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Preface

Water is crucial for the life and growth of plants. The process of photosynthesis requires water to
be continuously absorbed and lost.

Some plants have developed specialized vascular tissue (xylem) which provides a physical mech-
anism for supplying water to photosynthetic organs. The two major processes in water transport
are molecular diffusion and mass flow. Diffusion is the gradual mixing of molecules and eventual
dissipation of concentration differences, and it is usually caused by thermal motion of molecules.
Mass flow, on the other hand, is fluid movement caused by pressure gradient whenever there is
a suitable pathway. Pressure gradient ocurrs due to transpiration, which is an important factor
for the global water cycle. 1 Pressure-driven mass flow is the main mechanism of water transport
through xylem.

The first attempts to describe vascular system of plants and to find analogy with blood circula-
tion started with William Harvey (1628) and Marcello Malpighi (1661). It was suggested that the
role of tracheids and vessels, which are the building blocks of xylem, is air transport and that fibres
should exist for transport of water and minerals. Transport tissue was identified in the 18th and
early 19th century. There were debates about whether conducting elements of xylem are filled with
water, air or air bubbles interspersed with water. A significant breakthrough was made in 1891
by Eduard Strasburger who made a review of existing knowledge in plant hydraulics in his book
“On construction and function of the conduits in plants”. The first experimental demonstration
was made by Joseph Boehm in 1892 and the cohesion-tension theory (CTT) was proposed in 1894
by John Joly and Henry Horatio Dixon.

CTT is a theory that provides an explanation of water uptake in plants and especially in trees.
It is based on the assumption that “high tensions” exist in plants (−3 MPa in crop plants, −4 MPa
in trees, −10 MPa in desert species). [2; 17; 25]. Moreover, the risk of cavitation is a controversial
aspect of the CTT. However, it is shown that properties of water can prevent cavitation to a certain
extent. [5].

The goal of this thesis is to formulate and analyse mathematical model for capillary uptake of
water in the xylem.

A biological explanation of the phenomena with exact terminology is provided in Chapter 1.
The equation for capillary flow was derived from Newton’s second law and proven experimentally

by Edward Washburn in 1921. [32] Chapter 2 of this thesis is dedicated to derivation of Washburn’s
equation from first principles, i.e. mass and momentum balance equations. Derivation can be split
in two stages. In the first stage we make assumptions about velocity field and pressure field that
follow directly from Navier-Stokes equations in local form. Pressure field is shown to depend only
on z−coordinate while velocity field is modeled by Poiseuille flow. In the second stage, Washburn’s

139 % of transpired water returns as rain. [26]
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equation is derived from integral form of Navier-Stokes equations in cylindrical coordinates. Finally,
the scaled Washburn’s equation is derived, which contain only one dimensionless parameter.

Analysis of a solution is presented in Chapter 3 of this thesis. Existence and uniqueness are
proved using Banach’s fixed point theorem. Bounds on a solution are also provided using the energy
estimate, and domain and range are determined with respect to initial water column height.

Chapter 4 contains rigorous asymptotic analysis which reveals several possible regimes of the
flow. They are obtained by neglecting certain physical mechanisms in the model. Furthermore,
asymptotic behavior of the system is determined by means of linear stability analysis. Monotonic
and oscillatory behaviour of a solution are distinguished in the neighborhood of the stationary
point. Different behaviour is also demonstrated by phase portraits and numerical solution of the
governing equation. Model is validated using experimental data for short-time limit.

Motivation for this study came from the project realised during First Virtual ECMI Modeling
Week 2020 [20]. In particular, ideas about modeling of water uptake were taken as a starting point
in this study. Also, analysis of simplified models, which was explained in [20] on phenomenological
basis, in this thesis was put on firm theoretical ground.



Chapter 1

Water Transport in Plants

In this Chapter, a brief introduction to plant physiology with a focus on vascular tissue and water
transport is presented in Section 1.1. The Cohesion–Tension Theory is explained in Section 1.2.

1.1 Vascular Tissue

Water is essential in the life of a plant. Dehydratation can cause malfunctioning of cellular pro-
cesses, since plant cells are composed of water. Moreover, the structure and properties of proteins,
membranes, nucleid acids and other cell constituents are highly dependent on water. Therefore,
plants must balance their uptake and loss of water.

Water potential Ψw is a measure of the free energy of water per unit volume [Jm−3] and represents
a good overall indicator of plant health. Cell growth, photosyntesis and crop productivity are
strongly influenced by water potential and all its components. The major factors influencing the
water potential in plants are concentration Ψs, pressure Ψp and gravity Ψg.

Ψw = Ψs + Ψp + Ψg.

When we consider water transport at the cell level, the gravitational component Ψg is omitted
since it is negligible compared to the osmotic potential and hydrostatic pressure. For soils that have
large concentration of salts Ψs is significant, otherwise it is negligible. The hydrostatic pressure Ψp
is very close to zero for wet soils. As a soil dries out, Ψp decreases and becomes negative. Absorbing
water from soil, plants establish a pressure gradient. Water enters the plant through the root system
and proceeds flowing to the stem.

The process of water evaporating from leaf surface is called transpiration and it causes water
to move upwards. The focus of our work is analysis of water uptake through the stem. It occurs in
response to pressure difference, whenever there is a suitable pathway.

In most plants, a vascular tissue (xylem) provides water flow through stem. It is the longest
part of the pathway of water transport, with a low resistance. Tracheids and vessels are building
blocks of xylem. The conducting cells of tracheids and vessels have specialised anatomy, that provide
transport of water with high efficiency. Those are “dead” cells, which means that they have neither
membranes nor organelles. Both tracheids and vessels vary within and between species. Tracheids
are elongated and hollow cells, which are present in all vascular plants. Neighbouring tracheids are

5



6 CHAPTER 1. WATER TRANSPORT IN PLANTS

Figure 1.1. Main driving forces for water flow through the plant. ∆cwv - differences in water vapor
concentration, Ψp - hydrostatic pressure, ∆Ψw - water potential [30]

connected by pits on their walls, forming pit pairs. Pit pairs form a low-resisting path for water
flow between tracheids. The pit membrane represents the porous layer between pit pairs.

Vessel elements are shorter and wider comparing to tracheids and have developed perforation
plates, a place where they connect to one another. In that way, vessel elements build vessels. Like
tracheids, vessels are dead cells that provide a low-resistance pathway for water movement
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Figure 1.2. Tracheids and vessel elements. [30]

1.2 The Cohesion-Tension Theory

Water, as a solvent, is the medium for the movement of molecules. Moreover, it directly participates
in many essential chemical reactions. These properties are the consequence of the polar structure
of the water molecule.

In the water molecule, oxygen atom is covalently bonded to two hydrogen atoms. An angle of
105◦ is formed between two O—H bonds. The electrons of the covalent bond are attracted to the
oxygen atom (because of the higher electronegativity). A partial negative charge appears at the
oxygen part of the molecule, while partial positive charges appear at each hydrogen. Since these
partial charges are equal, the water molecule carries no total charge.

Hydrogen bonds are weak electrostatic attractions between water molecules. Many physical
properties of water are the consequence of it. Hydrogen bonds can be formed between water and
the other molecules with electronegative atoms (e.g. ionic substances, some sugars and proteins).
Molecules that are on the free surface of water are more strongly connected to neighbouring water
molecules than to gas molecules. This results in tendency of free surface to minimise its surface
area. Surface tension is the energy required for the surface area of a free surface to be increased.
Apart from influencing the shape of the surface, the surface tension may create a pressure in the
rest of the liquid. Cohesion is the attraction between water molecules, which is a consequence of
hydrogen bonding. Adhesion represents attraction of water to a solid phase (e.g. a cell wall or a
glass surface). Capillarity is the movement of water along the capillary tube, which is a result of
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Figure 1.3. Diagram of the water molecule [30]

cohesion, adhesion and surface tension.
The Cohesion-Tension theory (CTT) is based on mechanisms of liquid transport and on the

anatomical properties of the xylem. First proposed toward the end of the nineteenth century, it has
been verified by a large number of experiments [6; 31]. However, it has been a controversial subject
for more than a century. The main controversy surrounds the question of whether water columns
in the xylem can sustain the large tensions necessary to pull water up tall trees. Moreover, the
risk of cavitation has been widely discussed. Cavitation is forming of a gas bubble, which breaks
the continuity of a water column and block water transport in the xylem. It usually occurs as a
consequence of the extreme weather (e.g. freezing).

The CTT theory can be sumarised in the following statements [29]:

1. A continuous network of liquid columns is formed within the plant. It spreads from the root
to the evaporating surface (leaves). Most of the transport network is composed of vessels and
tracheids.

2. The vascular pathway has hydraulic continuity, which means that the variations or tensions
are transfered continuously throughout the plant.

3. The evaporating surface (from leaves) generates surface tension, which is a driving force for
the water movement.

4. Evaporation generates a curvature in the water menisci, which is sufficiently small to support
water columns as long as one hundred meters.

5. Evaporation lowers the water potential in the xylem elements.

6. Evaporation produces gradients of pressure along the pathway in the plant. Consequently,
water from the soil inflows the transpiring surface.

7. Water in the xylem is in the state of tension, due to transpiration (pulling from leaves). In this
state, the appearance of a vapor phase within the liquid phase (cavitation) may occur. Even
when transpiration stops (e.g. in periods with high relative humidity), water will continue to
uptake as long as there exists difference of water potential across the water column.

8. Cohesion and adhesion prevent cavitation to a certain extent.



Note that assumption of CTT is that high tensions could exist in a plant. However, the validity
of CTT is not dependent on a specific range of xylem tensions.

The focus of this thesis is water transport through xylem. We will propose a mathematical model
for water uptake in a tracheid, which will be approximated by a narrow pipe with no resistance.
Moreover, we shall assume that cavitation does not occur during the transport process.
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Chapter 2

Mathematical Model
of Capillary Rise

This thesis is concerned with modelling and mathematical analysis of the motion of water through
the stem. As it is usual in modelling, we tend to develop the model which is simple enough to
be feasible for analysis, but also to be rich enough to incorporate the fundamental features of the
process.

The process we are concerned about is usually modelled by the motion of a fluid through
the vertical cylindrical pipe. Capillary effects are the main driving agent, but also the influence
of gravity and viscosity cannot be neglected. Widely accepted model for accurate description of
capillary motion of the fluid through the vertical pipe is the Washburn’s equation [32]. It is often
derived in a simplistic way, starting from the Newton’s Law of Motion and applying it to an
infinitesimal volume of a fluid in a cylinder [14].

Our aim in this Chapter is to derive the Washburn’s equation from the first principles, i.e. from
the fundamental equations of continuum mechanics. To that end, we shall firstly review the basic
equations of continuum mechanics, needed for our analysis. After that, they will be applied to our
specific problem of motion of the fluid in a vertical pipe.

Figure 2.1. Vertical pipes with different diemeters. Heights and shape of the meniscus are different.
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12 CHAPTER 2. MATHEMATICAL MODEL OF CAPILLARY RISE

In our model, the pipe considered is infinitely long and narrow. The assumption of flat meniscus
will be justified in Section 2.2.3. It can be seen in Figure 2.1 how radius of a pipe influences height
of a liquid column and shape of a meniscus.

2.1 Foundations of Continuum Mechanics

Basic equations of continuum mechanics generalize the basic laws of mechanics of a material point
(particle). Material point is a geometric point in Eucledian space (R3) to which certain physical
properties are attributed. It possesses mass m ≥ 0, which is constant throughout the motion:

m = const.

Position of the particle is determined by a position vector x(t) ∈ R3, where t ∈ R+ ∪ {0}
is the time. Rate of change of the position vector is the velocity v(t), and rate of change of the
velocity is the acceleration a(t):

v(t) =
dx(t)

dt
, a(t) =

dv(t)

dt
=
d2x(t)

dt2
.

State of motion of the particle is determined by the momentum K(t), defined as:

K(t) := mv(t).

Newton’s Law of Motion postulates that the rate of change of momentum is equal to the force F
which acts upon the particle:

dK

dt
= F ⇒ ma = F .

In general, force may depend on time, position and velocity of the particle, but does not depend
on acceleration:

F = F (t,x,v).

In the sequel, we shall define the basic notions of continuum mechanics, and present the funda-
mental laws that we shall apply [13].

2.1.1 Kinematics of continuum

The basic property of a body in continuum mechanics is that it may occupy regions of Euclidean
space E . We may identify the body with the region B of E in some fixed configuration, called a
reference configuration; but the choice of reference configuration is arbitrary.

Hence we consider a body identified with the region B it occupies in a fixed reference config-
uration, and refer to B as the reference body and to a point X in B as a material point or
particle.

Definition 2.1.1. A motion of B is a smooth function X , that assigns to each material point X
and time t a point

x = X (X, t),

where x is a spatial point occupied by X at time t ∈ R.
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For a fixed t, the function X (X, t) is called a deformation. Since it depends only on X, we
introduce a simplified notation:

Xt(X) = X (X, t).

A basic hypothesis is that Xt(X) is one-to-one in X, meaning that no two material points can
occupy the same spatial point at a given time.

O

B

x(t0) = X x(t, x(t0))

X

Bt

Figure 2.2. Deformation X which maps reference configuration B to current configuration Bt.

The region of space occupied by the body at time t, Bt = Xt(B), is reffered to as the deformed
body at time t. The current configuration, Bt is the set of points x, such that x = X (X, t) for
some X in B. Current configuration is observed during a motion. On the other hand, reference
configuration serves to label material points.

The spatial vectors

Ẋ (X, t) =
∂X (X, t)

∂t
, Ẍ (X, t) =

∂2X (X, t)

∂t2

are velocity and acceleration of the material point X at time t.
Since the mapping x = X (X, t) is one-to-one in X for fixed t it has an inverse

X = X−1(x, t),

at each t, the fixed-time inverse is a mapping of the deformed body B(t) onto the reference body
B(t0) with the following property

x = X (X, t) ⇐⇒ X = X−1(x, t).

We refer to X−1 as the reference map. Using the reference map, we can describe the velocity Ẋ as
a function v(x, t):

v(x, t) = Ẋ (X−1(x, t), t) ⇐⇒ Ẋ (X, t) = v(X (X, t), t).

The field v is material velocity, and v(x, t) is the velocity of the material point that the spatial
point x occupies at time t.
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2.1.2 Reynolds’ transport theorem

In order to generalise concept of material velocity, let ϕ denote a scalar, vector or tensor field
defined on the body, for all t. We consider ϕ to be a function ϕ(X, t) of the material point X at
time t - this is called the material description of ϕ. On the other hand, we can consider ϕ to be
a function of the spatial point x and t, i.e. φ(x, t). This is called a spatial description and it is
related to material description through

φ(x, t) = ϕ(X−1(x, t), t).

Similarly, the material description is given by

ϕ(X, t) = φ(X (X, t), t).

The tensor field

F = ∇X , Fij =

[
∂xi
∂Xj

]3
i,j=1,2,3

is referred to as the deformation gradient.
The volumetric Jacobian is of the mapping Xt is defined as:

J = detF > 0.

Note that when transforming volume and surface integrals from the deformed body to the reference
body, we replace the volume element dV by JdVR. In the sequel we shall need the following Lemma,
the proof of which may be found in [13].

Lemma 2.1.1. The volumetric Jacobian is of the mapping Xt has the following property:

J̇ = J div v. (2.1)

Now we can state and prove Reynolds’ transport theorem.

Theorem 2.1.2. Let φ be a smooth spatial field, and assume that φ is either scalar valued or vector
valued. Then for every part B and time t,

d

dt

∫
B(t)

φdV =

∫
B(t)

(
φ̇+ φdiv v

)
dV (2.2)

Proof.

d

dt

∫
B(t)

φ(x, t)dV =
d

dt

∫
B(t0)

φ(x(X, t), t)JdVR =

∫
B(t0)

(
φ̇J + φJ̇

)
dVR

=

∫
B(t0)

(
φ̇+ φdiv v

)
JdVR =

∫
B(t)

(
φ̇+ φ div v

)
dV.

Reynold’s transport theorem provides a mean to evaluate the time rate of change of any physical
quantity within material body, provided it is described by its density (a quantity per unit volume).
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2.1.3 Mass Balance

One of the most important properties of bodies is that they possess mass. We here consider bodies
whose mass is distributed continuously and determined by the mass density.

Global form

Let Pt = Xt(P ) for some material region P. We write ρR(X) > 0 for the mass density at the
material point X in the reference body B, so that∫

P
ρR(X)dVR(X)

represents the mass of the material region P. We refer to ρR(X) as the reference mass density.
We write ρ(x, t) > 0 for the mass density at the spatial point x in the deformed body Bt, so

that the mass of material region Pt in spatial configuration is∫
Pt

ρ(x, t)dV (x).

Balance of mass is the requirement that, given any motion∫
P
ρR(X)dVR(X) =

∫
Pt

ρ(x, t)dV (x) (2.3)

for every material region P. The left-hand side of (2.3) is independent of time. If we differentiate
(2.3) with respect to t, it follows that

d

dt

∫
Pt

ρ(x, t)dV (x) = 0. (2.4)

Since (2.3) holds for any material region, it will also hold for body that has a constant mass,
M : ∫

B
ρR(X)dVR(X) =

∫
Bt

ρ(x, t)dV (x) = M = const. (2.5)

Local form

From Reynolds’ transport theorem (2.2) and the property of mass balance (2.4), it follows that∫
P(t)

(ρ̇+ ρdiv v) dV = 0, ∀P(t) ⊂ ∀B(t) (2.6)

Since (2.6) holds for any material region P(t), it implies the local (differential form) of the mass
balance

ρ̇+ ρdiv v = 0, ∀x ∈ B(t). (2.7)

The following consequence of the mass balance law can be shown for a spatial scalar field ϕ:

∂

∂t
(ρϕ) + div(ρϕv) = ρϕ̇. (2.8)
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2.1.4 Momentum balance

Motions are accompanied by forces. Forces in continuum mechanics are described by

• contact forces between spatial regions that intersect along their boundaries,

• contact forces applied on the boundary of the body by its environment,

• body forces applied on the interior points of a body by environment.

Contact forces and body forces may be measured per unit area and volume in the reference body
or per unit volume and area in the deformed body.

To describe the contact forces, Cauchy introduced a surface-traction field t, representing the
force per unit area of the surface of contact S. It was postulated that surface-traction field at point
x ∈ S does not depend on the shape of the surface in the neighbourhood of the point, but only on
its orientation through the unit normal vector n, i.e t(n(x, t),x, t), defined for each unit vector n,
each x in Bt and each t.

Let P and D be adjacent spatial regions, and S surface of contact,

S = P ∩ D.

To determine the total contact force Fs acting upon surface S, we integrate traction over S:

Fs :=

∫
S
t(n(x, t),x, t)dA(x) ≡

∫
S
t(n)dA, (2.9)

where dA(x) is the surface element of S, and the second integral will be used in the sequel as a
shorthand. If the total contact force is to be computed for the boundary of the spatial region P,
we have

Fs =

∫
∂Pt

t(n)dA. (2.10)

The environment can also exert forces on interior point of Bt, with a classical example of such a
force being that due to gravity. Such forces are determined by a vector field b(x, t) expressing the
force per unit volume Fv exerted by the environment on x. The total body force which acts upon
spatial region Pt is defined as

Fv :=

∫
Pt

bdV. (2.11)

Global form

Given a spatial region Pt the integral

K(t) =

∫
Pt

ρ(x, t)v(x, t)dV

represents the linear momentum of Pt.
The fundamental law of motion is the balance law for linear momentum given by

dK

dt
= F .
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Since the net force F can be expressed as a sum of a contact force and a body force,

F = Fs + Fv,

it follows that
d

dt

∫
Pt

ρ(x, t)v(x, t)dV =

∫
∂Pt

t(n)dA+

∫
Pt

bdV, (2.12)

which is linear momentum balance law in integral (global) form written for any spatial region
Pt ⊂ Bt of the body in spatial configuration.

Cauchy theorem

A deep result, central to continuum mechanics is existence of Cauchy stress as a consequence of
balance of forces.

Theorem 2.1.3 (Existence of stress). A consequence of the momentum balance law (2.12) is that
there exists a spatial tensor field T (x, t), called the Cauchy stress, such that for each unit vecor n,
it holds that

t(n,x, t) = T (x, t)n. (2.13)

The proof of the Theorem is omitted and may be found in [12; 13]. Another important property
of the Cauchy stress is that it is symmetric

T = T T ,

which is a consequence of the angular momentum balance law [13].

Local form

In view of Cauchy’s theorem, we can rewrite the linear momentum balance law (2.12) as∫
Pt

(ρv̇ − divT − b) dV = 0.

Since it must be satisfied for all spatial regions Pt ⊂ Bt, the local momentum balance law follows

ρv̇ = −divT + b. (2.14)

2.1.5 Constitutive equations

The balance laws are presumed to hold for all bodies: solid, liquid or gas. On the other hand,
particular materials are defined by additional assumptions in the form of constitutive equations,
which describe the response of the material. It is necessary to introduce constitutive relations for
two reasons: first, to describe the material whose motion is under consideration; second, to close the
system of equations that represent our model, since in general balance laws the number of unknown
fields is larger than the number of equations.
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Newtonian fluids

In this thesis we shall be concerned with a motion of water, which belongs to a special class of
materials known as Newtonian or viscous fluids. Therefore, we shall give a brief review of the
basic constitutive realtions for fluids. A fluid is compressible if it holds that

dV 6= JdVR.

In contrast, if the fluid is incompressible, it follows that dV = dVR From (2.1) it follows that

J = 1 =⇒ J̇ = 0.

Therefore, from (2.1)
div v = 0.

Local form of mass balance (2.7) implies that

ρ̇ = 0 =⇒ ρ = const. (2.15)

A perfect (Euler) fluid is a fluid whose stress tensor is expressed by the constitutive equation

T = −pI, p > 0,

where the positive scalar p is called pressure.
The model of perfect (Euler) fluid is the simplest model of fluids used in continuum mechanics.

It is in good agreement with real situations under a variety of conditions. However, fluids may
exhibit more complex behaviours that have to be described in a proper way. To do that we have to
rely on a certain set of fundamenal constitutive statements. The restricted form of basic constitutive
statement is as follows [3]:

The stress at the point x at time t is uniquely determined by fields derived from the motion of B
and also evaluated at (x, t).

In order to define constitutive relation for stress in case of Newtonian incompressible fluids, we
introduce the folowing spatial tensor fields

• Velocity gradient - L := grad v = ∇v

• Stretching - D := 1
2

(
L + LT

)
= 1

2

(
∇v + (∇v)T

)
The constitutive equation for viscous fluids is

t = −p(ρ)I + f(ρ,L),

where f is symmetric tensor function.
Newtonian fluids have the property that there is a linear dependence between t and D. The

constitutive equation for incompressible viscous fluids is

t = −p(x, t)I + 2µD, (2.16)

and I is identity tensor, µ is shear viscosity (resistance of fluid to shear).
Stress vector for viscous fluids is given by [1]

t = −pn+ µ
[
2(n · ∇)v + n× (∇× v)

]
. (2.17)
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Navier-Stokes equations

Navier-Stokes equations describe the motion of an incompressible Newtonian fluid. Their form is
given in the following Lemma.

Lemma 2.1.4. Motion of an incompressible Newtonian fluid is described by the following system
of equations:

∇ · v = 0, (2.18)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + g, (2.19)

where constants ρ and µ represent density and shear viscosity respectively, g is gravitational accel-
eration and ν = µ/ρ is kinematic viscosity.

Proof. Since the fluid is incompressible, equation (2.18) is a direct consequence of this property
following from the mass balance law. Equation (2.19) is the momentum balance law (2.14) applied
to Incompressible Newtonian fliuds in the following way:

1. body forces are due to gravity only, b = g;

2. divergence of the stress tensor reads

divT = div (−pI + 2µD) = −∇p+ µ
(
∇2v +∇(∇ · v)

)
.

Note that the last term vanishes due to equation (2.18), and equation (2.19) follows.

2.2 Derivation of the Washburn’s equation

The equation for capillary rise phenomenon in a tube was first proposed by Green and Ampt [11]
and later independently developed by Lucas [19] and Washburn [32]. The Washburn’s (Lucas-
Washburn) equation may also be referred to as capillary model in the porous media literature,
since a porous medium is modelled as a bundle of aligned capillary tubes [21]. The terms that
occur in the governing equation are inertial, gravitational, viscous and capillary.

The main approach that was used to derive and modify Washburn’s was applying momentum
balance to control volume inside the capillary tube. [16],[4], [22]

The transition in flow pattern between different zones are also studied [9], [24], [28]. Such studies
show that inertial forces are dominant at the very beginning of capillarity. The gravity effects are
significant near the equilibrium height (i.e. when liquid column stops rising) [8].

In this thesis, we derive Wasburn’s equation with using balance laws. We use assumptions about
Poisseuille flow for Newtonian incompressible fluid, neglecting the friction.

In this thesis Washburn’s equation will be derived from the first principle. This means that
we shall use mass and mometum balance equations for the motion of an incompressible Newtonian
fluid through the vertical pipe of constant circular cross section. Our derivation will have two steps.
Firstly, we shall analyze the motion by means of local balance laws under physically motivated
assumptions. This will lead to a simplification in the structure of unknown fields of velocity v and
pressure p. Secondly, using the results of local analysis we shall formulate the momentum balance
law in global form and derive the Washburn’s equation.
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2.2.1 Balance Equations in polar cylindrical coordinates

In our model of capillary rise in a pipe, we analyse the model in polar-cylindrical coordinates r, ϕ, z:

0 ≤r ≤ R,
0 ≤ϕ ≤ 2π,

0 ≤z

We introduce a positively oriented orthonormal basis

{er, eϕ, ez}.

It can be shown that mass balance equation in polar cylindrical coordinates is given as [15]

1

r

∂

∂r
(rvr) +

1

r

∂vϕ
∂ϕ

+
∂vz
∂z

= 0. (2.20)

Moreover, momentum balance equations in polar cylindrical coordinates can be written as [15].

∂vr
∂t

+ (v · ∇)vr −
v2ϕ
r

= −1

ρ

∂p

∂r
+ ν

(
∇2vr −

vr

r2
− 2

r2
∂vϕ
∂ϕ

)
,

∂vϕ
∂t

+ (v · ∇)vϕ +
vrvϕ
r

= − 1

ρr

∂p

∂ϕ
+ ν

(
∇2vϕ −

vϕ

r2
+

2

r2
∂vr
∂ϕ

)
,

∂vz
∂t

+ (v · ∇)vz = −1

ρ

∂p

∂z
+ ν∇2vz − g.

(2.21)

The following relations in cylindrical coordinates will be of interest in our derivation:

∇ =
∂

∂r
er +

1

r

∂

∂ϕ
eϕ +

∂

∂z
ez,

v · ∇ = vr
∂

∂r
+
vϕ
r

∂

∂ϕ
+ vz

∂

∂z
,

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2 +
∂2

∂z2
.

2.2.2 Local Analysis – Assumptions

Local analysis of balance laws will be concenrned with basic assumptions about flow fields, and
appropriate consequences and simplifications.

1. Velocity field in orthonormal basis is expressed as

v = vrer + vϕeϕ + vzez.

It will be assumed that the fluid flows along the z-axis only, and therefore

vr ≡ 0, vϕ ≡ 0. (2.22)
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Moreover, we will assume the axial symmetry of flow around an z-axis. Thus, velocity field
of the fluid does not depend on ϕ. Therefore, the z-component of the velocity depends on r
and z (and time t) only

vz = vz(r, z, t) (2.23)

Consequences of the assumptions about the velocity field are:

(a) Due to assumption (2.22), mass balance equation (2.20) reduces to ∂vz/∂z = 0. Thus,
velocity field is independent of z, vz = vz(r, t).

(b) Due to the same assumption (2.22), momentum balance equations (2.21)1−2 are reduced
to: ∂p/∂r = 0 and ∂p/∂ϕ = 0. Consequently, the pressure field is p = p(z, t).

2. Next, we assume that the motion of the fluid is described by the Poisseuille flow, which
means parabolic profile of the local velocity field

vz(r, t) = v(t)

(
1− r2

R2

)
. (2.24)

This is standard assumption for the motion of Newtonian fluid in this case [34]. It is valid for
the developed flow of the fluid throughout the volume, except in the small neighbourhood of
free surface. Since our free surface is small compared to the area of contact of water column
with the side of a cylinder, influence of the velocity field in its neighbourhood will be negligible
on the overall motion.

3. Pressure field is assumed to be stationary, i.e. it depends only on z-coordinate

p = p(z). (2.25)

2.2.3 Global Analysis – Derivation

In order to apply global form of balance equations, we will present the pipe in polar cylindrical
coordinates. The volume occupied by the fluid will be described as the the set V (t) in polar
cylindrical coordinates

V (t) = {(r, ϕ, z)|r ∈ [0, R], ϕ ∈ [0, 2π], z ∈ [0, h(t)]},

where h(t) is the height reached by the fluid column.
We will split the boundary of our region of interest in three parts, namely,

∂V = ∂V1(t) ∪ ∂V2 ∪ ∂V3;

so that ∂V1 and ∂V3 are the boundaries of bottom and top bases of the cylinder, respectively, ∂V2
is the boundary of the cylinder’s side:

∂V1 = {(r, ϕ, z)|r ∈ [0, R], ϕ ∈ [0, 2π], z = 0}, n1 = −ez;

∂V2 = {(r, ϕ, z)|r = R,ϕ ∈ [0, 2π], z ∈ [0, h(t)]}, n2 = er;

∂V3 = {(r, ϕ, z)|r ∈ [0, R], ϕ ∈ [0, 2π], z = h(t)}, n3 = ez.

Unit normal vectors n1, n2 and n3 are given with respect to the orthonormal basis (see Figure
2.3).
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n3

n1

n2

z

yx
rϕ 

h(t)

Figure 2.3. Representation of the pipe in the cylindrical coordinates

Due to our assumption, body force depends only on gravity

b = g = −gez.

Our goal is to apply the momentum balance in global form (2.12)

d

dt

∫
Pt

K(x, t)dV =

∫
∂Pt

t(n)dA+

∫
Pt

ρbdV,

to the volume V (t), taking into accout assumptions and their consequences from the previous
Section. We will calculate separately the right and the left hand side of the equation. Firstly, the
mean velocity needed for further calculations will be introduced.

Mean velocity

We take the average value of the velocity field v with respect to cylindric cross section and apply
the assumption about Poisseuille flow

v(t) =
1

R2π

∫ 2π

0

∫ R

0

vz(t, r)rdrdϕ =
1

R2π

∫ 2π

0

∫ R

0

v(t)

(
1− r2

R2

)
rdrdϕ. (2.26)
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Fubini’s theorem implies that

1

R2π

∫ 2π

0

∫ R

0

v(t)

(
1− r2

R2

)
rdrdϕ =

v(t)

R2π

∫ R

0

(
r − r3

R2

)
dr

∫ 2π

0

dϕ = 2π
v(t)

R2π

R2

4

Finally,

v(t) =
1

2
v(t). (2.27)

r r

θ v(t)
v(t)

(a) (b)

_

Figure 2.4. Poisseuille flow with concave meniscus (a) and mean velocity approximation with flat
meniscus (b).

Left hand side

The momentum is given by

K(x, t) = ρ(x, t)v(x, t) = ρvz(r, t)ez,

since in our case velocity field has only z-component, that depends on r and t. Thus, the left hand
side of (2.12) is

d

dt

∫
V (t)

K(x, t)dV =
d

dt

∫
V (t)

ρvz(r, z)ezdV = ρ

[
d

dt

∫ h(t)

0

∫ R

0

∫ 2π

0

vz(r, t)dϕrdrdz

]
ez.

In order to simplify further calculation, we introduce mean velocity. The physical interpreta-
tion is that the shape of meniscus is not parabolic, but flat. Moreover, this will enable to establish
the relation with usual/simplified derivation of Washburn’s equation present in the literature. From
(2.26), by applying Fubini’s theorem we have∫ R

0

∫ 2π

0

vz(r, t)dϕrdr = R2πv(t),

and it follows that

d

dt

∫
V (t)

K(x, t)dV = ρR2π

[
d

dt

∫ h(t)

0

v(t)dz

]
ez = ρR2π

[∫ h(t)

0

v̇(t)dz + v(t)ḣ(t) + 0

]
ez

= ρR2π
[
v̇(t)h(t) + v(t)ḣ(t)

]
ez = ρR2π

d

dt
[v(t)h(t)] ez.

(2.28)
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Right hand side

In order to calculate force per unit volume Fv, we integrate body force over volume

Fv =

∫
V (t)

ρbdV =

∫
V (t)

ρ(−gez)dV = −ρgez
∫
V (t)

dV = −ρgez
∫ h(t)

0

∫ R

0

∫ 2π

0

rdrdϕdz.

Evaluating integrals with Fubini’s theorem∫ h(t)

0

dz

∫ R

0

rdr

∫ 2π

0

dϕ = h(t)
R2

2
2π = R2πh(t),

gives us that

Fv =

∫
V (t)

ρbdV = −ρgR2πh(t)ez. (2.29)

It is left to determine the total contact force Fs by integrating traction over the boundary of
our pipe. Since we have divided the boundary into three regions, it follows from (2.11) that

Fs =

∫
∂V

tdS =

∫
∂V1

t1dS1 +

∫
∂V2

t2dS2 +

∫
∂V3

t3dS3

where S1, S2 and S3 are surface elements, given by

dS1 = rdrdϕ,

dS2 = Rdϕdz,

dS3 = rdrdϕ.

We further use (2.17).

∇ =
∂

∂r
er +

1

r

∂

∂ϕ
eϕ +

∂

∂z
ez

In our case v = vzez. Therefore,

∇× v = curl v =
1

r

∣∣∣∣∣∣
er rer ez
∂
∂r

∂
∂ϕ

∂
∂z

vr rvϕ vz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
er rer ez
∂
∂r

1
r
∂
∂ϕ

∂
∂z

0 0 vz

∣∣∣∣∣∣ =
1

r

∂vz
∂ϕ

er −
∂vz
∂r

eϕ = −∂vz
∂r

eϕ

Our goal is to determine components of the stress tensor, t1, t2 and t3.

t1 = −pn1 + µ
[
2(n1 · ∇)v + n1 × (∇× v)

]
(n1 · ∇)v = (−ez · ∇)(vzez) = −∂vz

∂z
ez = 0

n1 × (∇× v) = (−ez)× (−∂vz
∂r

)eϕ

Therefore,

t1 = pez − µ
∂vz
∂r

er
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Similarly,

t2 = −pnr + µ
[
2(n2 · ∇)v + n2 × (∇× v)

]
.

(n2 · ∇)v = (er · ∇)(vzez) =
∂vz
∂r

ez

n2 × (∇× v) = er ×
(
−∂vz
∂r

eϕ

)
= −∂vz

∂r
(er × eϕ) = −∂vz

∂r
ez,

therefore,

t2 = −per + µ

[
2
∂vz
∂r

ez −
∂vz
∂r

ez

]
= −per + µ

∂vz
∂r

ez

Note that t3 equals −t1

t3 = −pez + µ
∂vz
∂r

er

Taking into account computations given above, we compute the net force exerted on the cylinder
bases: ∫

∂V1

t1dS1 =

∫ R

0

∫ 2π

0

t1rdrdϕ = R2πp(0)ez − 2πµ

[∫ R

0

r
∂vz
∂r

dr

]
ez,

∫
∂V3

t3dS3 = −R2πp(h(t))ez + 2πµ

[∫ R

0

r
∂vz
∂r

]
drez,

and thus ∫
∂V1

t1dS1 +

∫
∂V3

t3dS3 = 0 +R2π

[
p(0)− p(h(t))

]
ez.

We now consider the net force exerted upon the cylinder’s side∫
∂V2

t2dS2 = −

[∫ 2π

0

∫ h(t)

0

p(z)erRdϕdz

]
+ 2µπR

[∫ h(t)

0

(
∂vz
∂r

)
dz

]
ez.

Note that unit vector er must be kept under the integral sign because it is not constant. To compute
the first integral, we use er = cos (ϕ) ex + sin (ϕ) ey and apply Fubini’s theorem∫ 2π

0

∫ h(t)

0

p(z)erRdϕdz =

∫ 2π

0

∫ h(t)

0

p(z) (cos (ϕ) ex + sin (ϕ) ey)Rdϕdz

=

[∫ 2π

0

∫ h(t)

0

p(z) cos (ϕ)Rdϕdz

]
ex +

[∫ 2π

0

∫ h(t)

0

p(z) sin (ϕ)Rdϕdz

]
ey

= R

[∫ h(t)

0

p(z)

(∫ 2π

0

cos (ϕ) dϕ

)
dz

]
ex +R

[∫ h(t)

0

p(z)

(∫ 2π

0

sin (ϕ) dϕ

)
dz

]
ey

= 0.
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In order to evaluate the second term, we will use the assumption about Poisseuille flow

2µπR

[∫ h(t)

0

(
∂vz
∂r

)
dz

]
ez = 2µπR

[∫ h(t)

0

∂

∂r

(
v(t)− v(t)r2

R2

)
dz

]
ez

= −2µπR

∫ h(t)

0

[
2rv(t)

R2

]
ez = −2µπR

∫ h(t)

0

[
4rv(t)

R2 dz

]
ez

= −8µπrv(t)h(t)

R
ez = −8µπv(t)h(t)ez.

The last equality follows when r = R is plugged in. Finally,∫
∂V2

t2dS2 = −8µπv(t)h(t)ez.

Thus, the total contact force is

Fs =

∫
V (t)

tdS = −R2π

[
p(h(t))− p(0)

]
ez − 8µπv(t)h(t)ez (2.30)

Washburn’s equation

Firstly, we substitute left and right hand side into the global form of momentum balance equation

d

dt

∫
V (t)

K(x, t)dV = Fv + Fs;

that is

ρR2π
d

dt

[
v(t)h(t)

]
ez = −ρgR2πh(t)ez −R2π

[
p(h(t))− p(0)

]
ez − 8µπv(t)h(t)ez.

Divide both sides by −R2πez and substitute v(t) = dh
dt

= ḣ(t), (since rate of change of height in

the pipe equals velocity),

−ρ d
dt

[
ḣ(t)h(t)

]
= ρgh(t) +

[
p(h(t))− p(0)

]
+

8µḣ(t)h(t)

R2 ,

equivalently, [
p(0)− p(h(t))

]
= ρ

d

dt

[
ḣ(t)h(t)

]
+ ρgh(t) +

8µḣ(t)h(t)

R2 , (2.31)

The last thing we introduce is the surface tension. The general formula is

γ =
F

d

where F is force intensity due to surface tension, d is length along which the force is felt and γ
is the coefficient of surface tension. In our case, force due to surface tension acts along the inner
circumference of the pipe, it follows that

F = 2Rπγ.
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Since we are considering water flow with respect to z-coordinate, we will need only the vertical
component of the surface tension force

Fvert = F cos θ = 2Rπγ cos θ,

where θ is the contact angle of fluid with meniscus. On the other hand, pressure has only z-
component and difference in pressure balances with vertical component of surface tension

p(0)− p(h(t)) =
Fvert

R2π
=

2γ cos θ

R
.

We plug the last expression in (2.31) and finally obtain Washburn’s equation

ρ
d

dt

[
ḣ(t)h(t)

]
+ ρgh(t) +

8µḣ(t)h(t)

R2 =
2γ cos θ

R
. (2.32)

2.3 Scaling of the Washburn’s equation

Consider the governing equation

8µ

R2 (h+ h0)h′ + ρgh+
[
ρ(h+ h0)h′

]′
=

2γ cos (θ)

R
(2.33)

with initial conditions
h(0) = αhe, h′(0) = 0, (2.34)

where prime (′) denotes differentiation with respect to time, h(t) is column height at time t, h0 is
the immersion height of the tube below the free surface of liquid outside the tube (see Figure 2.5),
he is the equilibrium height, and parameter α depends on the experimental set-up ( 0 < α < 1).

Equilibrium height he is determined as particular solution of equation (2.33), h(t) = he = const.

ρghe =
2γ cos (θ)

R
,

and expresses the balance between hydrostatic and capillary forces. It reads

he =
2γ cos (θ)

ρgR
. (2.35)

Equilibrium height is also known as Jurin’s height.
In order to simplify further analysis i.e. reduce number of parameters, we will transform the

equation (2.33) into dimensionless form as in [23]. We introduce h̃ as:

h̃(t) = h(t) + h0. (2.36)

It follows that (2.33) transforms as

8µ

R2 h̃h̃
′ + ρg(h̃− h0) +

[
ρh̃h′

]′
=

2γ cos (θ)

R

that is,
8µ

R2 h̃h̃
′ + ρgh̃+

[
ρh̃h′

]′
=

2γ cos (θ)

R
+ ρgh0 (2.37)
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free
surface

h(t)

h0

he

~
h

Figure 2.5. The pipe with free surface of liquid (red line), immersion height h0, equilibrium height
he, h(t) column level at time t and h̃ = h(t) + h0.

For casting height and time, we use the following scale

H =
h̃

he
, T =

t

τ
. (2.38)

Note that the scale for time - constant τ will be determined later.
Next, we plug (2.38) into (2.33):

8µ

R2 · heH ·
d

τdT
(heH) + ρg · heH + ρ · d

τdT

(
heH ·

d

τdt
(heH)

)
=

2γ cos (θ)

R
+ ρgh0,

that is,
8µh2e
τR2 HH

′ + ρgheH +
ρh2e
τ2

(HH ′)
′

= heρg + ρgh0.

Divide both sides by heρg in order to get:

8µhe

R2ρgτ
HH ′ +H +

he

gτ2
(HH ′)

′
= 1 +D,

where

D =
h0
he
. (2.39)

Since the main balance usually occures between the capillary and hydrostatic forces, we choose

8µhe

R2ρgτ
= 1,



that is

τ =
8µhe

R2ρg
. (2.40)

Finally, our scaled equation is:

HH ′ +H + ω(HH ′)′ = 1 +D, (2.41)

with initial conditions
H(0) = α, H ′(0) = 0. (2.42)

where dimensionless parameter ω we introduce as:

ω =
he

gτ2
=

ρ2R4g

64µ2he
. (2.43)

Remark about initial conditions. The initial conditions (2.34), or (2.42) in dimensionless
form, are chosen such that fluid initially penetrated the column, α > 0, but the velocity is zero at
the beginning of the flow. This choice differs from the ones that prevail in the literature. Namely,
it is common to adopt initial height to be zero [23], α = 0. This choice creates a singularity in the
Washburn’s equation (2.41) at t = 0, since H ′′ is multiplied by H. To avoid the singularity, H ′(0)
is determined from the differential equation.

Our opinion is that this choice of initial conditions contradicts the basic principles upon which
the model is derived, i.e. that the state of the system (position and velocity) and actions upon it
determine its subsequent evoution. In other words, initial conditions have to be imposed indepen-
dently of the governing equation. This standpoint motivated us to choose alternative form of initial
conditions (2.42) that remove the singularity. However, to mimic the real situation as much as
possible, which means that initial height of the fluid is negligibly small, we shall assume 0 < α� 1.

To remove the singularity caused by zero initial height at t = 0, it is needed to analyze more
thoroughly the initial phase of the motion, and possibly change the model.
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Chapter 3

Existence and Uniqueness

In this Chapter we firstly transform scaled Washburn’s equation into ordinary differential equation
of second order, where nonlinearity involves only the function and not its derivatives. Next, we
use general initial conditions to show that solution of transformed equation (if exists) satisfies the
integral equation proposed in [23]. Energy estimate gave us bounds on a solution, that appears
to be always positive. That is sufficient condition to apply Banach fixed point theorem, in order
to formally prove existence and uniqueness of the solution of transformed equation. Finally, we
determine domain and range of a solution, depending on initial height of a liquid column and
immersion depth.

3.1 Transformation of the Washburn’s equation

We start this section by statement and proof of Lemma 1 from [23], the only difference is in initial
conditions.

Lemma 3.1.1. The problem
HH ′ +H + ω(HH ′)′ = 1 +D (3.1)

with
H(0) = α, H ′(0) (3.2)

can be transformed via u(s) = 1
2H(T )2 with s = T√

ω
into

u′′ +
1√
ω
u′ +

√
2u = 1 +D, (3.3)

with

u(0) =
1

2
α2, u′(0) = 0, (3.4)

for 0 < α << 1 and independent variable s.

Proof. If we choose u(s) = 1
2H(T )2 = 1

2H(s
√
ω)2, it follows that

u′(s) =
√
ωH(s

√
ω)H ′(s

√
ω).

31
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d

dT
=

d

ds

ds

dT
=

1√
ω

d

ds

Plug expressions for u(s) and u′(s) into (3.1)

1√
ω
u′(s) +

√
2u+ ω

(
1√
ω
u′(s)

)′
= 1 +D,

since

ω
d

dT

(
1√
ω

du′(s)

ds

)
=
√
ω
d

dT

(
du′(s)

ds

)
=
√
ω

1√
ω

du′(s)

ds
= u′′(s),

it follows that

u′′(s) +
1√
ω
u′(s) +

√
2u = 1 +D.

Let us transform initial conditions (2.34). Consider

H(0) = a = α ∈ (0, 1), H ′(0) = 0.

We transform initial conditions such that

u(0) =
1

2
H(0)2 =

1

2
α2, u′(0) =

√
ωH(0)H ′(0) = 0. (3.5)

where 0 < α << 1. This is because the expected maximum value of our scaled height supH(T ) =
O(1), and initial height should be small positive parameter.

This transformation is useful since nonlinearity involves only the function u but not its deriva-
tives. The next Lemma will be helpful for rewriting the equation (3.3) into integral form.

Lemma 3.1.2. Every equation of the form

y′′ + βy′ + f(y) = 0 (3.6)

can be written as
z′′ + Φ(x, z) = 0. (3.7)

Proof. Multiply both sides of (3.6) by eβx:

eβxy′′ + βeβxy′ + eβxy = 0,

equivalently,
d

dx

(
eβxy′

)
+ eβxy = 0.

Let z(x) = eβxy(x). It follows that
y(x) = e−βxz(x),

that is,
f(y) = f(e−βxz).

Thus,
eβxf(y) = eβxf(e−βxz) =: Φ(x, z).

The claim (3.7) follows.

The Theorem 1 from [23] will be divided into three parts, and proven step by step in this section.
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Integral form of Washburn’s equation

Theorem 3.1.3. Let u = u(s) be a solution of equation (3.3) with initial conditions (3.5). The
function u is a solution of an integral equation

u(s) =
1

2
α2 +

∫ s

0

(
1 +D −

√
2u(t)

)
G(s− t)dt, (3.8)

where

G(z) =
√
ω

(
1− e

− z√
ω

)
. (3.9)

Proof. Using the similar idea (as in the proof of Lemma 3.1.2), we multiply both sides of (3.3) by

e

s√
ω :

e

s√
ω u′′ +

1√
ω
e

s√
ω u′ + e

s√
ω
√

2u = e

s√
ω .

Equivalently,

d

ds

(
e

s√
ω u′

)
= e

s√
ω
(

1−
√

2u
)
. (3.10)

Let f(u) = 1 +D −
√

2u. Integrate both sides of (3.10) from 0 to s

∫ s

0

d(e

t√
ω u′) =

∫ s

0

e

t√
ω f(u(t))dt. (3.11)

Next, evaluate integral on the left hand side, using Newton-Leibniz formula,∫ s

0

d(e

t√
ω u′) = e

t√
ω u′(t)

∣∣∣∣∣
s

0

= e

s√
ω u′(s)− u′(0) = e

s√
ω u′(s),

since from (3.5), u′(0) = 0. Thus, (3.11) becomes

e

s√
ω u′(s) =

∫ s

0

e

t√
ω f(u(t))dt,

that is,

u′(s) = e
− s√

ω
∫ s

0

e

t√
ω f(u(t))dt. (3.12)

Since s is independent variable, we introduce the change of variables s→ z.

u′(z) =
du(z)

dz
= e
− z√

ω
∫ z

0

e

t√
ω f(u(t))dt = ψ(z),

simplified,
du(z) = ψ(z)dz. (3.13)



34 CHAPTER 3. EXISTENCE AND UNIQUENESS

Integrate (3.13) from 0 to s ∫ s

0

du(z) =

∫ s

0

ψ(z)dz;

left hand side equals to ∫ s

0

du(z) = u(z)

∣∣∣∣∣
s

0

= u(s)− u(0) = u(s)− 1

2
α2, (3.14)

therefore,

u(s)− 1

2
α2 =

∫ s

0

ψ(z)dz =

∫ s

0

e
− z√

ω

(∫ z

0

e

t√
ω f(u(t))dt

)
dz (3.15)

The next step is to rewrite the right hand side as a Green’s function. Let∫ z

0

e

t√
ω f(u(t))dt = F (z)− F (0), (3.16)

where F (z) is a primitive function. The right hand side becomes∫ s

0

e
− z√

ω

(∫ z

0

e

t√
ω f(u(t))dt

)
dz =

∫ s

0

e
− z√

ω (F (z)− F (0)) dz;

use partial integration with

u = F (z)− F (0), du = F ′(z)dz,

v = −
√
ωe−

z
ω , dv = e

− z√
ω dz,

thus∫ s

0

e
− z√

ω (F (z)− F (0)) dz = − (F (z)− F (0))
√
ωe
− z√

ω

∣∣∣∣∣
s

0

−
∫ s

0

−
√
ωe
− z√

ω F ′(z)dz

= − (F (s)− F (0))

(
√
ωe
− s√

ω

)
+
√
ω (F (0)− F (0)) +

√
ω

∫ s

0

e
− z√

ω e

z√
ω f(u(z))dz

= −
√
ωe
− s√

ω (F (s)− F (0)) +
√
ω

∫ s

0

f(u(z))dz.

(3.17)

Plugging in (3.16) into (3.17), we get

−
√
ωe
− s√

ω
∫ s

0

e

t√
ω f(u(t))dt+

√
ω

∫ s

0

f(u(t))dt

=
√
ω

∫ s

0

e

s− t√
ω f(u(t))dt+

∫ s

0

f(u(t))dt

=

∫ s

0

√
ω

1− e
−s− t√

ω

 f(u(t))dt.
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Let G(µ) =
√
ω

(
1− e

− µ√
ω

)
, µ > 0. It follows that

∫ s

0

√
ω

1− e
−s− t√

ω

 f(u(t))dt =

∫ s

0

G(s− t)f(u(t))dt. (3.18)

Finally, by plugging in (3.14) and (3.18) into (6.10), we get that

u(s) =
1

2
α2 +

∫ s

0

G(s− t)f(u(t))dt =
1

2
α2 +

∫ s

0

G(s− t)
(

1 +D −
√

2u(t)
)
dt,

which concludes the proof.

3.2 Energy estimate on u

It is necessary for further analysis to prove that solution of equation (3.3) is bounded. To obtain
global (independent of s) bounds on u we shall exploit the energy estimate in the way presented in
[23].

Theorem 3.2.1. Solution u(s) of equation (3.3) (or, equivalently, (3.8)) satisfies the following
estimate

0 < u(s) <
9

8
(1 +D)2, s ≥ 0. (3.19)

Proof. We will prove the Theorem using the energy estimate. Firstly, multiply (3.3) by u′

u′u′′ +
1√
ω
u′2 + u′

√
2u = (1 +D)u′.

Notice that
d

ds

(
1

2
u′2
)

= u′u′′, u′
√

2u =
d

ds

(
2
√

2

3
u3/2

)
.

It follows that
d

ds

(
1

2
u′2 +

2
√

2

3
u3/2 − (1 +D)u

)
= − 1√

ω
u′2. (3.20)

The energy function given by

E(s) :=
1

2
u′(s)2 +

2
√

2

3
u(s)3/2 − (1 +D)u(s)

is nonincreasing since its derivative is nonpositive for all s. Let us compute E(0):

E(0) =
1

2
u′(0)2 +

2
√

2

3
u3/2(0)− (1 +D)u(0) =

2
√

2

3

(
1

2
α2

)3/2

− 1

2
α2(1 +D)

which leads to

E(0) =
1

3
α3 − 1

2
α2(1 +D) := R(α) (3.21)
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By our assumption, 0 < H(0) = α << 1. We want to determine sign of E(0).

E(0) = R(α) =
1

3
α2

(
α− 3

2
(1 +D)

)
︸ ︷︷ ︸

<0

< 0,

for small positive parameter D.

0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

R
(α
)

α
Figure 3.1. Change of the energy function at initial time (R(α)) with scaled initial height of a liquid
column in a pipe (α). In this case, D = 0.1.

As proven above, E(0) = R(α) will have negative values for all α ∈ (0, 1).
Therefore, function E(s) is nonincreasing and for s > 0 we have that

E(s) ≤ E(0) < 0, α ∈ (0, 1).

It implies that

0 >
1

2
u′(s)2 +

2
√

2

3
u(s)3/2 − (1 +D)u(s) ≥ 2

√
2

3
u(s)3/2 − (1 +D)u(s). (3.22)

Last inequality hold since 1
2u
′(s)2 ≥ 0.

By Lemma 3.1.1, u(s) = 1
2H(T )2 and therefore u(s) > 0 for every s > 0. On the other hand,

from (3.22) we have that

u(s)

(
2

3

√
2u(s)− (1 +D)

)
< 0 ⇒

(
2

3

√
2u(s)− (1 +D)

)
< 0,

which implies

u(s) <
9

8
(1 +D)

2
. (3.23)

It follows that

0 < u(s) <
9

8
(1 +D)

2
,

which completes the proof.
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3.3 Existence and uniqueness

Our goal is to apply Banach fixed point theorem in order to show existence and uniqueness of
a solution u(s). Energy estimate provided us with upper and lower bound for u(s) under the
assumption that it exists. We will introduce an operator A(u)(s) to put equation (3.8) into operator
form A(u)(s) = u(s), and show that A(u)(s) is contractive. Beforehand, it is necessary to show
that f(u) is Lipschitz continuous.

Lipschitz continuity

Lemma 3.3.1. For any v, w ∈ C ([0, S];R+) and D ∈ R+, function f(u) = 1+D−
√

2u is Lipschitz
continuous.

Proof. Taking two arbitrary functions v, w ∈ C ([0, S];R+), we have

|f(v(t))− f(w(t))| = |1 +D −
√

2v(t)− 1−D +
√

2w(t)|

=
√

2|
√
w(t)−

√
v(t)| =

√
2|
√
v(t)−

√
w(t)|

=
√

2|
√
v(t)−

√
w(t)| ·

√
v(t) +

√
w(t)√

v(t) +
√
w(t)

=
√

2
|v(t)− w(t)|√
v(t) +

√
w(t)

≤ 1

2
√
ε
|v(t)− w(t)|.

Justification for the last inequality: since v(t) and and w(t) are positive, there exists ε > 0, κ > 0
such that √

v(t) +
√
w(t) ≥ κ

√
ε ⇒ 1

κ
√
ε
≥ 1√

v(t) +
√
w(t)

.

If we choose κ = 2
√

2, we get

1

2
√
ε
≥

√
2√

v(t) +
√
w(t)

.

Thus, for t ∈ [0, S] function f(u) is Lipschitz continuous

|f(v(t))− f(w(t))| ≤ 1

2
√
ε
|v(t)− w(t)|. (3.24)

Note that for the proof of Lipschitz continuity v(t) and w(t) do not have to be the solutions of
equation (3.3).

Operator contraction

In order to show existence and uniqueness of the solution of equation (3.8), we shall apply the
Banach fixed point theorem. To that end, we have to put (3.8) into operator form and choose the
appropriate space of functions.
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We define the operator A(u)(s) as

A(u)(s) :=
1

2
α2 +

∫ s

0

f(u(t))G(s− t)dt. (3.25)

Integral equation (3.8) can now be written in equivalent operator form

u(s) = A(u)(s). (3.26)

We shall seek the solution of (3.26) in the space of continuous functions C ([0, S];R+) for some
arbitrary S > 0. We shall equip this space with Bielecki’s norm defined as

‖u‖B := sup
s∈[0,S]

|e−γsu(s)|, γ > 0. (3.27)

It is shown (see Chapter 6) that Bielecki’s norm is equivalent to classical supremum norm ‖u‖∞.
Our main goal is to prove that operator A(u)(s) is contractive.

Lemma 3.3.2. Operator A(u)(s) is contractive in C ([0, S];R+) with respect to Bielecki’s norm.

Proof. First, we consider |A(u)(s)−A(v)(s)| for u, v ∈ C ([0, S];R+)∣∣∣∣∣A(u)(s)−A(v)(s)

∣∣∣∣∣ =

∣∣∣∣∣
∫ s

0

[
f(u(t))− f(v(t))

]
G(s− t)dt

∣∣∣∣∣
≤
∫ s

0

|(f(u(t))− f(v(t)))|G(s− t)dt

=

∫ s

0

|e−γt (f(u(t))− f(v(t))) |eγtG(s− t)dt

≤
∫ s

0

‖f(u)− f(v)‖BeγtG(s− t)dt

= ‖f(u)− f(v)‖B
∫ s

0

eγtG(s− t)dt.

(3.28)

Next we introduce change of variables

s− t = z =⇒ t = s− z
dt = −dz

t = 0 =⇒ z = s

t = s =⇒ z = 0.

Thus,

||f(u)− f(v)||B
∫ 0

s

−eγ(s−z)G(z)dz = ||f(u)− f(v)||Beγs
∫ s

0

e−γzG(z)dz.

Multiplying equation (3.28) by e−γs we obtain∣∣∣∣∣A(u)(s)−A(v)(s)

∣∣∣∣∣e−γs ≤ ||f(u)− f(v)||Beγse−γs
∫ s

0

e−γzG(z)dz,
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that is ∣∣∣∣∣
∣∣∣∣∣A(u)(s)−A(v)(s)

∣∣∣∣∣
∣∣∣∣∣
B

≤ ||f(u)− f(v)||B
∫ s

0

e−γzG(z)dz

≤ 1

2
√
ε
||u− v ||B

(∫ s

0

e−γzG(z)dz

)
.

Since γ > 0 is an arbitrary fixed parameter, it can be chosen so that∫ s

0

e−γzG(z)dz = 2
√
εk,

for some k ∈ (0, 1). This implies∣∣∣∣∣
∣∣∣∣∣A(u)(s)−A(v)(s)

∣∣∣∣∣
∣∣∣∣∣
B

≤ k‖u− v‖B , (3.29)

which proves that A(u)(s) is contractive.

We have proved that Au(s) = u(s) is contraction for all s ∈ [0, S], where S is arbitrary but
fixed. From Banach fixed point theorem (see Chapter 6) existence and uniqueness directly follow.

Theorem 3.3.3. Equation (3.8) has unique solution u ∈ C ([0, S];R+).

Proof. Since (3.8) is equivalent to operator equation (3.26), and operator A(u)(s) is contractive,
existence and uniqueness follow from direct application of the Banach fixed point theorem.

Remark on the applicability of Banach fixed point theorem. Existence and uniqueness
are proved above by application of the Banach fixed point theorem on the whole domain. In [23]
that was prevented by the loss of Lipschitz continuity of the function f(u), caused by the singular
initial condition u(0) = 0. In that study global uniqueness was proved by applying Schauder’s
theorem along with Banach theorem. In our case, problematic initial condition was replaced by
u(0) = α2/2 > 0, Lipshitz continuity of function f(u) was regained, and it was possible to extend
the applicability of Banach theorem to the whole domain.

3.3.1 Estimates on u

In this section, we estimate the range of u(s) from integral form (3.8) of the governing equation.
Since the range depends on s, the domain of its validity wiil be determined as well.

Range

Theorem 3.3.4. The range of u(s) from the equation (3.8) is

u(s) ∈

[
1

2
α2 + (1 +D − α)

s2

2
− (1 +D)

√
ω

α

s3

6
,

1

2
α2 + (1 +D)

s2

2

]
.
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Proof. Let

u(s) ≥ 0 =: u0. (3.30)

It follows that

1 +D −
√

2u ≤ 1 +D,

and therefore upper bound is

u(s) ≤ u1(s) :=
1

2
α2 +

∫ s

0

(1 +D)G(s− t)dt

=
1

2
α2 + (1 +D)

∫ s

0

√
ω

1− e
−s− t√

ω

 dt

=
1

2
α2 + (1 +D)

√
ω

∫ s

0

(
1− e

− s√
ω

)
dt

=
1

2
α2 +

√
ω(1 +D)

(
s− e

− s√
ω
∫ s

0

e

t√
ω dt

)

=
1

2
α2 + (1 +D)

√
ω

(
s−
√
ω

(
1− e

− s√
ω

))

≤ 1

2
α2 + (1 +D)s

√
ω − (1 +D)ω

(
1−

(
1− s√

ω
+

1

2
· s

2

ω

))
=

1

2
α2 +

s2(1 +D)

2
.

For the proof of inequality, see Chapter 6. Similarly, we estimate the lower bound

u(s) ≥ u2(s) :=
1

2
α2 +

∫ s

0

(
1 +D −

√
2u1(t)

)
G(s− t)dt

≥ 1

2
α2 +

∫ s

0

(
1 +D −

√
(1 +D)t2 + α2

)
G(s− t)dt,

(3.31)

where the last inequality follows from

u1 ≤
1

2
α2 + (1 +D)

s2

2
⇐⇒ 2u1 ≤ (1 +D)s2 + α2

⇐⇒
√

2u1 ≤
√

(1 +D)s2 + α2

⇐⇒ 1 +D −
√

2u1 ≥ 1 +D −
√

(1 +D)s2 + α2.
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Applying last inequality to equation (3.31), we obtain

u(s) ≥ 1

2
α2 +

∫ s

0

[
1 +D − α− 1

2

(1 +D)

α
t2

]
G(s− t)dt

≥ 1

2
α2 +

√
ω

α

[
− (1 +D)

s3

6
+ (1 +D)

√
ω
s2

2

+

[
(1 +D)(ω − α) + α2

](
−s+

√
ω(1− e

− s√
ω )

)
︸ ︷︷ ︸

=:W

]
.

Now consider

W =

(
−s+

√
ω(1− e

− s√
ω )

)
=

(
−
√
ω
s√
ω

+
√
ω(1− e

− s√
ω )

)

=
√
ω

[
1− e

− s√
ω − s√

ω

]

≥
√
ω

[
1−

(
1− s√

ω
+

1

2

s2

ω

)
− s√

ω

]

=
√
ω

(
−1

2

s2

ω

)
,

where we used e−x ≤ 1− x+ x2/2 for x ≥ 0, which is proved in Chapter 6. Thus,

u(s) ≥ 1

2
α2 +

√
ω

α

[
− (1 +D)

s3

6
+ (1 +D)

√
ω
s2

2
−
√
ω

[
(1 +D)(ω − α) + α2

]
s2

2ω

]

=
1

2
α2 +

1

2

[
− (1 +D)

√
ω
s3

6
+

[
(1 +D)ω − (1 +D)(ω − α)− α2

]
s2

2

]

=
1

2
α2 + (1 +D − α)

s2

2
− (1 +D)

√
ω

α

s3

6
.

Finally, we obtain

1

2
α2 + (1 +D − α)

s2

2
− (1 +D)

√
ω

α

s3

6
≤ u(s) ≤ 1

2
α2 + (1 +D)

s2

2
. (3.32)

Domain

In this section we use previous estimates to determine domain of the solution of (3.3).

Theorem 3.3.5. The domain of u(s) from the equation (3.8) is s ∈

[
0,

3α(1 +D − α)√
ω(1 +D)

]
.



Proof. From energy estimate, the range of u(s) is

0 ≤ u(s) ≤ 9

8
(1 +D)2,

taking the estimate (3.32) into consideration, it follows that

0 ≤ 1

2
α2 + (1 +D − α)

s2

2
− (1 +D)

√
ω

α

s3

6
≤ 9

8
(1 +D)2.

We shall focus on the left inequality

0 ≤ 1

2
α2 +

s2

2

(
1 +D − α− (1 +D)

s
√
ω

3α

)
.

Exact upper bound smax for the variable s is obtained as solution of the cubic equation

1

2
α2 +

s2

2

(
1 +D − α− (1 +D)

s
√
ω

3α

)
= 0,

and it can be shown that it has only one real solution s > 0. However, we may obtain considerably
simpler estimate on s taking into account that 0 < α2 � 1, and neglecting the term α2/2

0 ≤ s2

2

(
1 +D − α− (1 +D)

s
√
ω

3α

)
.

Therefore,

1 +D − α− (1 +D)
s
√
ω

3α
≥ 0,

which implies,

s ≤ s̃max =
3α(1 +D − α)√

ω(1 +D)
.

Our final estimate on s, including D, reads:

0 ≤ s ≤ 3α(1 +D − α)√
ω(1 +D)

. (3.33)

Note that s̃max < smax.



Chapter 4

Asymptotic and Stability Analysis

In this Chapter we shall focus on quantitative aspects of the Washburn’s equation. Namely, equation
(2.41) is the most general one that describes capillary flow in our context, but there appear many
simplified versions in the literature [34; 9; 24] which are applicable to certain regimes of motion.
Since most of these studies introduce simplifications on a phenomenological basis (see [20] for a
detailed overview), our aim is to arrive to these simplified models through rigorous asymptotic
analysis.

Another aspect of the problem that will be covered is the stability analysis of the stationary solu-
tion. In [34; 23] it was shown that the equilibrium height may be approached either monotonically,
or oscillatory. This is strongly related to stability properties of the stationary point. Therefore, we
shall apply the linear stability analysis to confirm these properties.

Finally, we shall numerically compute the solution of the Washburn’s equation to illustrate the
results of stability analysis, and to compare it with available experimental data.

4.1 Asymptotic analysis

In this Section we provide new scaling of the equation

ω(HH ′)′ +HH ′ +H = 1 +D. (4.1)

with dimensionless parameter ω

ω =
he

gτ2
=

ρ2R4g

64µ2he
. (4.2)

This analysis is motivated by possible further simplifications of equation (4.1) as a consequence of
negligible influence of certain physical mechanisms. In particular, one may recognize the following
terms in (4.1):

(a) ω(HH ′)′ – inertial term,

(b) HH ′ – viscous term,

(c) H – gravity term,

(d) 1 +D – capillary term.
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Equation (4.1) may be simplified if certain term is much smaller than the others, which are in
turn of the same order of magnitude. To that end, new scaling is required becuase (4.1) is only
one possible dimensionless (sclaed) form of the governing equation, and cannot comprise all the
possibilities.

Let us now introduce the new scaling:

h∗ =
H

ĥ
, t∗ =

T

t̂
,

and plug it in equation (4.1) in order to get.

ω
ĥ2

t̂2
d

dt∗

(
h∗
dh∗

dt∗

)
+
ĥ2

t̂
h∗
dh∗

dt∗
+ ĥh∗ = 1 +D. (4.3)

We assume that scaled height and time are power law functions of ω, that is:

ĥ = ωβ , t̂ = ωα.

Next, plug these expressions in equation (4.3),

ω2β+1−2α(h∗h∗′)′ + ω2β−α · h∗h∗′ + ωβh∗ = 1 +D. (4.4)

Note that capillary term on the right hand side is of order of unity, 1 + D = O(1), and cannot be
further scaled. Therefore, other terms in (4.4) have to balanced with it. There are three terms on
the left hand side and therefore, we discuss three possible cases.

Case 1: Negligible gravity. Capillary forces are balanced by inertial and viscous terms,
which are supposed to be of order of unity. In other words, coefficients with inertial and viscous
term has to be equal one, that is:

2β + 1− 2α = 0,

2β − α = 0,

which implies:

α = 1, β =
1

2
.

Therefore, equation (4.4) becomes

(h∗h∗′)′ + h∗h∗′ + ω1/2h∗ = 1 +D.

Letting ω → 0 we obtain the simplified equation for the case of negligible gravity term

(h∗h∗′)′ + h∗h∗′ = 1 +D. (4.5)

Case 2: Negligible inertia. Capillary forces are balanced by viscous and gravitational terms.
Similarly as in the case above, if a small coefficient is with inertial term, viscous and gravitational
terms are of order of unity. It follows that

2β − α = 0,

β = 0.
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which implies,
α = β = 0.

This solution transforms equation (4.4) into

ω(h∗h∗′)′ + h∗h∗′ + h∗ = 1 +D.

Letting ω → 0 we obtain the simplified equation for the case of negligible inertial term

h∗h∗′ + h∗ = 1 +D. (4.6)

Case 3: Negligible viscosity. Capillary forces are balanced by inertial and gravitational
terms. If inertial and gravitational terms are of order of unity, it follows that

2β + 1− 2α = 0,

β = 0.

which implies,

α =
1

2
, β = 0,

and reduces equation (4.4) to

(h∗h∗′)′ + ω−1/2h∗h∗′ + h∗ = 1 +D.

It is obvious that viscous term cannot become negligible when ω → 0. However, it may be neglected
for ω →∞, leading to the following simplified equation

(h∗h∗′)′ + h∗ = 1 +D. (4.7)

Asymptotic analysis presented above relied on the estimate of the dimensionless parameter ω.
Equations (4.5) and (4.6) were derived for ω → 0, which is possible when gravitational acceleration
g or density ρ of the fluid are small relative to other terms in (4.2). On the other hand, equation
(4.7) is obtained for ω →∞, which is possible when viscosity µ of the fluid is small relative to other
terms in (4.2).

4.2 Stability analysis of the Washburn’s equation

Important part of the analysis of dynamical systems is stability analysis of stationary points. The-
oretical background for the stability analysis is provided in Chapter 6.

In the case of Washburn’s equation, stability analysis reveals one interesting feature of the
terminal part of motion of the liquid column. It approaches asymptotically the stable terminal
state (stationary point), but this approach may be either monotonic, or oscillatory. This feature
has been analysed in [23] and confirmed in experiments [34; 18].

In the sequel, we shall recover the results of stability analysis presented in [23] and provide the
phase space analysis of the Washburn’s equation. To that end, we shall consider the equation

HH ′ +H + ω(HH ′)′ = 1 +D, (4.8)

with initial conditions
H(0) = α, H ′(0) = 0, (4.9)

instead of equation (3.3) used in [23].
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Theorem 4.2.1. For equation (4.8) the following holds:

(i) equation (4.8) has unique stationary point

H0 = 1 +D; (4.10)

(ii) the stationary point (4.10) is asymptotically stable;

(iii) parameter ω has a critical value

ω∗ =
1 +D

4
; (4.11)

for ω < ω∗ stationary point is stable node; for ω > ω∗ stationary point is stable focus.

Proof. (i) Consider equation (4.8) and determine the existence of particular (stationary) solution:

H(T ) = H0 = const., H ′(T ) = 0 = const. (4.12)

Substituting (4.12) in (4.8) leads to H0 = 1 +D.
(ii) Introduce the change of variables

H(T ) = x(T ),

H ′(T ) = y(T )

and transform equation (4.8) into a system

x′ = y,

ω(xy)′ + xy = 1 +D.

We obtain a system of differential equations which is linear with respect to first derivatives:

x′ = y,

ω (x′y + xy′) + xy = 1 +D,

and we may solve it with respect to x′ and y′:

x′ = y,

y′ =
1

ω

(
1 +D

x
− y − 1

)
− y2

x
.

(4.13)

Defining

F1(x, y) = y, F2(x, y) =
1

ω

(
1 +D

x
− y − 1

)
− y2

x
,

we may rewrite the system (4.13) in the standard form:

x′ = F1(x, y),

y′ = F2(x, y),
(4.14)

and perform the stability analysis as presented in Chapter 6.
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First, we determine the stationary points of (4.14):

F1(x0, y0) = 0 ⇒ y0 = 0

F2(x0, y0) = 0 ⇒ x0 = 1 +D.
(4.15)

Notice that stationary point (4.15) is equvalent to stationary solution (4.12) with (4.10), obtained
in the proof of (i).

Next, we want to analyze the behavior of the system in the neighborhood of the stationary point
(x0, y0) determined by (4.15). To that end we introduce the perturbations ξ(T ) and η(T ):

x = x0 + ξ = 1 +D + ξ ⇒ x′ = ξ′,

y = y0 + η = η ⇒ y′ = η′,

Substituting these results in (4.13), we obtain the variational equations:

ξ′ = η,

η′ =
1

ω

(
x0

x0 + ξ
− 1− η

)
− η2

x0 + ξ
,

(4.16)

which may be written in standard form:

ξ′ = F1(x0 + ξ, y0 + η),

η′ = F2(x0 + ξ, y0 + η).
(4.17)

In the next step we derive the linearised variational equations:

ξ′ =
∂F1(x0, y0)

∂x
ξ +

∂F1(x0, y0)

∂y
η,

η′ =
∂F2(x0, y0)

∂x
ξ +

∂F2(x0, y0)

∂y
η.

(4.18)

We have to find partial derivatives in order to determine their explicit form

∂F1

∂x
= 0 ⇒ ∂F1(x0, y0)

∂x
= 0,

∂F1

∂y
= 1 ⇒ ∂F1(x0, y0)

∂y
= 1,

∂F2

∂x
=
x0
ω
·
(
− 1

x2

)
+
y2

x2
⇒ ∂F2(x0, y0)

∂x
= − 1

ωx0
,

∂F2

∂y
= − 1

ω
− 2y

x
⇒ ∂F2(x0, y0)

∂y
= − 1

ω
.

Finally, linearised variational equations are:

ξ′ = η,

η′ = − 1

ωx0
ξ − 1

ω
η.

(4.19)



48 CHAPTER 4. ASYMPTOTIC AND STABILITY ANALYSIS

They can be written in the matrix form:

ξ′ = Aξ, ξ =

[
ξ
η

]
, A =

[
0 1

− 1
ωx0 − 1

ω

]
.

stability of the stationary point is determined by the eigenvalues of the matrix A, obtained as
solutions of the characteristic equation det(A− λI) = 0; identity matrix is denoted by I. We have

A− λI =

[
−λ 1

− 1
ωx0 − 1

w − λ

]
,

so that

det(A− λI) = λ

(
1

ω
+ λ

)
+

1

ωx0
= 0.

After minor changes we arrive at quadratic equation

λ2 +
1

ω
λ+

1

ωx0
= 0,

whose solutions are

λ1,2 =

− 1

ω
±
√

1

ω2 −
4

ωx0
2

=

− 1

ω
±

√
1

ω2 −
4ω

ω2x0

2
=

−1±
√

1− 4ω

x0
2ω

. (4.20)

Discriminant K is given by

K = 1− 4ω

x0
= 1− 4ω

1 +D
.

Since ω and D are positive, − 4ω
1 +D < 0 and therefore

1− 4ω

1 +D
< 1.

It follows that both eigenvalues λ1 and λ2 have negative real parts for any value of the parameters
ω and D. Therefore, the stationary point (x0, y0) is asymptotically stable.

(iii) Critical value for ω is obtained when discriminant equals zero, i.e.

1− 4ω

x0
= 0 ⇒ ω∗ =

x0
4

=
1 +D

4
. (4.21)

The character of critical point is determined by discussing sign of the discriminant:

• for ω < ω∗ (0 < K < 1), both eigenvalues are real and negative, λ2 < λ1 < 0, and the critical
point is stable node;

• for ω > ω∗ (K < 0), eigenvalues are complex conjugate, λ2 = λ1, with negative real parts,
Re(λ1) = Re(λ2) < 0; therefore, the critical point is stable focus.

Note that in [23] there is no immersial depth, D = 0, so the only difference is in actual critical
value ω∗. However, it does not effect the type of the critical point.
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4.3 Numerical results

In this Section we show the results of numerical solution of the Washburn’s equation, both in the
time domain and in the phase plane. Also, we validate the model by comparison with experimental
data.

Numerical solutions and phase portraits

We firstly present numerical solutions for test values of the parameter ω in order to confirm the
results of stability analysis.
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Figure 4.1. Stability analysis for immersion depth D = 0 and ω = 0.1.
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Figure 4.2. Stability analysis for immersion depth D = 0 and ω = 1.

In Figures 4.1 and 4.2 numerical solutions are presented for ω = 0.1 and ω = 1, respectively. In
every case immersion depth is set to D = 0. Graphs on the left show dimensionless height H(T ) and

velocity H ′(T ) versus dimensionless time T . For ω = 0.1 <
1

4
, the equilibrium point is approached
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monotonically, while for ω = 1 >
1

4
we have oscillatory behaviour. Figures on the right ilustrate

phase portraits and it is clear that for ω < 1
4 the equilibrium value is stable node, whereas ω > 1

4
demonstrates stable focus.

0 2 4 6 8 10
0

0.5

1

1.5

2

T

H(T)

H’(T)

(a) Dodecane, ω = 7.8 · 10−5
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(b) Dyethil ether, ω = 11.602

Figure 4.3. Dimensionless height(blue) and velocity (red) with respect to dimensionless time, ex-
perimental values from [34]

Different behaviour of the solution for the different values of ω is not only a theoretical result.
There are liquids whose physical properties yield the value of ω in either part of the domain. In [34]
two liquids were considered, dodecane whose value of the parameter was ω ≈ 7.8 ·10−5, and dyethil
ether with ω ≈ 11.602. Dodecane monotonically approaches equilibrium value, that is stable node.
On the other hand, dyethil ether oscillatory approaches equilibrium value, a stable focus. This is
shown on Figure 4.3.

Model validation

In this part, we validate our model by comparing to experimental results given in [34]. The liquid
considered in the experiment was dodecane, with following parameters µ = 1.7 · 10−3[Pas], ρ =
750[kgm−3], γ = 2.5 · 10−2[Nm−1], θ = 17◦, R = 10−4[m]. For these values of parameters we have
ω ≈ 4.59 · 10−5. Column height and time from experiment were casted into dimenionless form with
the following scale (2.38)

H =
h̃

he
, T =

t

τ
,

with

he =
2γ cos (θ)

ρgR
, τ =

8µhe

R2ρg
.

In the literature [23; 34] there is a discussion about the initial conditions and the singularity
which appears at T = 0, which was analyzed in Chapter 2. Since most of the studies use the initial
condition H(0) = 0, we decided to mimic this situation as much as possible. Therefore, numerical
solution was computed for the initial condition α = 0.001.

From the results of numerical computation, shown in Figure 4.4, it may be observed that our
model yields excellent agreement with experimental data for T > 0.025. There appears discrepancy
in the initial phase, 0 < T < 0.025. In [34] this discrepancy was resolved by introduction of an
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Figure 4.4. Short-time limit of capillary rise. Height of the liquid column(black) compared with
experimental values from [34] (red circles).

additional term in the model which describes the turbulent drag. That was motivated by the fact
that singular intial condition H(0) = 0 yields extremely high initial velocity. In our opinion, these
conditions make the assumption of incompressibility questionable. Therefore, possible solution to
this problem is to analyse the flow of a compressible fluid in the initial phase.
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Chapter 5

Conclusion

Mathematical model of capillary rise in the vascular tissue of plants is provided in this work. In
order to give an appropriate theoretical model, we first familiarised ourselves with water transport
mechanisms in plants.

Firstly, we have studied properties of vascular tissue (xylem) and provided overview of Cohesion
Tension Theory. Cohesion Tension Theory suggests that water rise occurs due to differences in
pressure gradient. Moreover, we analysed physical properties of water, which were taken into
consideration in the model.

The literature suggested that Washburn’s equation describes capillary uptake of fluid and it
was derived by applying the Newton’s Law of Motion to a control volume. Our idea was to try
a different approach, i.e. to derive Washburn’s equation using the fundamental equations from
continuum mechanics. In this work we gave an overview of mass and momentum balance laws,
both in local and global form. Since the conducting element was supposed to be modelled as a
pipe, our next task was to present system of equation that describe motion of a fluid (Navier-Stokes
equations) in polar cylindrical coordinates.

Derivation of Washburn’s equation was split into two parts - local and global analysis. Theoreth-
ical assumptions were provided as a part of local analysis. In a global analysis, all the assumptions
were taken into consideration, and Washburn’s equation is obtained by applying a momentum
balance law in global form.

Secondly, our aim was to solve Washburn’s equation with general initial conditions. In order
to simplify the procedure and reduce it to one parameter, we transformed the equation into di-
mensionless form. We used energy estimate to show that solution must be always positive. In
order to formally prove existence and uniqueness by Banach Contraction Principle, we needed to
provide appropriate operator form of the governing equation. After succesfully proving existence
and uniqueness of a solution, we determined domain and range of a solution.

Next, we used scaled form of the Washburn’s equation to analyse certain asimptotic regimes.
In other words, we discussed under which conditions appropriate terms in the equation may be
cancelled out. Additionally, stability analysis was conducted. We determined the stationary point
and showed that liquid column can approach the stable stationary state either monotonically or
oscillatory. Finally, numerical analysis with real experimental data is compared with our model
and high compatibility is observed.
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Chapter 6

Appendix

6.1 Foundations of Functional Analysis

In this chapter we state foundations of Functional analysis as presented in [33].

Definition 6.1.1. A linear space X over K is a set X together with an addition

u+ v, u, v ∈ X

and a scalar multiplication
αu, α ∈ K, u ∈ X,

where all the usual rules are satisfied.

Definition 6.1.2. Linear space X over K is called the normed space if there exists a norm || · || :
X → R+ ∪ {0}, such that for all u, v ∈ X and α ∈ K, the following are true:

1. ||u|| ≥ 0 (i.e., ||u|| is a nonnegative real number).

2. ||u|| = 0 if and only if u = 0.

3. ||αu|| = |α|||u||.

4. ||u+ v|| ≤ ||u||+ ||v|| (triangle inequality).

Definition 6.1.3. Let (un) be a sequence in the normed space X, i.e., un ∈ X for all n. We write

lim
n→∞

un = u ⇐⇒ lim
n→∞

||un − u|| = 0,

and we say that the sequence (un) converges to u.

Definition 6.1.4. The sequence (un) in the normed space X is called a Cauchy sequence iff for
each ε > 0 there is a number n0(ε) such that ||un − um|| < ε for all n,m ≥ n0(ε).

Proposition 6.1.0.1. In a normed space, each convergent sequence is Cauchy.

Definition 6.1.5. The normed space X is a Banach space if and only if each Cauchy sequence is
convergent.
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Definition 6.1.6. Let X be a normed space. For fixed u0 ∈ X and ε > 0, the set

Uε(u0) := {u ∈ X : ||u− u0|| < ε}

is called an ε-neighbourhood of the point u0.
The subset M of X is called open iff for each point u0 ∈M , there is some ε-neighbourhood of the
point Uε(u0) such that

Uε(u0) ⊆M.

The subset M of X is closed if and only if its complement is open.

Proposition 6.1.0.2. Let M ⊆ X, where X is a normed space. Then the following are equivalent:

• M is closed

• It follows from un ∈M for all n and un → u as n→∞, that u ∈M .

Definition 6.1.7. Let M and Y be sets. An operator

A : M → Y

associates to each point u in M a point v denoted by v = Au.

Definition 6.1.8. Let M be a set in a normed space.

• M is relatively sequentially compact if and only if each sequence (un) in M has a convergent
subsequence u′n → u as n′ →∞.

• M is sequentially compact if and only if each sequence (un) has a convergent subsequence
u′n → u as n′ →∞ such that u ∈M .

• M is bounded if and only if there is a number r ≥ 0 such that ||u|| ≤ r for all u ∈M .

Proposition 6.1.0.3. The set M is compact if and only if it is relatively compact and closed.

Definition 6.1.9. Let X and Y be normed spaces over K. The operator is sequentially continuous
if and only if, for each sequence (un) in M ,

lim
n→∞

= u, u ∈M ⇒ lim
n→∞

Aun = Au.

The operator A is called continuous if and only if for each point u ∈ M and each number ε > 0,
there is a number δ(ε, u) > 0 such that

||v − u|| < δ(ε, u),∈M ⇒ ||Av −Au|| < ε.

In addition, if it is possible to choose the number δ(ε, u) > 0 in such a way that it does not depend
on the point u ∈M , then the operator A is uniformly continuous.

Proposition 6.1.0.4. We are given the operator A : M ⊆ X → Y , where X and Y are normed
spaces over K. Then the following two statements are equivalent:

• A is continuous.
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• A is sequentially continuous.

Definition 6.1.10. Let X and Y be normed spaces over K. The operator

A : M ⊆ X → Y

is compact if and only if

• A is continuos, and

• A transforms bounded sets into relatively compact sets.

The second property is equivalent to the following: If (un) is a bounded sequence is M , then there
exists a subsequence (u′n) of (un) such that the sequence (Au′n) is convergent in Y .

Definition 6.1.11. Let X and Y be normed spaces over K. The operator A : M ⊆ X → Y is
called Lipschitz continuous if and only if there is a number L > 0 such that

||Av −Au|| ≤ L||v − u||, for all u, v ∈M.

Each Lipschitz continuous operator is uniformly continuous.

Definition 6.1.12. The set M in a linear space is convex if and only if

u, v ∈M, and 0 ≤ α ≤ 1⇒ αu+ (1− α)v ∈M.

We want to solve the operator equation:

u = Au, u ∈M, (6.1)

by means of the following iteration method:

un+1 = Aun, n = 0, 1, . . . , (6.2)

where u0 ∈M . Each solution of (6.1) is called a fixed point of the operator A.

Theorem 6.1.1 (Banach fixed point theorem). We assume that:

• M is a closed nonempty set in the Banach space X over K, and

• the operator A : M →M is k-contractive, i.e. by definition

||Au−Av|| ≤ k||u− v|| for all u, v ∈M

and fixed k, 0 ≤ k < 1. Then, the following hold true:

• Existence and uniqueness. The original equation (6.1) has exactly one solution u, i.e. the
operator A has exactly one point u on the set M .

• Convergence of the iteration method. For each given u0 ∈ M , the sequence (un) constructed
by (6.2) converges to the unique solution u of equation (6.1).
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• Error estimates. For all n = 0, 1, . . . we have the a priori estimate

||un − u|| ≤
kn

k − 1
||u1 − u0||,

and the a posteriori error estimate

||un+1 − u|| ≤
k

k − 1
||un+1 − un||.

• Rate of convergence. For all n = 0, 1, . . . we have

||un+1 − u|| ≤ k||un − u||.

6.1.1 Equivalent norms

Definition 6.1.13. Let X be an N -dimensional linear space over K, where N = 1, 2, . . . By a basis
{e1, . . . , eN} of X we understand a set of elements e1, . . . , eN of X such that, for each u ∈ X

u = α1e1 + · · ·+ αNaN

where the numbers α1, . . . , αN ∈ K are uniquely determined by u. The numbers α1, . . . , αN are
called the components of u.

Proposition 6.1.1.1. Let N = 1, 2, . . . . In each N -dimensional linear space X over K there exists
a basis {e1, . . . eN}.

Definition 6.1.14. The two norms || · || and || · ||1 on the normed space X are equivalent if and
only if there are positive numbers α and β such that

α||u|| ≤ ||u||1 ≤ β||u|| for all u ∈ X.

Proposition 6.1.1.2. Two norms on a finite-dimensional linear space X over K are always equiv-
alent.

Definition 6.1.15. Bielecki’s norm of function u(s) is defined as

‖u(s)‖B := sup
s∈[0,S]

|e−γsu(s)|, γ > 0, S > 0.

In the sequel we will need the fact that Bielecki’s norm and supremum norm are equivalent on
C([0, S],R+).

Theorem 6.1.2. Bielecki’s norm and supremum norm of u(s) are equivalent on [0,∞).

Proof. Supremum norm of u(s) is defined as

‖u‖∞ sup
s∈[0,S]

|u|.

We will bound |e−γsu(s)|.
|e−γsu(s)| = e−γs|u(s)| ≤ |u(s)|.
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Taking supremum on both sides

sup
s∈[0,S]

|e−γsu(s)| ≤ sup
s∈[0,S]

|u(s)|,

that is,
‖u‖B ≤ ‖u‖∞. (6.3)

On the other hand, for s ∈ [0, S] it follows that e−αs ≥ e−αS .

|e−γsu(s)| = e−γs|u(s)| ≥ e−γS |u(s)|.

Taking supremum on both sides

sup
s∈[0,S]

|e−γsu(s)| ≥ e−γS sup
s∈[0,S]

|u(s)|,

which gives
‖u‖B ≥ e−γS‖u‖∞. (6.4)

Combining (6.3) and (6.4), we obtain

e−γS‖u‖∞ ≤ ‖u‖B ≤ ‖u‖∞, (6.5)

which implies equivalence of these norms.

In order to apply Banach fixed point theorem we need a closed subset M ⊂ C([0, S],R+).

Lemma 6.1.3. Set M defined as

M =

{
u ∈ C([0, S],R+) : ‖u‖B ≤

9

8
(1 +D)2, D > 0

}
is closed.

Proof. Suppose that {un} ⊂ M and un → g in C([0, S],R+). We claim that ‖g‖B ≤ 9
8(1 + D)2.

Suppose not, ‖g‖B > 9
8(1 +D)2. Let δ = ‖g‖B − 9

8(1 +D)2, that is

‖g‖B = δ +
9

8
(1 +D)2. (6.6)

Then there is N such that for n ≥ N ,

‖un − g‖ ≤
δ

2
.

By the triangle inequality

‖g‖B = ‖g − un + un‖B ≤ ‖g − un‖B + ‖un‖B ≤
δ

2
+

9

8
(1 +D)2.

It is contradiction with (6.6). Hence, M is closed.
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6.2 Inequalities with series

Theorem 6.2.1 (Mean value theorem). If f is a continuous function on the closed interval [a, b]
and differentiable on the open interval (a, b), then there exist a point c in (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Lemma 6.2.2. For x > 0 it holds that

√
1 + x < 1 +

x

2
.

Proof. If x > 0 we apply Mean Value Theorem to f(x) =
√

1 + x on the interval [0, x]. There exist
c ∈ [0, x] such that √

1 + x− 1

x
=
f(x)− f(0)

x
= f ′(c) =

1

2
√

1 + c
<

1

2
.

The last inequality holds because c > 0. Multiplying the obtained inequality by positive number x
gives √

1 + x < 1 +
x

2
.

Theorem 6.2.3 (Taylor’s theorem). Let f : R→ R be k+1-times differentiable with all derivatives
continuous. Fix x0 and let

Pk(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ fk(x0)

k!
(x− x0)k

Rk(ξ;x) =
f (k+1)(ξ)

(k + 1)!
(x− x0)k+1.

Then
f(x) = Pk(x) +Rk(ξ;x)

for some ξ ∈ (x0, x). Note that Pk is interpreted as approximation to f , while Rk(ξ;x) is interpreted
as remainder.

Corollary 6.2.3.1. If Rk(ξ;x) ≤ 0 for all ξ ∈ (x0, x), then f(x) ≤ Pk(x). Similarly, if Rk(ξ;x) ≥ 0
for all ξ ∈ (x0, x), then f(x) ≥ Pk(x).

We were considering the function

e−x =

k∑
i=0

(−x)i

i!︸ ︷︷ ︸
Pk(x)

+ (−1)k+1 e
−xξxk+1

(k + 1)!︸ ︷︷ ︸
Rk(ξ;x)

• Even k:

Rk ≤ 0 =⇒ e−x ≤
k∑
i=0

(−x)i

i!
.
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• Odd k:

Rk ≥ 0 =⇒ e−x ≥
k∑
i=0

(−x)i

i!
.

Thus,

1− x+
1

2
x2 − 1

6
x3 ≤ e−x ≤ 1− x+

1

2
x2.

6.3 Foundations of stability analysis

Theory of stability is concerned with qualitative properties of solutions of differential equations
which are subject to perturbations. We shall present necessary definitions and results related to
stability analysis of stationary solutions of autonomous differential systems, as given in [7] and [10].

Definition of stability

Consider the system of differential equations

dx

dt
= F(x), x ∈ Rn. (6.7)

The system (6.7) is to be autonomous since the right hand side does not depend on independent
variable t, usually considered to be time variable.

Definition 6.3.1. A point X ∈ Rn is said to be the stationary or equilibrium point of the system
(6.7) if F(X) = 0.

Lemma 6.3.1. If X ∈ Rn is a stationary point of the system (6.7), then x(t) = X is its particular
solution, called stationary or equilibrium solution.

Consider a solution x(t), t > 0, of the system (6.7) for initial conditions x(0) = x0. We now
give the definitions of stability in the sense of Lyapunov.

Definition 6.3.2. Let X ∈ Rn be a stationary point of the system (6.7).

(i) X is said to be stable if for all ε > 0 there exists δ(ε) > 0, such that

‖x(t)−X‖ < ε,

for every x0 which satisfies ‖x0 −X‖ < δ(ε).

(ii) X is said to be asymptotically stable if it is stable and moreover

lim
t→∞

x(t) = X.

Stability of the stationary point, in the sense defined above, is considered to be a local property
since it is assumed that ε is small. Therefore, it is usually regarded as stability with respect to
small perturbations in initial conditions. Definition given above deals with stability of the stationary
point, but it can be easily generalized to stability of any particular solution of the system (6.7), see
[10].

There are several methods/criteria for detrmination whether a stationary point is stable [7; 27].
In the sequel we shall focus on linear stability analysis of stationary points for second-order systems.
In this case it is possible to provide detailed characterization of the stationary points based upon
local behaviour of the solutions.
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Second-order autonomous differential systems

An important class of systems of ordinary differential equations is that of second-order autonomous
systems,

dx

dt
= F(x), (6.8)

where, x = [x, y]T and F(x) = [F (x, y), G(x, y)]T . This can be written in component form:

dx

dt
= F (x, y),

dy

dt
= G(x, y). (6.9)

Properties are investigated both by analytical and geometrical methods. The phase plane is used
for examining orbits in the (x, y)-plane, the curves with the equation

dy

dx
=
G(x, y)

F (x, y)
.

Classification of equilibrium points is determined by the local behaviour of orbits.
Suppose that the system (6.8) has a point X of equilibrium, such that F(X) = 0, where

X = [X,Y ]T . Without loss of generality we may translate the equilibrium point to the origin so
that X = 0. Then F (0, 0) = G(0, 0) = 0. To consider orbits of (6.8) near 0, assume that F is
continuously twice differentiable, so

F (x, y) = ax+ by +O(x2 + y2),

G(x, y) = cx+ dy +O(x2 + y2) x, y → 0,

where a = [∂F/∂x]0, b = [∂F/∂y]0, c = [∂G/∂x]0, and d = [∂G/∂y]0. Then the behaviour of the
system (6.8) may in general be approximated locally by the linearised system

dx

dt
= Jx, (6.10)

where the column vector x = [x, y]T and the 2× 2 matrix

J =

[
a b
c d

]
.

Equilibrium points of the system (6.10) are analysed according to properties of J.
The linear system (6.10) with constant coefficients can be solved, in general, by seeking solutions

x(t) = estu, for a constant vector u. Then

Ju = su,

i.e. s is the eigenvalue of J and u is the corresponding eigenvector. Therefore,

0 =

∣∣∣∣a− s b
c d− s

∣∣∣∣
= s2 − ps+ q, (6.11)
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where p = tr(J) = a+ d and q = det(J). Therefore, s = s1 or s2, where

s1, s2 =
1

2
{p±

√
(p2 − 4q)}.

Therefore, if p2 6= 4q, the general solution of (6.10) is

x(t) = C1e
s1t[u1, v1]T + C2e

s2t[u2, v2]T (6.12)

for arbitrary constants C1 and C2, where the eigenvalue sj belongs to eigenvector uj = [uj , vj ]
T

for j = 1, 2, ... where
auj + bvj = sjuj , cuj + dvj = sjvj .

The explicit solution, and the solution for the case p2 = 4q of a double eigenvalue, enable us to
classify all the equilibrium points as follows:

1. Node: p2 > 4q and q > 0. Here s1, s2 are real, distinct and of the same sign. We take s1 > s2
without loss of generality. Therefore,

x(t) ∼ C1e
s1t[u1, v1]T as t→∞

if C1 6= 0, and so
y

x
→ v1

u1
as t→∞

This describes a node, which is stable if s1 < 0 and so if p < 0 and unstable if p > 0.

Figure 6.1. Phase portrait of linear sistem in the neighbourhood of (a) stable and (b) unstable
node. [27]
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Figure 6.2. Phase portrait of linear sistem in the neighbourhood of saddle. [27]

2. Saddle point: p2 > 4q and q < 0. Here s1, s2 are real and of opposite signs, so we may take
s1 > 0 > s2 without loss of generality. The orbits near 0 resemble hyperbolae.

3. Focus: p2 < 4q and p 6= 0. Here s1 and s2 are a complex conjugate pair with non-zero real

part, so we may take s1 = s2 = 1
2{p+ i

√
(4q − p2)}. Then,

x(t) = Ce
pt
2 [cos (βt+ γ) ,K cos (βt+ γ + δ)]T

where C, γ are arbitrary real constants, β =

√
q − p2

4 and K, δ are real constants determined

by a, b, c and d. Therefore, the origin is a stable point of equilibrium if p < 0 and unstable if
p > 0. These are typical cases for which no two eigenvalues are equal and the real part of no
eigenvalue iz zero.There are a few special cases that remain to be described.

Figure 6.3. Phase portrait of linear sistem in the neighbourhood of (a) stable and (b) unstable
focus. [27]
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4. Improper node: p2 = 4q and q > 0. Here s1 = s2 is real. The solution can in general to
be shown to give a limiting form of a node because the lines y = v1x/u1 and y = v2x/u2
coincide. The node is stable if p < 0 and unstable if p > 0.

5. Centre: p2 < 4q and p = 0, i.e. p = 0 and q > 0. Here s1, s2 = ±i√q are purely imaginary.
Then

x(t) = [C cos (t
√
q + γ) ,K cos (t

√
q + γ + δ)]T

where C, γ are arbitrary real constants and K, δ are real constants determined by a, b, c and
d. The orbits are ellipses with centre at the origin.

Figure 6.4. Phase portrait of linear sistem in the neighbourhood of centre. [27]

6. Degenerate node: p2 > 4q and q = 0, i.e. p2 > 0 and q = 0. This is the limiting case of 1)
above, for which we may put s1 = 0 and s2 = p. Therefore,

x(t) = C1[u1, v1]T + C2e
pt[u2, v2]T

and the orbits are straight lines parallel to y = v2x/u2, approaching the line y = u1x/v1 as
t→∞ if p < 0 and leaving it if p > 0.

Figure 6.5. Phase portrait of linear sistem in the neighbourhood of (a) stable and (b) unstable
degenerate node. [27]

7. Source and sink: p2 = 4q, q > 0, b = c = 0 and a = d 6= 0. Here dx/dt = ax, dy/dt = ay.
Therefore x(t) = x0e

αt and y(t) = y0e
αt. This gives radial orbits, the origin being stable (a

sink) if a < 0 and unstable (a source) if a > 0.



Note that a stable node and a stable focus are attractors and an unstable node and an unstable
focus are repellers. A saddle point is neither attractor nor repeller. A centre although stable is not
asymptotically stable and therefore not an attractor.

saddle saddle

stable node unstable node

stable focus unstable focus

UNSTABLE

stable 
degenerate node

non-isolated
node

centre

non-isolated
node

ASYMPTOTICALLY
STABLE

UNSTABLE

unstable 
degenerate node

Figure 6.6. Classification of critical points in (p, q)-plane (Poincaré diagram). [27]
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Isidora Rapajić was born on October 3, 1997 in Zrenjanin, Serbia. She
received her Bachelor’s degree in General Mathematics in 2019 from the
Faculty of Mathematics, Natural Sciences and Information Technologies
(University of Primorska, Slovenia).

The same year she enrolled in Master’s programme of Applied Mathe-
matics at the Faculty of Sciences, University of Novi Sad, Serbia. Isidora
was participant of ECMI Modelling Week in July 2020 and worked on a
project “Capillary moisture uptake in wood and trees”, which motivated
this thesis.

In June 2021 she passed all exams and satisfied the requirements for
specialisation in Technomathematics.

Novi Sad, 2021 Isidora Rapajić
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Fizički opis rada: (5/63/34/0/14/8/1)
(broj poglavlja/strana/lit citata/tabela/slika/grafika/priloga)
FO

Naučna oblast: Matematika
NO
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Članovi komisije:
KO
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