trend component is multiplicative, seasonal component is additive:           

     𝑋𝑖+𝑘 = 𝐿𝑖 + 𝑇𝑖
𝑘 + 𝑆𝑖+𝑘−𝑚                                       (22) 

• Both components are multiplicative: 𝑋𝑖+𝑘 = 𝐿𝑖 ∗ 𝑇𝑖
𝑘 ∗ 𝑆𝑖+𝑘−𝑚                                    (23) 

 

 

3.1.4. Akaike’s Information Criterion  

For the evaluation of the performance of the models the Akaike’s Information Criterion 

(AIC) was used. AIC is a single number score, and it is used to determine which of multiple models 

is the best one for a given dataset. It estimates models relatively, meaning that AIC scores are only 

useful in comparison with other AIC scores for the same dataset. A lower AIC score is better. AIC 

is especially useful for time series analysis. Akaike’s Information Criterion is calculated using the 

formula defined as:  

 

                                AIC = -2(log-likelihood) + 2K                                                    (24)  

 

where K is the number of model parameters (the number of variables in the model plus the 

intercept) and Log-likelihood is a measure of model fit.     

 The maximum likelihood estimation (log-likelihood) of a model is used by AIC as a fitness 

metric. The model that "fits" the data the best is the one with the highest likelihood. For 

computational simplicity, the likelihood's natural log is used. AIC is low for models with high log-

likelihoods (the model fits the data better, which is what we want), but it adds a penalty term for 

models with higher parameter complexity because a model is more likely to overfit the training 



   
 

  16 
 

data when it has more parameters. When deciding between several distinct model types without 

access to out-of-sample data, AIC is frequently used [12].  

 

 

3.2. Adaptive Large Neiborhood Search 

A heuristic approach based on the Adaptive Large Neighborhood Search meta-heuristic is 

developed [4], as the CPSP is an NP-hard issue. “A heuristic algorithm is a method that uses the 

structure of the problem to quickly identify good feasible solutions while exploring the set of 

feasible solutions to an optimization problem in an intuitive manner “ [13]. 

The Neighborhood Search heuristic will now be discussed. A possible optimization 

problem solution x and a set N(x) of further feasible solutions are connected by a neighborhood 

structure N, which is a function. The neighbors of x are made by modifying the x. Set of all possible 

modifications represent the neighborhood of x, and the nature of it depends on the problem. 

Usually, the problem solving is easy to solve in the vicinity of the feasible solution, and that is 

how we can recognize the good neighborhood structure. The concept of a local search is: “Until 

the current feasible solution is the best in the neighborhood, the current iteration is replaced by 

its best feasible neighbor at each iteration.” [13]. 

ALNS is a general framework into which problem-specific information can be inserted. 

One operator o from a group of neighborhood operators O can be used to create a new solution 

from an old one. In a way similar to simulated annealing, the new solution is evaluated and 

approved or refused. In metallurgy, annealing is a process that involves heating a metal and then 

gradually cooling it to enhance its qualities. In a similar manner, simulated annealing is a local 

search extension that permits iterations with larger objective function values. The chance of 

accepting such iterations is controlled by a parameter called "temperature"[13]. The likelihood of 

accepting them increases with temperature. In particular, if the new solution to a multi-objective 

optimization problem, like the CPSP, is not dominated by one of the previously obtained solutions, 

then it is always accepted. On the other hand, if the new solution is dominated, the likelihood of 

accepting it is influenced by the solution's worsening and by the temperature T, which is a function 

of the algorithm's cooling schedule. The likelihood of selecting a certain operator at each iteration 

is based on the weights given to each operator, which are a function of the operator's performance. 

This method allows the algorithm to choose the most promising operators throughout the meta-

heuristic [4]. In Algorithm 1, the ALNS's pseudocode is presented. A heuristic algorithm is 

obtained when the operators related to the problem are defined and inserted into the ALNS 

framework. The pseudocodes for 8 problem specific operators are presented in subsection 4.5. 
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Algorithm 1: ALNS with simulated annealing 
1 Initialize ALNS and simulated annealing parameters 

2 Initialize probabilities POo  for each operator o∈O  

3 Start from the initial solution S. Assign Scurr ← S 

4 Initialize list of non-dominated solutions L←{S} 

5 Iter ← 1  

6 repeat 

7 Draw random number to select an operator o∈O according to    

probabilities P 

8  Apply operator o to obtain new solution Snew 

9    if Snew is not dominated by a solution in L then 

10   Scurr← Snew 

11         Add Snew to list L 

12         Remove from L all solutions dominated by Snew 

13   else 

14   Calculate Fnew, Fcurr weighted sum of objective function        

values for Snew, Scurr respectively 

15       Draw random probability r 

16       if r < 𝑒
𝐹𝑛𝑒𝑤−𝐹𝑐𝑢𝑟𝑟

𝑇  then 

17       Scurr ← Snew 

18    Iter ← Iter+1 

19    Update probabilities P based on performance of operator o 

20    Update temperature T 

21 until Iter > MaxIter 
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4. Models and Algorithms 

4.1. Data 

Datasets used in this thesis are obtained from two sources. For the first approach, synthetic 

datasets have been used. The datasets were created to be suitable for solving the CPSP, inspired 

by the original datasets used for Syngenta Crop Challenge in Analytics 2021. Dataset 1 describes 

the input variables for an optimization model. For each corn population, three following dates are 

given: actual planting date, earliest date the population could have been planted and latest date the 

population could have been planted, the number of Growing Degree Units (GDUs) in Celsius 

needed for harvest and finally, scenario 1 and scenario 2 harvest quantities. Dataset 2 gives the 

GDUs in Celsius accumulated for each day for site 0 and site 1, over the last 10 years.  

 

For the second approach, dataset that contains daily for the past 10 years  are obtained from 

the website www.meteostat.net [14]. Temperatures for site 0 are taken from meteorological station 

“Novi Sad-Rimski Šančevi”, and for site1 from meteorological station “Batajnica”. Now Dataset 

2 has minimum and maximum daily temperatures instead of GDUs. The task is to predict daily 

temperatures for each site and then to calculate GDUs, using the formula for GDU calculation:  

 

𝐺𝐷𝑈 =
𝑇𝑚𝑖𝑛−𝑇𝑚𝑎𝑥

2
− 10°𝐶               [16]        (25) 

                                               

                  

4.2. Data Preprocessing 

Each population is described by the following attributes: harvest quantity, required GDUs 

for harvesting, initial planting date, the earliest and the latest date that population could have been 

planted. The predictions made with time series models stated in the previous section are the input 

of the optimization model, while the output is estimated harvest week. That information helps to 

define the feasible set F of population p and harvest week w pairs. Then, we can backtrack and 

choose a possible planting date, the one that minimizes the objectives. Therefore, the optimization 

model is based on harvest weeks [5].  

For the second approach, more realistic datasets are made. Instead of daily accumulated 

GDUs, for each site, now dataset has daily minimum and maximum temperatures for last 10 years. 

Each population is described in the same manner as in the first approach.  

  

http://www.meteostat.net/
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4.3. Time series forecasting models 

All models are trained using Google Collaboratory [15]. As mentioned above, three 

different models for predictions are used: MA, ARIMA and Holt-Winters.  

4.3.1. First approach 

In the first approach, historical data of accumulated GDUs are separated into train (80% of 

the data) and test (20% of the data) dataset. Those datasets are used for selecting the best 

parameters of the models for an out-of-sample prediction. In this subsection the results of different 

models for GDUs predictions are presented. Predictions are based on historical data, the 

accumulated GDUs for years 2009 to 2019, for site 0 and site 1, independently. Time series of 

historical data are presented in Figure 3(a) and Figure 3 (b), for site 0 and site 1, respectively. With 

the help of stated models, forecasts of the accumulated GDU units per day for a period of 80 weeks 

are made, starting from 01/01/2020. Models will be compared using AIC criterion, and the best 

result, model with the lowest AIC, will be the input for the optimization algorithm. We will discuss 

how predictions made with different models affected the number of harvesting weeks and 

harvesting quantities. 

 

4.3.1.1. Moving Average model 

 

 To train the MA model, firstly we need to determine the value of the parameter q. However, 

to determine the value of parameter q, we need to check if our time series is stationary. In Figure 

3 and Figure 4, respectively, the decomposition of time series of accumulated GDUs for site 0 and 

site1, are shown. 
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 Figure 3: Decomposition of time series for site 0 

 
Figure 4: Decomposition of time series for site 1 

 

It can be seen that time series of accumulated GDUs for site 0, has seasonality component, 

therefore it is not stationary. Same holds for time series of accumulated GDUs for site 1.  

The parameter q can be determined from the ACF of differentiated time series. Figure 5 

and Figure 6, show the ACF of site 0 and site 1, respectively.  
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Figure 5: Autocorrelation function of differentiated time series for site 0 

 Figure 6: Autocorrelation function of differentiated time series for site 1 

The ACF graphs imply that MA parameter should be maximum 3 for site 0, and maximum 

8 for site 1. Here, we take advantage of Akaike’s Information Criterion (AIC) to find the best 

parameters among several candidates. The lowest AIC for site 0 is achieved with MA(3), and for 

site 1, with MA(5). The predictions made with these models are input for the optimization model. 

It will be discussed how those predictions impacted on the output.  

 

 

4.3.1.2 ARIMA model 

To improve the results, the ARIMA model for prediction of the GDUs is applied. Firstly, 

let us determine the values of the parameters. We need to check if time series is stationary or not, 

if we want to determine the value of parameter d. In the previous subsection, it is already concluded 

that both time series are non-stationary. Stationarity is achieved after only one differentiation, 

therefore d=1.     

  As mentioned above, the parameters p and q can be determined by plotting the 

graphs of autocorrelation functions. In subsection 4.1.1 the maximum values for MA part of the 

model, have already been determined, now we will find out the values for AR parts of the models. 

Looking at the PACF graph of site 0 (Figure 7), the AR parameter should be maximum 4.  
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 Figure 7: Partial Autocorrelation function for site 0 

 

From Figure 8 we can conclude that maximum p for site 1 is 7. 

 Figure 8: Partial Autocorrelation function for site 1 

 

Again, the AIC criterion determines the best model. Minimum AIC is achieved for 

ARIMA(2,1,2) for site 0. Similarly, minimum AIC suggests that ARIMA(7,1,8) should be used 

for forecasting for site 1.          

ARIMA models gave better predictions and lower AIC on test dataset than the MA models. 

Therefore, better results of optimization model could be expected with ARIMA predictions as 

input. 

 

4.3.1.3. Holt Winters model 

The Holt-Winters method has several parameters that could be tuned. Those are smoothing 

level or, α parameter, then β or smoothing slope for trend component, and finally, γ or smoothing 

seasonal for seasonal component of time series. If time series has seasonality component, which 

is already concluded, the period (seasonal frequency) must be specified. Since we have daily 

predictions, seasonal frequency is set to 365. Additional thing that we need to pay attention to is 

the nature of trend and seasonal component, namely they can be additive or multiplicative.  

 Firstly, we trained and fitted the model on train dataset, without specifying the values for 

parameters, because Holt-Winters model can pick best parameters automatically. However, 

sometimes models can be improved to give better or more logical results if we tune parameters 
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manually. Secondly, after the model automatically picked the parameters, we tried to make new 

models by increasing or decreasing some of parameters and tracking the behavior of AIC.  

In some cases, an additional parameter is helpful. Figures 3 and 4 show us that both site 0 and site 

1, time series has seasonality components.  

Since ARIMA models cannot directly deal with seasonality, Holt-Winters model for GDUs 

predictions is chosen, to improve the performance of optimization model. The definition of 

multiplicative trend and seasonality implies that values of time series must be positive to calculate 

predictions. Therefore, it could only be stated that time series has additive components, and that is 

what we applied while training Holt Winters model.    

 Again, AIC criterion helped to decide which model is the best. That was the one with the 

lowest AIC. For site 0 GDUs, model showed that optimal parameters are α≈0.94, β ≈ 0.002 , 𝛾 ≈ 

0.002. However, the following parameters gave us to lowest AIC: α ≈ 0.75 , β≈ 0.00006, 𝛾 ≈ 0.002. 

  On the other hand, for site 1 time series, we did not improve the results if we changed 

those that model tuned automatically. Optimal parameters for site 1 out-of-sample GDUs 

predictions are: 𝛼 ≈ 0.01, 𝛽 ≈ 0.001, 𝛾 ≈ 0.001. Recent predictions have a greater impact on 

predictions for site 0. On the other hand, for site 1 older predictions are more important. Parameter 

𝛼 implies those conclusions. 

Stated models gave us the GDUs predictions, inputs for optimization algorithm, in both 

scenarios. If we compare the AIC of Holt Winters models, with AIC of MA and ARIMA, Holt 

Winters has the lowest AIC, but the predictions are not the best, since the models did not fit the 

data very well.  

4.3.2. Second approach 

 

 The out-of-sample prediction, together with CPSP model optimization, was performed in 

PyCharm software, for all models and in both approaches. 

In this subsection the results of different models for minimum and maximum daily 

temperature predictions will be presented, separately. Models will, again, be compared using AIC 

criterion, and the model with the lowest AIC, will be the input for the optimization algorithm. It 

will be discussed how different models affected the number of harvesting weeks and harvesting 

quantities. Let us recall the definition for calculating GDUs: 

 𝐺𝐷𝑈 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒−𝑀𝑖𝑛𝑢𝑚𝑢𝑚 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2
− 10°𝐶      (26) 

With the following constraints:  

• if the daily max is greater than 30°C then it is set to be equal to 30°C  

• if the daily minimum is less than 10°C then it is set to be equal to 10°C  

• If the GDU is negative then it is set to be equal to 0”    [16] 
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There are two possibilities for predicting temperatures, according to GDU (Growing 

Degree Units) formula definition. The first possibility is to predict the daily temperatures and then 

round them following the constraints. On the other hand, we can first round the temperatures and 

then perform the prediction. This idea arises after noticing that some models have problems with 

predicting high oscillations in the temperatures, and negative temperatures as well and the results 

showed that it is better to first round the temperatures and then to make predictions. Both 

possibilities have been tested in the following way. Firstly, we made the predictions of minimum 

and maximum daily temperatures, without rounding it, independently, and then calculated the 

accumulated GDUs for each day. Secondly, we repeat the process but, with rounded temperatures. 

In the end we compared the calculated GDUs with test dataset, and the lower MSE is obtained 

with second possibility i.e., with a prediction made with rounded temperatures. 

In the following subsection both time series will be presented, before and after rounding the 

temperatures. 

4.3.2.1. Moving Average Model 

As in the first approach, firstly describe the way of finding parameters of the model will be 

described. Again, predictions of the model with lowest AIC are used as input for optimization 

model. Figures 9 (a) and 10 (b) show the time series of minimum daily temperatures for site 0 

before and after setting all temperatures lower than 10, to be equal to 10, respectively. 

  
Figure 9: Time series of minimum daily temperatures for site 0 (a) before and (b) after rounding  

 

Analysis and parameter tuning is performed for rounded time series. Let us first check the 

seasonality decomposition of time series, to determine the stationarity and parameter d. 

Time series has seasonality component; therefore, it is not stationary, however after first order 

differentiation, we obtain stationarity, and parameter d is 1. Figure below implies the stated 

conclusion. 
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Figure 10: Decomposition of time series of minimum daily temperatures for site 0 

 

Parameter q is the number of outliers of ACF function of differentiated time series; 

therefore, q is maximum 6. However, the lowest AIC is obtained with MA(5). 

 
Figure 11: Autocorrelation function of time series of minimum daily temperatures site 0 

 

In the same way we determined the parameters for the maximum daily temperature 

predictions. Time series before and after rounding all temperatures higher than 30, are shown in 

the following Figure.  
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Figure 12: Time series of maximum daily temperatures for site 0 (a) before and (b) after 

rounding  

 

Time series becomes stationary after only one differentiation, and therefore parameter d is 1. 

 
 Figure 13: Decomposition of time series of maximum daily temperatures  for site 0 

 

Parameter q is maximum 5, since the number of outliers of ACF is 5. 

 
 Figure 14: Autocorrelation function of maximum daily temperatures time series for site 0 

 

The lowest AIC gives the MA(3), and predictions made with this model are used as input 

for daily maximum temperature predictions.     

 After finding both minimum and maximum temperature predictions, the GDUs are 
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calculated following the formula for calculation stated in subsection 4.3.2. The calculated GDUs 

provided the input for optimization model. In the end we will see how different temperatures 

prediction affected the output. 

The same analysis was conducted for site 1. In the figures below show the time series of 

minimum and maximum daily temperatures, before and after we applied the constraints stated in 

GDU formula. 

 

 

  
Figure 15: Time series of minimum daily temperatures for site 1 (a) before and (b) after rounding  

 

 

Both time series have seasonality component, and both become stationary after first order 

differentiation, therefore d is 1. 

 

Figure 16: Decomposition of time series of minimum daily temperatures for site 1 
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Figure 17: Decomposition of time series of maximum daily temperatures for site 1 

Parameters q for minimum daily temperatures prediction is 5, since that is the number of 

outliers of ACF of differentiated series. 

 
  Figure 18: Autocorrelation function of minimum daily temperatures for site 1 

 

The same conclusion holds for parameter q of maximum daily temperatures, which is 4. 

 
 Figure 19: Autocorrelation function for maximum daily temperatures for site 1 

The lowest AIC have the models MA(5) and MA(3) for minimum and maximum daily 

temperature predictions, respectively. After that, the GDUs are calculated using the formula for 

GDU calculation stated in Section 3. 
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4.3.2.2. ARIMA Model 

The ARIMA model has three different parameters that need to be determined. In subsection 

4.2.1 the parameter d and q have already been determined, for minimum and maximum 

temperatures, and for both sites. Here, the order of parameter p will be found, which is the number 

of outliers of PACF of differentiated time series. 

Time series of minimum daily temperatures for site 0 are all shown in subsection 4.2.1. 

Figure below shows the PACF of time series, and we can read that maximum p is 14. 

 
 Figure 20: Partial Autocorrelation function of minimum daily temperatures for site 0 

The ARIMA(10,1,4) has the lowest AIC, therefore we used it for predictions of minimum daily 

temperatures for site 0. 

PACF of maximum daily temperatures is shown in Figure 21. We can read that maximum 

p is 12. 

 

 Figure 21: Partial Autocorrelation function of maximum daily temperatures for site 0 

The ARIMA(9,1,3) has the lowest AIC, therefore it is used for predictions of maximum 

daily temperatures for site 0. The predictions made with those two models are further used for 

calculation of the GDUs for site 0.  

The PACF graphs of differentiated time series of minimum and maximum daily 

temperatures for site 1 are shown in Figure 22 and 23, respectively. We can read that the number 

of outliers is 6 and 11, therefore maximum q=6 and q=11, for minimum and maximum daily 

temperatures, respectively.  
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 Figure 22: Partial Autocorrelation function of minimum daily temperatures for site 1 

 

 Figure 23: Partial Autocorrelation function for maximum daily temperatures for site 1 

The best predictions for minimum daily temperatures provided ARIMA(6,1,3), with the 

lowest AIC. The ARIMA(6,1,3) is also selected as the best model for maximum daily temperature 

predictions for site 1. The GDUs predictions for site 1 are again calculated using the formula stated 

in the third Section. 

ARIMA models have a lower AIC than MA models, for both sites and temperatures, so we 

expect to get better results, I.e., shorter harvesting period, smaller surplus, and greater tendency 

toward equalizing weekly harvest quantities.  

 

4.3.2.3. Holt-Winters Model 

Again, as in the first approach, the goal was to find the model with better results, the one 

that has AIC lower than MA and ARIMA. The Holt Winters model provided desired results. Due 

to the fact that we have daily predictions, seasonal frequency is always set to 365. In the previous 

subsections it is stated that all time series have seasonality component.  

Firstly, let us describe how we got the model for predicting minimum temperatures for site 

0. The Holt Winters model has two parameters that refer to the nature of trend and seasonal 

component, already stated. The definition of multiplicative trend and seasonality implies that 

values of time series must be positive to calculate predictions. In the previous case, it could only 

be stated that time series has additive components. However, this time all combinations of additive 

and multiplicative components can be tested since all negative temperatures are set to be equal to 

10. Again, additive trend and additive seasonal component gave the lowest AIC.  
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The best model, after manual parameter tuning was performed, for site 0 minimum daily 

temperature predictions, is the model with following parameters: α≈0.91, 𝛽 ≈ 0.0011 ,  

𝛾 ≈ 0.0034. 

Regarding the maximum daily temperature predictions for site 0, we can say that only one 

constraint was present in parameter tuning. After rounding temperatures, we still have some 

negative values, since we did not round lower maximum temperature values only those greater 

than 30. This fact implies that trend and seasonal component could only be additive. Again, after 

manually tuning the parameters, the best Holt Winters model is obtained and it has the following 

parameters: 𝛼 ≈ 0.97, 𝛽 ≈ 0.00003, 𝛾 ≈ 0.000012. 

The same analysis was conducted while searching for the best models for temperature 

predictions of site 1. As in the case of site 0 minimum temperatures, here we can also test all the 

combinations of additive and multiplicative components. Additive components provided the best 

results for minimum daily temperature predictions. Manual parameter tuning was again shown as 

a viable choice since it provided the model with the lowest AIC, which are 𝛼 ≈ 0.84, 𝛽 ≈ 0.0064, 

𝛾 ≈ 0.015. 

And finally, the model for maximum daily temperature predictions for site 1 was selected. 

Temperature values again implied that trend and seasonality could only be additive. Lowest AIC 

is obtained with: 𝛼 ≈ 0.95, 𝛽 ≈ 0.000019, 𝛾 ≈ 0.00021. 

It can be noticed that in both cases, for both temperatures, recent predictions have the greater 

impact on the future values, since parameter 𝛼 is very close to 1. 

In the end, the daily accumulated GDUs are calculated, using the given temperature 

predictions. The results will be validated through the output of the optimization model. 

4.3.2.4.  Conclusion 

In the second approach, the AIC scores of time series prediction models are very high, and that 

result in imprecise GDUs predictions. That is the reason why it is decided not to validate them 

with optimization model.  In the Chapter 5, only models from first approach provided the input for 

optimization model. Tables 1 and 2 provides the AIC values for all prediction models, in both 

approaches, for site 0 and site 1. 

 AIC (site 0) AIC (site 1) 

MA  4764 8689 

ARIMA 4760 8629 

Holt  
Winters 

-6304 925 

Table 1: AIC values of GDU prediction models for site 0 and site 1 
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 AIC (Tmin, site 0) AIC( Tmax, site 0) AIC(Tmin, site 1) AIC(Tmax, site 1) 

MA 18.643 21.131 14.541 20.613 

ARIMA 18.588 21.088 14.528 20.591 

Holt 
Winters 

2.982 9.637 3.822 9.867 

Table 2: AIC values of minimum and maximum daily temperature prediction models for site 0 

and site 1  
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4.4. Crop Planting Scheduling Problem  

The definition of the CPSP:  

In order to produce the proper amount of corn, the planting schedule for the corn crop 

must be optimized. However, this quantity must be distributed throughout the time horizon as 

evenly as possible, and going over the available storage capacity must be avoided. In the first 

scenario, the predetermined capacity for the site is given. In the second scenario, there is no 

predefined capacity and the goal is to find which capacity will give the best results. 

For solving this optimization problem, a mathematical model was constructed in [4]. As 

described in section above, the model was solved by using ALNS meta-heuristic. 

Mathematical model 

The model corresponding to scenario 1 is presented in Section 4.4.1. Then, some 

modifications of this model are made to solve the problem for scenario 2 and that is presented in 

Section 4.4.2. The sets and indices are shared by the two models; therefore, they are presented here 

after. 

Indices 

p- the population id {1, …, P} 

w the week id {1, …, W} 

d the day of the week {1, …, D} 

scen the scenario id {1, 2} 

s the site id {0,1} 

Sets 

P the population {1, …, 2569} 

W the weeks {1, …, 60} 

D the days in a week {1, …, 7} 

FS (p, w): set of feasible combinations of population p and harvest week w 
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4.4.1. Scenario 1  

In this scenario, both sites have pre-defined capacity values for each week. 

Parameters for scenario 1 

plSitep-planting site of population p 

reqGDUp -required GDU units for population p 

obtGDUd;w;s -obtained GDU units on day d of week w on site s 

hqp;scen -harvesting quantity of population p in scenario scen 

c1s; w -harvesting capacity on site s in week w for scenario 1 

Parameters hq and c1 are used in the mathematical model, the rest of the parameters are used for 

pre-processing and post-processing. 

 

Decision variables 

 

plpw=1 if population p is harvested in week w/ 0 otherwise 

usedw=1 if week w is used for harvesting/ 0 otherwise 

m+s, w=the positive deviation from the capacity of harvesting week w on site s 

m−s, w=the negative deviation from the capacity of harvesting week w on site s 

n+w1, w2=the increase in harvesting quantity from week w1 to week w2  

n−w1, w2=the decrease in harvesting quantity from week w1 to week w2  

 

Objectives 

The problem definition implies a multi-objective approach which is presented below. 

                                                                                                      

min  𝑓1 = ∑ 𝑢𝑠𝑒𝑑𝑤

 

 𝑤∈𝑊

 
(27) 

min  𝑓2 = ∑ 𝑚𝑠, 𝑤
+

 

 𝑠, 𝑤∈𝑊

+ 𝑚𝑠, 𝑤
−  

(28) 

min  𝑓3 = ∑ 𝑛𝑤1, 𝑤2
+

 

  𝑤∈𝑊

+ 𝑛𝑤1, 𝑤2
−  

(29) 

Objective (27) minimizes the number of weeks used for harvesting. Whit this objective, harvesting 

time horizon is shortest possible. Objective (28) minimizes the total deviation from the capacity. 
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The positive and negative deviations are equally important. Finally, objective (29) minimizes the 

total deviation of harvest quantity between two consecutive weeks. 

Constraints 

                       

∑ 𝑝𝑙𝑝
𝑤

 

 𝑤:(𝑝,𝑤)∈𝐹𝑆

= 1  ∀𝑝 ∈ 𝑃 
(30) 

∑ ℎ𝑞𝑝,1

 

 𝑝:𝑠=𝑝𝑙𝑆𝑖𝑡𝑒𝑝,𝑝:(𝑝,𝑤)∈𝐹𝑆

𝑝𝑙𝑝
𝑤 = 𝐶1𝑠,𝑤 + 𝑚𝑠, 𝑤

+ + 𝑚𝑠,𝑤
−                ∀𝑤 ∈ 𝑊,  𝑠 ∈ {0,1} 

(31) 

∑ 𝑝𝑙𝑝
𝑤

 

 𝑝, 𝑤:(𝑝,𝑤)∈𝐹𝑆

≤ 𝑢𝑠𝑒𝑑𝑤 ≤ 𝑀1 
(32) 

∑ ℎ𝑞1

 

 𝑝: 𝑠=𝑝𝑙𝑆𝑖𝑡𝑒𝑝, 𝑝:(𝑝,𝑤)∈𝐹𝑆

𝑝𝑙𝑝
𝑤 −   ∑ ℎ𝑞1

 

 𝑝: 𝑠=𝑝𝑙𝑆𝑖𝑡𝑒𝑝, 𝑝:(𝑝,𝑤)∈𝐹𝑆

𝑝𝑙𝑝
𝑤+1  = 𝑛𝑤,𝑤+1

± 𝑛𝑤, 𝑤+1
−     

                                                                                                                                          ∀ 𝑤 ∈
𝑊 : 𝑤 ≠ |𝑊| 

   

(33) 

𝑝𝑙𝑝
𝑤 ∈ {0,1} (34) 

𝑢𝑠𝑒𝑑𝑤 ∈ {0,1} (35) 

𝑚𝑠, 𝑤
+ ,  𝑚𝑠, 𝑤

− ≥ 0 (36) 

𝑛𝑤1 ,𝑤2
+ ,  𝑛𝑤1,𝑤2

− ≥ 0 (37) 

 

With constraint (30) we make sure that all populations are planted. The weekly deviation 

from the harvesting capacity is determined with (31) and with (32) we get all weeks that are used 

for harvesting. M1 is a big-M value that is at most ∑ 𝑝𝑙𝑝
𝑤 

𝑝, 𝑤: (𝑝,𝑤 )∈𝐹𝑆  .  The difference between two 

consecutive days is defined with (33). The constraints, (34)-(37), are domain related constraints. 

The variables pl and used are binary variables whilst the deviation variables, i.e., m and n, are non-

negative variables. 

 

 

4.4.2 Scenario 2 

In scenario 2, there is no pre-defined capacity. That implies that we need to find for which 

capacity the objectives are minimized, i.e. that c1s; w, becomes a decision variable, i.e., c2s; w. There 

is additional value to be minimized, the maximum value of this variable, i.e., Cs, to determine the 

capacity value for scenario 2. The rest of the model is the same and the model remains linear. 
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Additional decision variables 

 

     c2s; w -harvesting capacity on site s in week w for scenario 2 

Cs minimum possible capacity for site s 

Additional objective 

                   min f4 =Cs                                                                (38) 

Objective (37) minimizes the maximum capacity level over all weeks for site s. 

Additional constraints 

            

𝑐2𝑠,𝑤 ≤ 𝐶𝑠      ∀𝑤 ∈ 𝑊,  𝑠 ∈ {0,1} (39) 
𝐶𝑠 ≥ 0  ∀𝑠 ∈ 𝑆 (40) 

𝑐2𝑠, 𝑤 ≥ 0  ∀𝑠 ∈ 𝑆,  𝑤 ∈ 𝑊 (41) 
 

The constraint set (39) implies that the minimum possible capacity for site is bigger than the 

maximum capacity among all weeks for each site s. Additional objective actually manage to 

equalize those two capacities. Constraints (40) and (41) are clear [4]. 
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4.5. Heuristic Algorithm 

The optimization problem described in Section 4.4 has four objectives (27), (28), (29) and 

(38) and eight problem-specific operators. These operators improve the model solution and they 

stop the model from being stuck in local optima. There are 5 five operator groups. Rebalancing 

operators 1, 2, and 3 switch some populations' harvest weeks from high-quantity harvest weeks to 

low-quantity harvest weeks. Operator 4 is a stability operator, and it balances the amount of harvest 

collected over successive weeks. Operators 5 and 6 are empty operators, and they make the 

situation that all populations are harvested in one week, impossible. The harvest quantity for a 

given week is set as near to capacity as possible, by Operator 7. Only in scenario 2 operator 8 is 

used, and it updates the suggested lowest site capacity. The eight neighborhood operators' 

pseudocodes will be presented in the paragraphs below [4]. 

Algorithm 2: Operator 1 

 1 Given solution S, define the vector h of the harvest 

quantities hw for each week w ∈ W  

2 Find w0 ∈ W such that w0 = argmaxw∈W hw  

3 Select a population p ∈ P such that plpw’ = 1  

4 Find week w’’ in the set Wp of feasible harvest weeks of p such  

   that w’’= argminw∈Wp hw ∧ hw > 0  

5 Generate new solution S∗ by assigning plpw’ = 0 and plpw’’ = 1 

Algorithm 3: Operator 2 

1 Draw integer r from set {1,...,10}. Define set R = {1,.., r}  

2 for n∈R do  

3 Given solution S, define the vector h of the harvest        

  quantities hw for each week w∈W  

4    Find w0∈ W such that w0 = argmaxw∈Whw  

5    Select a population p ∈ P such that plpw’= 1  

6    Find week w’’ in the set Wp of feasible harvest weeks of p  

 such     that w’’ = argminw∈Wphw ∧ hw > 0  

7     Update new solution S∗ by assigning plpw’=0 and plpw’’=1 
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Algorithm 4: Operator 3 

1 Draw maximum number of iteration maxIter from set {1, 2,..,10}  

2 Define a value Q > capacity for the maximum desirable harvest  

3 i←1 while  ∧ max ∑ ℎ𝑞𝑝
 
 𝑝∈𝑃 𝑝𝑙𝑤

𝑝 > 𝑄i ≤ maxIter do  

4  Given solution S, define the vector h of the harvest     

 quantities hw for each week w ∈ W  

5    Find w’ ∈ W such that w’=argmaxw∈Whw  

6    Select a population p ∈ P such that plw 0 p = 1  

7   Find week w in the set Wp of feasible harvest weeks of p  

  such that w’’=argminw∈Wphw ∧ hw>0  

8    Update new solution S∗ by assigning plpw’=0 and plpw’’=1  

9    i ← i+1 

 

Algorithm 5: Operator 4 

1 Given solution S, define the vector h of the harvest 

quantities hw                 for each week w ∈ W  

2 Find (w, w + 1) ∈ W such that hw > 0, hw+1 > 0 and |hw+1 − hw| is 

  maximized  

3 Define w− = argmin(hw, hw+1),  w+ = argmax(hw, hw+1)  

4 Select a population p ∈ P such that plpw+  = 1  

5 Update new solution S∗ by assigning plpw+ = 0 and plpw−= 1 

Algorithm 6: Operator 5 

1 Given solution S, define the vector h of the harvest quantities 

hw  for each week w ∈ W  

2 Find (w, w + 1) ∈ W such that hw > 0, hw+1 > 0 and hw + hw+1 is   
  minimized  

3 Define w− = argmin(hw, hw+1), w+ = argmax(hw, hw+1)  

4 for p ∈ P : plpw−= 1 do  

5    if w+ is a feasible harvest week for p then  

6       Update new solution S∗ by assigning plpw− = 0 and plpw+= 1  

7    else  

8      Find other feasible harvest week wnew for p such that  

                      hwnew > 0  

9     Update new solution S∗ by assigning plpw−=0 and plpwnew = 1 
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Algorithm 7: Operator 6 

1 Given solution S, define the vector h of the harvest quantities 

hw for each week w ∈ W  

2 if ∃w ∈ W : hw = 0 ∧ hw+1 > 0 then  

3  for p ∈ P : plpw+1 = 1 do  

4   if ∃ wnew  W ∉  w, w+1 : wnew is a feasible harvest week for p 

then  

5       Update new solution S∗ by assigning plpw+1= 0 and plpwnew = 

1 

Algorithm 8: Operator 7 

1 Draw integer r from set {1, 2,.., 10}. Define set R = {1,.., r}  

2 for n ∈ R do  

3       Given solution S, define the vector h of the harvest 

quantities hw for each week w ∈ W  

4 Select random week w’ such that hw’ > 0  

5 while hw’ > Capacity do  

6  Select a population p ∈ P such that plpw’ = 1  

7  Find week wnewin the set Wp of feasible harvest weeks of p 

such that  

    wnew = argminw∈Wp | Capacity − (hw + hqp)|  

8   Update new solution S∗ by assigning plpw’ = 0 and plpwnew = 1 

 

Algorithm 9: Operator 8 

1 Calculate M+ =∑ 𝑚𝑤
+ 

 𝑤∈𝑊  and M− = ∑ 𝑚𝑤
− 

 𝑤∈𝑊  

2 if M+ > M− then  

3       Capacity ← Capacity + 100  

4 else  

5     Capacity ← Capacity − 100 
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5. Results 

The assumptions made in previous subsections about the performance of each model, for 

first approach, will be validated hereafter. Each model provided the input for the optimization 

model, in the form of GDUs predictions. We want to discuss the result of optimization model, I.e., 

which predictions gave the shortest harvest period and lowest deviation from the capacity, for each 

site and each scenario. 

  Results for Scenario 1, Site 0  

The results of the optimization problem for Scenario 1 and site 0, using the MA, ARIMA 

and Holt Winters model, respectively, will be presented here after. 

In Figure 24 with yellow and green colors, respectively, the initial and final harvest 

quantities distributions obtained with predictions made with MA models, are presented. Final 

solution shows that the algorithm has succeeded to create four periods with fairly constant weekly 

harvest quantities: 1) from week 19 to week 38, 2) from week 40 to week 44, 3) from week 57 to 

week 63 and 4) from week 66 to week 70. The algorithm managed to create three periods with 

weekly harvest quantities remarkably close to the capacity of 7000. 

Figure 24: Results for Scenario 1 and Site 0-MA model 

Objective functions Initial solution value Final solution value 

Number of harvest weeks 53 46 

Deviation from the capacity 9,524,361 9,370,033 

Deviation between consecutive weeks 261,044 38,474 

         Table 3: Objective functions results obtained with MA model 
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The results obtained with an ARIMA model as GDU predictor are shown in the Figure 25. 

Again, yellow, and green colors, respectively, represent the initial and final harvest quantities 

distributions. 

 

 

  
 Figure 25: Harvest quantity results for Scenario 1 Site 0- ARIMA model 

From the final solution, we can see that the algorithm has succeeded to create three periods 

with constant weekly harvest quantities: 1) from week 19 to week 38, 2) from week 39 to week 

45, and 3) from week 56 to week 69. Optimization algorithm, with ARIMA GDUs predictions as 

input, managed to improve the results obtained with MA model. It extended the second period 

obtained by two weeks, and connected third and fourth period in one. The latter two periods have 

weekly harvest quantities very close to the capacity of 7000. In Table 1, objective function values 

for the initial and final solutions, are presented. 

      Objective function   Initial solution value       Final solution value 

Number of harvest weeks 51 46 

Deviation from the capacity          9 516 785 9 355 171 

Deviation between consecutive weeks  225 228 34 738 

 Table 4: Objective functions values for initial and final solution-ARIMA 

 

If we compare Table 3 and Table 4, we can see that ARIMA also decreased the deviation 

from the capacity as well as deviation between consecutive weeks.  

Holt Winters algorithm also managed to make three periods with almost equal harvest 

quantity, those are: 1) from 19th to 36th week, 2) from 43rd to 45th week and 3) from 56th to 69th.  
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Optimization model can give longer periods of almost equal weekly harvest quantities if 

ARIMA predictions are used as input.  

        
Figure 26: Harvest quantity results for Scenario 1 and Site 0, obtained with Holt-Winters model 

 

       Objective functions Initial solution value     Final solution value 

Number of harvest weeks  51 45 

Deviation from the capacity 9,514,073 9,374,465 

Deviation between consecutive weeks  221,000 39,894 

         Table 5: Objective functions values for initial and final solution-Holt Winters model  

Table 5 shows that optimization model based on the predictions made with Holt Winters 

model, manages to give the shortest harvesting period of 45 weeks. On the other hand, the surplus 

is bigger than the surplus that we got with alternative models, MA and ARIMA. To summarize, 

the Holt Winters model has to lower AIC than ARIMA model, but we can see that a less accurate 

predictions can lead to a falsely good solution.    

 

 

Results for Scenario 1, Site 1 

The MA, ARIMA and Holt Winters are inputs for the optimization model. Here, the output 

of optimization model for Scenario 1 and Site 1 is presented and compared, after each of stated 

algorithm provided the input for the model.  

  Figure 27, presents the initial (represented by the yellow bars) and final (green bars) 

harvest quantities distributions, corresponding to the initial and selected solutions, respectively. 

These results are obtained as output of optimization model, which has as an input, prediction made 

with MA model. We can notice that for this site, the algorithm was not as successful as for Site 0. 

Nevertheless, the results demonstrated the algorithm tendency towards equalizing the weekly 

harvest amounts, which are still far from 7000. 
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 Figure 27: Harvest Quantity output for Scenario 1 and Site 1 –MA model 

 

Table 6 denotes objective function values for the initial and final solutions. 

 

Objective functions Initial solution value Final solution value 

Number of harvest weeks 42 30 

Deviation from the capacity 7,096,757 7,111,339 

Deviation between consecutive weeks 221,212 71,724 

Table 6: Objective function values for initial and final solution- MA model 

 

 

 

GDUs predictions made with ARIMA model, provided the results presented in  Figure 28 

and Table 7. 
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 Figure 28: Harvest quantity results for Scenario 1 Site 1-ARIMA 

 The results demonstrated the improvement in algorithms tendency towards equalizing the 

weekly harvest amounts, and amounts are closer to 7000 units. On the other hand, the harvest 

period is longer and we have slightly bigger deviation from the capacity than those obtained with 

MA model predictions. It can also be noticed that the initial solution is better, but the algorithm 

did not manage to preserve that improvement till the end.  

        Objective function    Initial solution value     Final solution value 

Number of harvest weeks                38                  34 

Deviation from the capacity          7 120 205            7 090 845 

Deviation between consecutive weeks             242 630              135 486 

Table 7: Objective function values for the initial and final solution-ARIMA 
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 Figure 29: Harvest quantity for Scenario 1 and Site 1-Holt Winters 

 

 Figure 29 shows the initial (represented by the yellow bars) and final (green bars) harvest 

quantities distributions, that represent the output of optimization model, made with Holt Winters 

GDUs predictions. It can be noticed that the algorithm performed better in the case of Site 0. 

Nevertheless, comparing the results of optimization model obtained with predictions made with 

Holt Winters model with results obtained with alternative models, we can notice higher tendency 

towards equalizing the weekly harvest quantities. That can be noticed from some periods of almost 

equalized harvest quantities, which do not exist in other results. 

 Additionally, the smallest number of harvesting weeks is obtained-28. However, 

optimization model made a slightly greater surplus. The results are presented in Table 8.  

Objective functions Initial solution value Final Solution value 

Number of harvest weeks 43 28 

Deviation from the capacity 7,106,417 7,135,339 

Deviation between the consecutive weeks 169,638 85,086 

          Table 8: Objective functions values for initial and final solution-Holt Winters 

Results for Scenario 2, Site 0 

The results of optimization model for Scenario 2 and Site 0 using the MA, ARIMA and 

Holt Winters model are presented in this section.  

In Figure 30, the initial and final harvest quantities distributions for Scenario 2 and Site 0 

are presented, in yellow and green colors, respectively. With MA GDUs predictions, optimization 

model has not managed to equalize the weekly harvest quantities. Regarding the additional 

objective from Scenario 2, i.e., finding the minimal storage capacity, the result showed that the 
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current capacity performs best. The found solutions with increased capacity only increased the 

harvest amount deviation from the capacity.  

 Figure 30: Harvest Quantity output for Scenario 2 and Site 1 –MA model 

Objective functions Initial solution value Final solution value 

Number of harvest weeks 53 51 

Deviation from the capacity 9,601,034 9,537,712 

Deviation between consecutive weeks 381,094 325,068 

Minimum storage capacity 7000 7000 

Table9: Objective functions values for Initial and final solution- MA model 

 

On the other hand, with the predictions made with the ARIMA model, results are improved. 

The optimization algorithm has managed to equalize the weekly harvest quantities, especially 

between 20th and 37th harvest week. Again, the result showed that the current capacity performs 

best. The found solutions with increased capacity only increased the harvest amount deviation 

from the capacity.  
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                     Figure 31: Harvest quantity output for Scenario 2 Site 0- ARIMA model 

 

In Table 10 objective function values for the initial and final solutions, are presented. 

Comparing these results with the results of optimization model obtained with MA predictions, we 

can conclude that the algorithm managed to shorten the harvesting period, with noticeable 

decrement in deviation between consecutive weeks.  

       Objective functions  Initial solution value Final solution value 

Number of harvest weeks  51 48 

Deviation from the capacity 9,582,540 9,457,250 

Deviation between 

consecutive weeks 

321,472 56,136 

Minimum storage capacity 7000 7000 

  Table 10: Objective function values for initial and final solution- ARIMA model 

 

The predictions made with Holt Winters model, have not improved the result in case of 

equalizing weekly harvest quantities, there are no periods with equal harvest quantity. Algorithm 

minimized additional objective, and set storage capacity to 3000. However, from Figure 32, can 

be concluded that capacity is usually far from 3000.       
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Figure 32: Harvest quantity output for Scenario 2 Site 0- Holt Winters model 

Surprisingly, deviation from capacity is decreased by almost 50% comparing to other two 

models. However, deviation between consecutive weeks is still very high.    

 

       Objective functions  Initial solution value Final solution value 

Number of harvest weeks  53 52 

Deviation from the capacity 4,342,266 4,345,200 

Deviation between 

consecutive weeks 

303,098 303,040 

Minimum storage capacity 3000 3000 

  Table 11: Objective function values for initial and final solution- Holt Winters model 

 

The predictions made with ARIMA model, gave the shortest harvest period with most 

evenly distributed harvest quantities. On the other hand, Holt Winters prediction provided the 

lowest deviation from total capacity, but harvest quantity is not uniformly distributed, there are a 

lot of fluctuations between consecutive week. Deviations between consecutive weeks are not 

significantly changed.      

Results for Scenario 2, Site 1 

The MA, ARIMA and Holt Winters provided the input for optimization model in Scenario 

2 and Site 1, once more. The outputs are presented and discussed. As in previous case, the 

predictions made with MA did not provide a tendency of optimization model toward equalizing 

the weekly harvest amount. Also, from Figure 32 we can see that its weekly amounts are extremely 
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far from 6000, which is the minimum storage capacity. As in Scenario 2 for Site 0 the best results 

are obtained if we keep the current capacity. All of this is presented in Figure 32 and Table 12.  

 

Figure 33: Results for Scenario 2 and Site 1 obtained with MA algorithm 

 

Objective functions Initial solution value Final solution value 

Number of harvest weeks 42 41 

Deviation from the capacity 7,177,404 7,172,690 

Deviation between consecutive weeks 306,436 269,712 

Minimum storage capacity 6000 6000 

Table12: Objective function values for Initial and Final solution-MA model 

 

The ARIMA predictions managed to improve the results. The oscillations in the weekly 

harvest amounts are reduced, compared to the initial planting schedule. Also, the algorithm 

managed to reduce the number of isolated harvest weeks, which are those weeks that are preceded 

and succeeded by weeks with no harvest, such as weeks 21 and 24 in the original solution. 

Additionally, algorithm shortened the harvesting period, and reduced both the capacity and weekly 

deviation. Finally, the weekly harvest amounts are closer to 6000 units, which is again chosen as 

minimum storage capacity. All of this is presented in Figure 34 and Table 13. 
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Figure 34: Harvest quantity results for Scenario 2 Site 1-ARIMA model 

Objective functions Initial solution value Final solution value 

Number of harvest weeks 38 35 

Deviation from the capacity 7,209,088 7,177,366 

Deviation between consecutive weeks 345,422 165,344 

Minimum storage capacity 6000 6000 

                 Table 13: Objective function values for initial and final solutions-ARIMA model 

Predictions made with Holt Winters model, have not helped the optimization model to 

make shorter harvest period. However, it can be noticed that there is higher tendency towards 

equalizing weekly harvest amount. 

 

Figure 35: Harvest quantity results for Scenario 2 Site 1- Holt Winters model 
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Comparing the values of objective functions in Table 12, Table 13, and Table 14, it is 

obvious that, with Holt Winters predictions, optimization model managed to give 7 times smaller 

deviation from total capacity. On the other hand, algorithm have not managed to do the same in 

case of deviation between consecutive weeks. 

Objective functions Initial solution value Final solution value 

Number of harvest weeks 48 46 

Deviation from the capacity 1,963,776 1,969,910 

Deviation between consecutive weeks 217.926 235,262 

Minimum storage capacity 1400 1400 

                 Table 14: Objective function values for initial and final solutions-Holt Winters model 

In case of this site and scenario, ARIMA predictions provided shortest harvesting period. 

However, in the case of minimizing the surplus, the predictions made with Holt Winters model 

provided the best results. 

5.1. Results summarization and discussion 

In the Scenario 1 Site 0, the best solutions of the optimization model are obtained with ARIMA 

predictions. The Holt Winters model gave the shorter harvesting period, by one week, but surpluses 

are bigger. Optimization model was not that successful in Scenario 1 Site 0, however models' 

tendency towards equalizing weekly harvest quantity is showed. The predictions of Holt Winters 

model provided the shortest harvesting period.    

In Scenario 2, with no predefined capacity, predictions made with ARIMA model provided 

the shortest harvest period, for both sites. Additionally, optimization model managed to keep 

deviations between consecutive weeks lower than those obtained with other two models. With 

predictions made with Holt Winters model, optimization model significantly decreased the 

deviation from total capacity.    

Table 13 shows for each prediction model the best results of the optimization model that it 

achieved, as well as the AIC values of that model. The best solution  

 MA model ARIMA model Holt Winters model 

AIC value 4766 4764 -6034 

Number of weeks 46 46 45 

Deviation from 
capacity 

9.370.033 9.355.171 9,374.465 

Deviation between 
consecutive weeks 

38.474 34.738 39894 

Capacity 7000 7000 7000 

 Table 15: Best Results  
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6. Conclusion 

 

The Crop Planting Scheduling Problem is defined and solved using ALNS (Adaptive Large 

Neighborhood Search) meta-heuristic. It is discovered that output of the model, I.e., weekly 

harvest amount, deviation from total capacity and number of harvesting weeks, highly depends on 

GDUs predictions. The purpose of this thesis was to determine the most precise model for GDU 

prediction and investigate how sensitive the Optimization model is to different prediction models. 

For GDU predictions we used three different models: Moving Average (MA), 

Autoregressive Integrated Moving Average (ARIMA) and Holt Winters model. For each model 

separately, hyperparameters are tuned and model with the lowest AIC score is considered as the 

best model and it is further used for an out-of-sample predictions.  

All the models are tested in two different approaches. In the first approach accumulated 

daily GDUs for period 2009-2019 were given, and the task was to predict daily GDUs for the next 

two years. GDUs are calculated using minimum and maximum daily temperatures, therefore in the 

second approach the task was to predict daily temperatures, and then to calculate the GDUs.  

In the case of second approach, we decided not to validate the results, since the AIC score 

were high. The imprecise predictions will not lead to significant results of optimization model. 

Results of the first approach are validated through optimization model, on site 0 and site 1, 

in two different scenarios, with predefined capacity and without predefined capacity.  

In the first approach, with MA model predictions, optimization model in majority of cases 

gives the greatest surplus and longest harvesting period. ARIMA predictions managed to improve 

the results of optimization model. Harvesting period is shorter, weekly harvest quantities are 

distributed more equally and they are closer to capacity, surpluses are decreased. 

In most of the cases, result obtained with Holt Winters predictions are very close to those 

obtained with ARIMA predictions. Despite the fact that Holt Winters has lower AIC, the less 

precise ARIMA predictions, provided the better results of optimization problem. Hence, by 

selecting a less precise GDU prediction model, we might obtain falsely good solutions of 

optimization problem. This makes the choice of a model for predicting GDUs, extremely 

important.  
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