
University of Novi Sad

MASTER THESIS

Clustering Gene Expression Data -
Comprehensive Evaluation

Author:

Nataša Topić

Supervisor:

Tatjana Lončar-Turukalo, PhD

Faculty of Sciences
Department of Mathematics and Informatics

June, 2021

”Go down deep enough into anything and you will find mathematics.”
Dean Schlicter

Abstract

Linking phenotype disease characteristics with biological data at cellular and
sub cellular level, has the potential to uncover underlying causes of multiple
diseases, including cancer. Gene expression relates to the process by which
cells transfer their genetic information from deoxyribonucleic acid into a pro-
tein molecule with biological activity. Levels of gene expressions are mea-
sured most commonly using two microarray technologies (Affymetrix and
cDNA) to analyze gene functions, regulatory mechanisms and their changes
in disease. In this work 33 gene expression data sets of tissues with different
types of cancer is analyzed using unsupervised clustering approaches. The
thesis evaluates the performance of K-means, Spectral Co-Clustering and
Spectral Bi-Clustering approaches, exploring the potentials of simultaneous
clustering of samples and genes. Separate performance analysis was done on
data sets from Affymetrix and cDNA chip platforms to examine the possible
influence of the microarray technology.

Based on two validation criteria (Adjusted Rand Index and Silhouette
Index) there is a noticeable difference between the results obtained over
two chip platforms. The evaluated indices are commonly higher in case of
Affymetrix data sets. Since a large collection of data sets and different chip
technologies are used, no universal recommendation can be made. In some
data sets partitions with high ARI, i.e. aligned with the ground truth labels,
are achieved already with K-means clustering, while some data sets have
very heterogeneous samples within classes that hampers clustering based
on sample similarity metrics. Biclustering approaches offer possibility of
grouping both samples and genes, and potential to uncover some clustering
patterns of the genes typical of the certain cancer subtypes.

Acknowledgements

I would like to express my sincere gratitude to my supervisor prof. Tat-
jana Lončar-Turukalo for support, directions and insightful comments. Her
knowledge and experience have encouraged me during this research.

I am also very grateful to my friends for the wonderful times we shared
during studies.

Finally, I would especially like to thank my family for their love, unfailing
support and help. I am grateful to my brother for always being there for
me. I am forever indebted to my parents for their encouragement, without
which I would never have enjoyed so many opportunities that have made
me who I am. Nothing would be possible without my family, and I dedicate
this thesis to them.

Contents

1 Motivation and Introduction 5
1.1 Motivation . 5
1.2 Introduction . 6

1.2.1 Clustering . 6
1.2.2 Biclustering . 6

2 Materials and Methods 12
2.1 Data Description . 12

2.1.1 Microarray Technology 12
2.1.2 Data Sets . 13

2.2 Normalization . 14
2.3 Clustering Techniques . 15

2.3.1 K-means algorithm 15
2.3.2 Spectral Clustering 16
2.3.3 Spectral Co-Clustering algorithm 17
2.3.4 Spectral Bi-Clustering algorithm 26

2.4 Cluster Validation . 32
2.4.1 The Adjusted Rand Index 32
2.4.2 Silhouette Index . 34
2.4.3 Experimental Setup 35

3 Results 37
3.1 Data Preprocessing . 37

3.1.1 Data Sets and Ground Truth Labels 37
3.1.2 Outliers . 39
3.1.3 Normalization . 40

3.2 K-means . 42
3.3 Clustering Results . 45

4 Conclusions 53

Bibliography 55

Biography 57

1

List of Tables

2.1 Description of Datasets; N-number of available samples, k-
class number, m-the original dimensionality, d-dimensionality
after feature reduction . 14

2.2 Notation for the contingency table for comparing two partitions 33
2.3 2× 2 Contingency Table Representation of the Partition Co-

Occurrence Table . 33

3.1 Average percantages of outliers per each Affymetrix and cDNA
data set . 40

2

List of Figures

1.1 An example of Perfect Constant Bicluster 7
1.2 An example of Bicluster with Constant Rows 8
1.3 An example of Bicluster with Constant Columns 8
1.4 An example of Bicluster with Coherent Values (addictive model) 8
1.5 An example of Bicluster with Coherent Values (multiplicative

model) . 8
1.6 An example of Bicluster with Overall Coherent Evolution . . 9
1.7 An example of Bicluster with Coherent Evolution on the Rows 9
1.8 An example of Bicluster with Coherent Evolution on the Columns

9
1.9 An example of Order Preserving Sub-Matrix (OPSM) 9
1.10 Bicluster structure. (a) Single bicluster, (b) exclusive row

and column biclusters, (c) checkerboard structure, (d) ex-
clusive rows biclusters, (e) exclusive columns biclusters, (f)
nonoverlapping biclusters with tree structure, (g) nonoverlap-
ping nonexclusive biclusters, (h) overlapping biclusters with
hierarchical structure, and (i) arbitrarily positioned overlap-
ping biclusters . 10

2.1 (a) data before clustering, (b) k-means, (c) spectral clustering 17
2.2 Rearranged data matrix to show biclusters 18
2.3 Bipartite graph . 20
2.4 Original data matrix . 27
2.5 Rearranged data matrix to show biclusters 27
2.6 Checkerboard matrix before normalization 29
2.7 Checkerboard matrix after normalization (Independent rescal-

ing) . 29
2.8 Checkerboard matrix after normalization (Bi-stochastization) 30
2.9 Checkerboard matrix after normalization (Log-interactions) . 31
2.10 An illustration of the elements involved in the computation

of s(i), where the object i belongs to cluster Ci[20]. 35

3.1 Alizadeh v2 and Lapointe v2 data sets after Z-normalization. 37
3.2 Gordon and Nutt v2 data sets after SN. 38
3.3 Gordon and Nutt v2 data sets after Range Normalization. . 38
3.4 SI values for ground truth classes. First row: cDNA data

sets after Z-normalization. Bottom left: Affymetrix data sets
after SN. Bottom right: Affymetrix data sets after Range
Normalization . 39

3

3.5 Distribution of Bredel and Tomlins v1 data sets. 39
3.6 Distribution of Armstrong v2 and Singh data sets. 40
3.7 Chen data set before and after Z-normalization. 41
3.8 Pomeroy v1 data set before and after SN. 42
3.9 Chowdary data set before and after Range Normalization. . 42
3.10 Box plots for K-means ARI over each data set. First row de-

picts cDNA data sets with Z-normalization. Affymetrix data
sets are in the last two rows with SN and Range Normaliza-
tion, respectively. 44

3.11 Box plots for K-means SI over each data set. First row depicts
cDNA data sets with Z-normalization. Affymetrix data sets
are in the last two rows with SN and Range Normalization,
respectively. 45

3.12 Heatmaps of Bhattacharjee 2001 data set. First row: original
data; second row: original data after Bi-Clustering; third row:
data after Z-normalization; fourth row: SN data after Co-
Clustering; fifth row: data after RN; last row: RN data after
Co-Clustering. 46

3.13 Heatmaps of Singh data set. First row: original data; second
row: original data after Bi-Clustering; third row: data after Z-
normalization; fourth row: SN data after Co-Clustering; fifth
row: data after RN; last row: RN data after Co-Clustering. . 47

3.14 Heatmaps of Khan data set. First row: original data; second
row: original data after Bi-Clustering; third row: data after
Z-normalization; fourth row: Z-normalization data after Co-
Clustering. 48

3.15 Heatmaps of Lapointe v1 data set. First row: original data;
second row: original data after Bi-Clustering; third row: data
after Z-normalization; fourth row: Z-normalization data after
Co-Clustering. 49

3.16 Mean ARI for different approaches for all datasets. 50
3.17 Box plots for mean ARI for different approaches aggregated

over all datasets. 50
3.18 Mean SI for different approaches for all datasets. 51
3.19 Box plots for mean SI for different approaches aggregated over

all datasets. 51
3.20 Column-wise mean SI for different approaches for all datasets. 52
3.21 Box plots for column-wise mean SI for different approaches

aggregated over all datasets. 52

Chapter 1

Motivation and Introduction

1.1 Motivation

Some cancers are a preventable disease if they are diagnosed in the early
stage. There are various types of cancer, affecting blood, liver, lung, brain
and other tissues. Since some types of cancer can be better treated with cer-
tain drugs than others, gene expression profiling can allow the development
of more appropriate personalized treatment plans for patients.

Gene expression relates to the process by which cells transfer their genetic
information in deoxyribonucleic acid (DNA) into a protein molecule with bi-
ological activity through transcription and translation in the life process [1].
Levels of gene expressions are measured under specific experimental condi-
tions to analyze cancer subtypes, gene functions and regulatory mechanisms.
In order to collect large gene expression data sets microarray technology is
used. Clustering is commonly used to identify genes with similar expressions
across different conditions or for grouping patients (samples) based on the
similar expressions of genes. However, traditional clustering analysis can not
discover the gene expression pattern visible in only a subset of samples. The
aim of this thesis is to explore methods that enable clustering of both genes
and samples at the same time. This would result in identification of groups
of samples whose subset of genes exhibits similar expression patterns and
groups of genes that share similar expression patterns in a subset of sam-
ples. This information can be used to link phenotype disease characteristics
with gene expression profiles, possibly leading to the discovery of new cancer
subtypes. Biclustering [2] is used to find this local structure inside the gene
expression matrix. This approach is well suited to gene expression data be-
cause genes are not related across all samples, and vice versa. Biclustering
algorithms belong to a distinct class of clustering algorithms that perform
simultaneous clustering of both rows and columns of the data matrix.

5

1.2 Introduction

1.2.1 Clustering

Clustering is an unsupervised method for grouping n objects with m fea-
tures into k sets of disjoint groups called clusters, where similarity between
objects within a cluster is maximized and similarity between objects in sep-
arate clusters is minimized. One of the major points in analysis of gene
expression data is a need to cluster genes as well as samples. Biclustering
is commonly used to achieve clustering of both column-wise (features) and
row-wise (samples) at the same time.

1.2.2 Biclustering

Biclustering (co-clustering, block clustering, two-mode clustering) is a data
mining technique which allows simultaneous clustering of the rows and columns
of a data matrix. Unlike clustering methods, where all features are consid-
ered, biclustering methods can find local patterns in only a subset of fea-
tures. Consider a data matrix A ∈ Rn×m, with a set of rows R, and a set of
columns C, and where aij represents the element in ith row and jth column.
A bicluster Aq is defined as Aq = (Rq, Cq) with Rq ⊆ R and Cq ⊆ C.

A number of biclustering algorithms have been proposed so far, but one of
the earliest and most cited formulations was proposed by Hartigan [3]. There
are many diverse areas where biclustering can be applied, and a typical one
is gene expression analysis. With a microarray technology the mRNA levels
can be measured in a huge number of genes, and produce a data set of gene
expression profiles that is represented with a large data matrix. Columns of
the data matrix represent genes, which usually outnumber rows represent-
ing different samples (patient tissue). In analysis of gene expression data,
we can identify subsets of genes whose expression levels exhibit a coherent
pattern under a subset of samples.

Bicluster Type

Different biclustering algorithms search for different types of biclusters. In
the following, four major classes are presented:
1. Biclusters with constant values.
2. Biclusters with constant values on rows or columns.
3. Biclusters with coherent values.
4. Biclusters with coherent evolutions.

1. Biclusters with Constant Values
Natural way for a biclustering algorithm to find constant biclusters is to try
to reorder columns and rows of the data matrix in order to group together
columns and rows with similar values and form biclusters. Bicluster is a
perfect constant bicluster if it is a submatrix of a data matrix Aq = (Rq, Cq)
where all values aij are equal, for all i ∈ Rq and j ∈ Cq: aij = µ (Figure
1.1). This approach gives good results only in absence of noise in data. In

practice noise free data are rare, as e.g. the measurement process itself usu-
ally introduces some noise, so more sophisticated methods have to be used.
Because real data are usually corrupted by noise, aij can be represented as
ηij + µ, where η is the noise term. Both identification and evaluation of
constant biclusters is based on the analysis of variance. After splitting the
original data matrix into a set of biclusters, Hartgan’s [3] algorithm, known
as Block Clustering, uses variance to evaluate the quality of each bicluster
(Rq, Cq):

V AR(Rq, Cq) =
∑

i∈R,j∈C

(aij − aRC)2, (1.1)

where aRC represents the mean of all elements in the bicluster. So, a perfect
bicluster is a matrix with variance zero. An ideal bicluster might be one
with just one element aij, to avoid this Hartigan assumes that there are k
biclusters within the data matrix and after finding these k biclusters, the
algorithm terminates. For evaluation in this case the overall variance of k
biclusters is used:

V AR(Rq, Cq)k =
k∑
l=1

∑
i∈R,j∈C

(aij − aRC)2. (1.2)

1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

Figure 1.1: An example of Perfect Constant Bicluster

2. Biclusters with Constant Values on Rows or Columns
Perfect bicluster with constant rows is a submatrix of a data matrix Aq =
(Rq, Cq) (Figure 1.2) where all the values within the bicluster can be obtained
using:

aij = µ+ αi
aij = µ× αi

(1.3)

where µ is the typical value within the bicluster and αi is the adjustment
for row i ∈ Rq.
Perfect bicluster with constant columns is a submatrix of a data matrix
Aq = (Rq, Cq) (Figure 1.3) where all the values within the bicluster can be
obtained using:

aij = µ+ βj
aij = µ× βj

(1.4)

where µ is the typical value within the bicluster and βj is the adjustment
for column j ∈ Cq.
In identification of these biclusters the variance or similarities between the
rows and columns of the data matrix can not be used, but instead normal-
ization of the rows or the columns. The normalization is done using row

mean and column mean. In this way biclusters will be transformed (Figures
1.2 and 1.3) into constant biclusters (Figure 1.1). After this normalization
step biclustering algorithm can be used.

1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0

Figure 1.2: An example of Bicluster
with Constant Rows

1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0

Figure 1.3: An example of Bicluster
with Constant Columns

3. Biclusters with coherent values
Bicluster with coherent values based on additive or multiplicative model is a
subset of rows and a subset of columns, whose values aij are predicted using:

aij = µ+ αi + βj
aij = µ× αi × βj

(1.5)

where µ is the typical value within the bicluster, αi is the adjustment for row
i ∈ Rq and βj is the adjustment for column j ∈ Cq. The bicluster in Figure
1.4 is an example of biclusters with coherent values on rows and columns.
Values of this bicluster can be described using an additive model. Figure 1.5
represents another biclustering approach, this is an example of a bicluster
with coherent values on both rows and columns based on a multiplicative
model. If we consider Equations (1.3) and (1.4) we can conclude that these
two are special cases of Equation (1.5) where αi = 0 and βj = 0 in additive
case, or αi = 1 and βj = 1 in multiplicative case, respectively.

1.0 2.0 5.0 0.0
2.0 3.0 6.0 1.0
4.0 5.0 8.0 3.0
5.0 6.0 9.0 4.0

Figure 1.4: An example of Biclus-
ter with Coherent Values (addictive
model)

1.0 2.0 0.5 1.5
2.0 4.0 1.0 3.0
4.0 8.0 2.0 6.0
3.0 6.0 1.5 4.5

Figure 1.5: An example of Biclus-
ter with Coherent Values (multi-
plicative model)

A few biclustering algorithms assume either additive or multiplicative
models. One of them is the biclustering algorithm introduced by Kluger et
al. [4]. They looked for a hidden checkerboard structure in the data matrix.
That kind of structure will be more obvious if the particular normalization
is used first. After normalization it is assumed that values within the biclus-
ter can be obtained using the multiplicative model (Equation(1.5)). This
algorithm will be explained in detail in Chapter 2.

4. Biclusters with Coherent Evolutions
In this class, biclustering algorithms try to find biclusters with coherent be-
haviors regaradless of the exact numeric values in the data matrix. Elements
of the data matrix are viewed as symbolic values. Problem of finding coher-
ent evolutions can be observed on the entire bicluster (Figure 1.6), on the
rows (Figure 1.7) or on the columns of bicluster (Figure 1.8).

S1 S1 S1 S1
S1 S1 S1 S1
S1 S1 S1 S1
S1 S1 S1 S1

Figure 1.6: An example of Bicluster with Overall Coherent Evolution

S1 S1 S1 S1
S2 S2 S2 S2
S3 S3 S3 S3
S4 S4 S4 S4

Figure 1.7: An example of Biclus-
ter with Coherent Evolution on the
Rows

S1 S2 S3 S4
S1 S2 S3 S4
S1 S2 S3 S4
S1 S2 S3 S4

Figure 1.8: An example of Biclus-
ter with Coherent Evolution on the
Columns

Another bicluster formulation is given by Ben-Dor et al.[5] where they
represent bicluster as an order-preserving submatrix (OPSM). The bicluster
is defined as a submatrix whose row values induce the same linear ordering
across the columns. For a submatrix we can say that it is order-preserving
if there is a permutation of its columns under which the sequence of values
in every row is strictly increasing. In Figure 1.9 we can see one example of
this kind of matrix.

70 13 19 10
49 40 49 35
40 20 27 15
90 15 20 12

Figure 1.9: An example of Order Preserving Sub-Matrix (OPSM)

Bicluster Structure

There are two classes of biclustering, based on its structure:
1. matrix has only one bicluster (Figure 1.10 (a))
2. matrix has r biclusters A = {A1, ..., Aq, ..., Ar}.
In the second case there exists several subclasses (Figure 1.10 (b), (c), (d),
(e), (f), (g), (h), (i)):

(b) Exclusive row and column biclusters (rectangular diagonal blocks after
row and column reordering).
(c) Nonoverlapping biclusters with checkerboard structure.
(d) Exclusive-rows biclusters.
(e) Exclusive-columns biclusters.
(f) Nonoverlapping biclusters with tree structure.
(g) Nonoverlapping nonexclusive biclusters.
(h) Overlapping biclusters with hierarchical structure.
(i) Arbitrarily positioned overlapping biclusters.

Figure 1.10: Bicluster structure. (a) Single bicluster, (b) exclusive row and column bi-
clusters, (c) checkerboard structure, (d) exclusive rows biclusters, (e) exclusive columns
biclusters, (f) nonoverlapping biclusters with tree structure, (g) nonoverlapping nonexclu-
sive biclusters, (h) overlapping biclusters with hierarchical structure, and (i) arbitrarily
positioned overlapping biclusters

One of the first approaches when extracting knowledge from gene expres-
sion data is to reorder rows and columns of the data matrix such that similar
rows and similar columns are grouped together. In that way subsets of rows
and subsets of columns with similar expression value are obtained. Ideal
case of this reordering can be seen in Figure 1.10 (b). In this figure we can
see that every row and every column in the data matrix belongs exclusively
to one of the k biclusters (k = 3).

Previously mentioned ideal reordering is very rare in real data. Thus,
next, we can consider case where rows and columns may belong to more
than one bicluster. Assumption here is a checkerboard structure in the
data matrix (see Figure 1.10 (c)). With this kind of reordering we get k
nonoverlapping and nonexclusive biclusters. Every row and every column of
the data matrix will belong to exactly k biclusters. The algorithm defined in
Kluger et al. [4] that will be described in Chapter 2, assumes this bicluster

structure.
Next structure of bicluster is where rows can only belong to one bicluster,

but columns can belong to several. Example of this structure can be seen in
Figure 1.10 (d). If the algorithm uses the opposite orientation of the data
matrix we get a different structure (see Figure 1.10 (e)). This structure
assumes exclusive-columns biclusters, i.e. every column can only belong to
one bicluster, but rows can belong to several.

Bicluster is called exhaustive if every row and every column belongs to at
least one bicluster. Examples of this type are presented in Figure 1.10 (b),
(c), (d), (e). Nonexhaustive biclusters allow that some rows and columns are
not included in any bicluster. Additionally, there are biclusters that allow
overlapping. This kind of structure allows that particular pair (row, column)
belongs to more than one bicluster (Figure 1.10 (i)). These two properties
exhaustion and overlapping are very common in real data (Figure 1.10 (i)).

Biclustering Algorithms

Biclustering algorithms aim to identify one bicluster or a given number of
biclusters. There are few biclustering approaches: discover one bicluster at
a time, discover one set of biclusters at a time, and discover all biclusters at
the same time (simultaneous bicluster identification). Algorithms that will
be discussed and used in this thesis discover all biclusters at the same time.

All biclustering algorithms can be grouped into five categories in terms
of the techniques used for bicluster identification:
1. Iterative row and column clustering combination - using an iterative
procedure row clusters are combined with column clusters by applying clus-
tering algorithms separately to the rows and columns of the data matrix.
2. Divide and conquer - the problem is partitioned into smaller size prob-
lems, that are similar to the original and obtained solutions are combined
to represent solution of the original problem.
3. Greedy iterative search - make locally optimal results that are chosen in
hope that they might be optimal globally.
4. Exhaustive bicluster enumeration - enumerating all the possible biclusters
which are hidden in data matrix; to make this search feasible constraints on
bicluster dimension must be included.
5. Parametric estimation of distribution- assumption here is that biclusters
follow some statistical model and parameters are identified to fit in the best
way.

Chapter 2

Materials and Methods

2.1 Data Description

2.1.1 Microarray Technology

Way back in the 20th century, scientists analyzed genes in many ways,
mapped them, sequenced them and made mutations in them. Flaw in their
analysis is that they studied only one or maybe a few genes at a time, while
humans have around 20000 genes and it would take a very long time to
investigate each human gene one at a time. This problem is solved with
advances in sequencing technology which led to remarkable development in
genomics. Genomics [6] is an interdisciplinary field of biology that relates
to analyses of thousands of genes or even every gene in an organism, all at
once.

Tool for monitoring a huge number of genes in parallel is microarray
technology. Microarray technology allows us to collect large gene expression
data sets. One microarray experiment involves the hybridization of each
mRNA molecule to the DNA template from which it originated. Thousands
of DNA samples are used to construct an array. The number of mRNA
molecules that are bound to each site in the array gives us the expression
level of the various genes. In general, there are the two major types of mi-
croarray experiments, cDNA and oligonucleotide (developed by Affymetrix).
Both experiments consist of three basic procedures [7]:
1. Chip manufacture - A single microarray is a chip with small dimensions
where many molecules of DNA are attached in a usually rectangular grid.
2. Target preparation, labeling and hybridization - First, a test and a control
sample of mRNA is reverse-transcribed into cDNA (targets). Next comes la-
beling using fluorescent dyes and finally hybridization with small fragments
of DNA (probes) on the surface of the chip.
3. The scanning process - Chips are scanned to read the signal intensity
that is emitted from the labeled and hybridized targets and this provides
numeric matrix.
The main difference between two experiments is synthesization of polynu-
cleotide chains. The reason why we should interpret measurements of these
two technologies differently is that with cDNA molecules of DNA are hy-
bridized from two tissues and with Affymetrix only one DNA is hybridized.

12

In cDNA microarray, the gene expression levels are measured as the ra-
tio of the signal from mRNA target sample and the reference sample and
Affymetrix data are estimates of the number of mRNA copies in a sample.

2.1.2 Data Sets

Microarray technology evaluates expressions of large number of genes (here
features) taken from various subjects (here denoted samples).
In this analysis thirty-three publicly available microarray data sets (Table
2.1) [8] are used. Nineteen of those are Affymetrix data sets, and the other
fourteen are cDNA data sets. Besides the type of chip, the data sets differ
based on tissue type, the number of available samples (N), the class num-
ber (k), the sample distribution per classes, the original dimensionality (m)
and dimensionality after feature reduction (d), as presented in Table 2.1.
The data sets are available only with reduced dimensionality (from m to
d), and modest information is available on the way dimensionality reduction
is performed. In most of the data sets, where information could be found,
the genes with little or no variance in expression levels across the samples
were eliminated. The Affymetrix data are strictly positive, as defined by
the explained measurement procedure. The values of gene expression can
vary from 0 to a large number here limited to 16.000. Gene expression val-
ues lower than 10 are not taken into account. For this reason the possible
values range from 10 to 16 000 and range normalization can be applied to
scale the expression levels. The pre-processing procedures used before clus-
tering procedures is normalization, as explained in detail in the next section.

Data set can be presented in the form of a matrix A = {aij|1 ≤ i ≤
n, 1 ≤ j ≤ m} with real valued entries (2.1). Columns of the matrix repre-
sent genes and rows represent samples. Element in i-th row and j-th column
represents measured expression of i-th sample in j-th gene.

A =

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 (2.1)

Dataset Chip Tissue N k Sample distribution m d

Armstrong-V1 Affy Blood 72 2 24, 48 12582 1081
Armstrong-V2 Affy Blood 72 3 24, 20, 28 12582 2194
Bhattacharjee Affy Lung 203 5 139, 17, 6, 21, 20 12600 1543
Chowdary Affy Breast, Colon 104 2 62, 42 22283 182
Dyrskjot Affy Bladder 40 3 9, 20, 11 7129 1203
Golub-V1 Affy Bone marrow 72 2 47, 25 7129 1877
Golub-V2 Affy Bone marrow 72 3 38, 9, 25 7129 1877
Gordon Affy Lung 181 2 31, 150 12533 1626
Laiho Affy Colon 37 2 8, 29 22883 2202
Nutt-V1 Affy Brain 50 4 14, 7, 14, 15 12625 1377
Nutt-V2 Affy Brain 28 2 14, 14 12625 1070
Nutt-V3 Affy Brain 22 2 7, 15 12625 1152
Pomeroy-V1 Affy Brain 34 2 25, 9 7129 857
Pomeroy-V2 Affy Brain 42 5 10, 10, 10, 4, 8 7129 1379
Shipp Affy Blood 77 2 58, 19 7129 798
Singh Affy Prostate 102 2 58, 19 12600 339
West Affy Breast 49 2 25, 24 7129 1198
Yeoh-V1 Affy Bone marrow 248 2 43, 205 12625 2526
Yeoh-V2 Affy Bone marrow 248 6 15, 27, 64, 20, 79, 43 12625 2526
Alizadeh-V1 cDNA Blood 42 2 21, 21 4022 1095
Alizadeh-V2 cDNA Blood 62 3 42, 9, 11 4022 2093
Alizadeh-V3 cDNA Blood 62 4 21, 21, 9, 11 4022 2093
Bittner cDNA Skin 38 2 19, 19 8067 2201
Bredel cDNA Brain 50 3 31, 14, 5 41472 1739
Chen cDNA Liver 180 2 104, 76 22699 85
Garber cDNA Lung 66 4 17, 40, 4, 5 24192 4553
Khan cDNA Multi-tissue 83 4 29, 11, 18, 25 6567 1069
Lapointe-V1 cDNA Prostate 69 3 11, 39, 19 42640 1625
Lapoint-V2 cDNA Prostate 110 4 11, 39, 19, 41 42640 2496
Liang cDNA Brain 37 3 28, 6, 3 24192 1411
Risinger cDNA Endometrium 42 4 13, 3, 19, 7 8872 1771
Tomlins-V1 cDNA Prostate 104 5 27, 20, 32, 13, 12 20000 2315
Tomlins-V2 cDNA Prostate 92 4 27,20,32,13 20000 1288

Table 2.1: Description of Datasets; N-number of available samples, k-class number, m-the
original dimensionality, d-dimensionality after feature reduction

2.2 Normalization

The feature values (gene expression levels) in the data set lie within different
dynamic ranges. Transformation of these values would seem to be necessary
in those cases where the similarity measure, such as Euclidean distance, is
sensitive to differences in scales of the input values. That means that small
values would have smaller influence than large ones. Here two feature trans-
formations are analyzed.

All the values in the data sets are numerical, so there is no need for
generalizing transformations to fit categorical or ordinal attributes. First
transformation that is used is z-score normalization. Formula for calculat-
ing z-score is:

Zi =
Xi −X

s
(2.2)

where Xi is the original data value, X the sample mean and s standard
deviation. After this transformation features will have mean value 0, and a
variance 1.

In Affymetrix data, since expressions are limited between 0 and 16.000
to normalize the values in different ranges, expression levels for each sample
(each raw in data matrix) are divided by the sum of expression levels for that
sample. Using the sample-wise normalization (SN), the sum of expression
levels in each row is 1, analogous to probability mass function.

Another approach to normalize Affymetrix data is range normalization
(RN). In this case normalization is performed column-wise. From each ex-
pression level minimum value of the column is subtracted and the new value
is divided by the range (max-min) of that column.

2.3 Clustering Techniques

2.3.1 K-means algorithm

K-means is one of the nonhierarchical procedures that are made to group
points into a collection of k clusters. This kind of method is used when high
dimensional data are analyzed. If set A = {a1, a2, ..., an} of n points is given
in d-dimensional space, clustering into k clusters is done so as to minimize
the sum of squared distances of each point to its cluster center.

How this algorithm works is described in three steps:
1. Choose k initial centers and cluster each point with the center nearest to
it.
2. Find the new cluster centers and replace the old center with a new one.
3. Repeat steps 1. and 2. until centres converge (according to some crite-
rion).

Still needs to be decided how the new center is determined. Common
choice is using a centroid - average value over features for all the points in
the cluster. Another popular choice is picking clustroid - the most central
data point within the cluster, but following Lemma 2.3.1 and Corollary 2.3.1
shows that centroid is the most desirable choice.

Lemma 2.3.1. Let {a1, a2, ..., an} be a set of points. Sum of squared dis-
tances between randomly chosen point x and all datapoints ai equals the sum
of the squared distances to the centroid plus the number of points times the
squared distance from the point x to the centroid. That is,∑

i

|ai − x|2 =
∑
i

|ai − c|2 + n|c− x|2 (2.3)

where c = 1
n

∑n
i=1 ai is the centroid of the set of points.

Proof.∑
i

|ai − x|2 =
∑
i

|ai−c+c−x|2 =
∑
i

|ai−c|2+2(c−x)
∑
i

(ai−c)+n|c−x|2

(2.4)
Since c is centroid,

∑
i(ai−c) = 0. Thus,

∑
i |ai−x|2 =

∑
i |ai−c|2+n|c−x|2

Corollary 2.3.1. Let {a1, a2, ..., an} be a set of points. Sum of squared
distances between randomly chosen point x and all datapoints ai is minimized
when x is the centroid, namely x = 1

n

∑
i ai.

In k-means algorithm the user needs to specify a desired number of clus-
ters k as an input. Often, optimal choice is not known a priori, so we need a
way to evaluate goodness of fit. Common approach is to run the algorithm
with different values k and for each compute sum from Equation 2.3. If an
elbow pattern is obtained, i.e. there is a sharp decrease of this score when
transitioning from some value k to k + 1, then k + 1 is a good choice.

2.3.2 Spectral Clustering

Compared to traditional clustering algorithms such as k-means, spectral
clustering often gives better results [9]. It is simple to implement and can
be efficiently solved relying on linear algebra tools. Spectral clustering is a
technique that exploits the connectivity approach for clustering. In other
words, points that are next to each other or connected are assigned to the
same cluster. Cluster as defined in this sense is a dense group of points;
so that elongated clusters of any shape can be discovered. In this case two
points that are far apart, but have dense cloud of data connecting them,
will be clustered together, while two much closer points in disconnected
neighborhoods will belong to different clusters. Data points scattered in
the form of two concentric circles are presented in Figure 2.1. The points
belonging to one ring should be clustered together. In the same Figure
(b) the result of k-means and (c) spectral clustering are presented. K-means
cannot detect this underlying structure because its minimizing the Euclidean
distance to the cluster center neglecting the density and shape of point
clouds, whereas the results of spectral clustering reveal the correct clusters.

Figure 2.1: (a) data before clustering, (b) k-means, (c) spectral clustering

In spectral clustering the data points represent nodes of the graph. Thus,
clustering can be framed as a graph partitioning problem. Next, the data
are mapped to a low-dimensional space in which k-means gives better results.

Following lines explain the procedure of the spectral clustering [10].
Given a set of points {v1, v2, ..., vn} in Rm that we want to cluster into k
clusters:
1. Build the affinity matrix F ∈ Rn×n defined by Fij = exp(−‖vi − vj‖2/2σ2)
if i 6= j, and Fii = 0 where σ2 is the scaling parameter.
2. Compute normalized Laplacian matrix L = D

−1
2 FD

−1
2 , where D is a

diagonal matrix whose (i, i)-element is the sum of F ’s i-th row.
3. Find x1, x2, ..., xk the k largest eigenvectors of L and form the matrix X
by stacking the eigenvectors in columns.
4. Form the matrix Y from X by renormalizing each of X’s rows to have
unit lenght (i.e. Yij = Xij/(

∑
j Xij

2)
1
2).

5. Treating each row of Y as a point in Rk, cluster them into k clusters via
k-means or any other algorithm (that attempts to minimize distortion).
6. Finally, assign the original point vi to cluster j if and only if row i of the
matrix Y was assigned to cluster j.

2.3.3 Spectral Co-Clustering algorithm

We can observe a data matrix A as a bipartite graph, where rows would form
one partition and columns the other. Each entry of the matrix corresponds
to an edge between a row and a column. Spectral Co-Clustering algorithm
approximates the normalized cut of this graph to find heavy subgraphs via
generalized eigenvalue decomposition of the Laplacian of the graph. The re-
sulting bicluster structure is block-diagonal, since each row and each column
belongs to exactly one bicluster (Figure 2.2) [11].

Figure 2.2: Rearranged data matrix to show biclusters

Described procedure is known as a co-clustering algorithm, and it was
originally proposed for textual documents. If documents are arranged as
rows of data matrix, and columns correspond to appearing words, the algo-
rithm will cluster both simultaneously. This setting is quite similar to the
one that is used here, so this algorithm can be generalized for clustering
genes and samples.

Graph Theory Preliminaries

Definition 2.3.1. An undirected graph G is an ordered pair (V, E) com-
prising:
- V a set of vertices (also called nodes);
- E a set of edges, which are unordered pairs of vertices.

Definition 2.3.2. A graph G is a simple graph if it does not contain loops
or parallel edges.

Definition 2.3.3. With each edge e of G let there be associated a real number
w(e), specifying its weight. Then G, together with these weights over its
edges, is called a weighted graph.

Definition 2.3.4. A weighted adjacency matrix W of a simple weighted
graph G is:

W =

{
wi,j, if there is an edge between vi and vj

0, otherwise.
(2.5)

Definition 2.3.5. A degree di of a vertex vi ∈ V is defined as:

di =
n∑
j=1

wi,j (2.6)

There are two different ways of measuring the “size” of a subset Vi ∈ V :

|Vi| := the number of vertices in Vi

vol(Vi) :=
∑

i∈Vi di
(2.7)

Definition 2.3.6. A cut of a graph G = (V, E) is set of edges whose removal
makes the graph disconnected.

Definition 2.3.7. For weighted graphs, cost of a cut is

cut(V1, V2) =
∑

i∈V1,j∈V2

Wi,j. (2.8)

Extension of cut definition to k vertex subsets:

cut(V1, V2, ..., Vk) =
∑
i<j

cut(Vi, Vj). (2.9)

Definition 2.3.8. An undirected bipartite graph is a triplet G = (R, C, E),
where R = {r1, r2, ..., rm} and C = {c1, c2, ..., cn} are two sets of vertices and
E is the set of edges {(ri, cj) : ri ∈ R, cj ∈ C}.

In the data sets analyzed in this thesis, R would be a set of samples
(rows), C would be a set of genes (columns) and an edge would be an asso-
ciation between a sample and a gene.

Consider data matrix A, with dimensions n×m, the weighted adjacency
matrix of the bipartite graph may be written as

W =

[
0 Ai,j
ATi,j 0

]
(2.10)

Simultaneous Clustering

The main idea behind this algorithm is that clustering of words induces
document clustering and that document clustering induces word clustering.
Consider document clusters Q1, ..., Qk(∪iQi = Q and Qi∩Qj = ∅, i 6= j) and
corresponding word clusters H1, ..., Hk(∪iHi = H and Hi ∩ Hj = ∅, i 6= j),
the induced word clustering is given by

Hm = {hi :
∑
j∈Qm

Aij ≥
∑
j∈Ql

Aij, for all l = 1, ..., k} (2.11)

and the induced document clustering is given by

Qm = {qi :
∑
i∈Hm

Aij ≥
∑
i∈Hl

Aij, for all l = 1, ..., k}. (2.12)

When microarray data sets are analyzed the goal is to identify both clus-
ters of genes that participate in common regulatory networks and clusters
of samples associated with the effects of these genes. If clusters of genes are
known in advance it can help in clustering samples and vice versa, as in the
case with words and documents.

Graph Partitioning

First, let us convert our data matrix A into a graph G. Desired graph is a
graph G = (R,C,E) that is a bipartite graph with n rows (samples) vertices,
m columns (genes) vertices and edges between a sample and a gene. For G
we can say that it is bipartite because there are two disjoint sets of vertices
with no edges within sets (and every gene is connected to every sample).
Example of such graph can be seen in Figure 2.3.

Bisection problem of this graph is to find nearly equally-sized vertex
subsets - clusters. The goal is to find ’good’ clusters and that means that
the number of within-cluster connections is maximized, and the number of
the between-cluster connections is minimized.

Figure 2.3: Bipartite graph

This section will introduce the Laplacian matrix L and some of its prop-
erties that will be used for deriving the clustering algorithm.

Definition 2.3.9. The Laplacian matrix L = LG of G is an n × n symmetric
matrix, with one row and column for each vertex, such that

Lij =

∑

k wik, i = j
−wij, i 6= j and there is an edge i, j

0, otherwise.
(2.13)

Theorem 2.3.1. The Laplacian matrix L = LG of the graph G has the
following properties:
1. L = D - W, where W is the adjacency matrix and D is the diagonal
”degree” matrix with Dii =

∑
k wik.

2. L = IGI
T
G.

3. L is a symmetric positive semi-definite matrix. Thus all eigenvalues of
L are real and non-negative, and L has a full set of n real and orthogonal
eigenvectors.
4. Let e = [1, ..., 1]T . Then Le = 0. Thus 0 is an eigenvalue of L and e is
the corresponding eigenvector.
5. If the graph G has c connected components then L has c eigenvalues that
are equal to 0.
6. For any vector x, xTLx =

∑
i,j∈E wij(xi − xj)2.

7. For any vector x and scalars α and β, (αx+ βe)TL(αx+ βe) = α2xTLx.

Proof. 1. Part 1 follows from the definition of L.
2. This is easily verified by multiplying IG and ITG.
3. Using property 2, xTLx = xT IGI

T
Gx = yTy ≥ 0, for all x. This im-

plies that L is symmetric positive semidefinite. All such matrices have non-
negative real eigenvalues and a full set of n orthogonal eigenvectors.
4. Given any vector x, Lx = IG(ITGx). Let k be the row of ITGx that corre-
sponds to the edge {i,j}, then it is easy to see that

(ITGx)k =
√
wij(xi − xj), (2.14)

and so when x = e, Le = 0.
5. See [12]
6. This follows from equation (2.14).
7. This follows from property 4 above.

To see how powerful these properties are, let us consider data in Figure
2.1 (a). The graph should contain two connected components, each corre-
sponding to one of the clusters we would like to find. The Laplacian matrix
property that the smallest eigenvalue of Laplacian is 0 with eigenvector e
will be used. Since there are no edges between two components in a graph,
the adjacency matrix is block diagonal and that implies that L is block di-
agonal, as well. L consists of two blocks, two submatrices L1 and L2 which
are also Laplacians but for two subgraphs. That means that both, L1 and
L2 have eigenvalues 0 and eigenvectors 1. Thus, the smallest eigenvalue of
L has multiplicity two, and its eigenspace is spanned by:

0
...
0
1
...
1

1
...
1
0
...
0

(2.15)

where the number of 1 entries in each vector is equal to the number of
vertices in that connected component.

In the real data the exemplified structure is rare. Graph G will not
be so well separated into connected components, thus, we will assume that
G consists of exactly one connected component. From property 5 of the
Theorem (2.3.1) it can be seen that if G consists of exactly one connected
component, the second smallest eigenvalue of the Laplacian is nonzero. This
fact is interesting because it states that graph Laplacian spectrum, meaning
its eigenvalues, tells us something about the underlying connectivity of the
graph. The solution of this problem is to remove a few edges to create two
connected components again. For this, graph cut is used (Definition 2.3.3)
and our goal is to minimize the cut.

Consider graph G = (V,E), whose set of vertices is partitioned into two
sets V1 and V2. Let us define a vector p with respect to this partitioning.
Each entry of p will correspond to a particular vertex. We will assign that
entry a positive one if vertex lies in V1 and a negative one if vertex lies in
V2.

pi =

{
+1, i ∈ V1,
−1, i ∈ V2.

(2.16)

Theorem 2.3.2. Given the Laplacian matrix L of graph G and a partition
vector p, the Rayleigh Quotient is

R(L, p) =
pTLp

pTp
=

1

n
4cut(V1, V2). (2.17)

Proof. Clearly pTp = n. By property 6 of Theorem (2.3.1) pTLp =
∑

i,j∈E Eij(pi−
pj)

2. Thus edges within V1 or V2 do not contribute to the above sum, while
each edge between V1 and V2 contributes a value of 4 times the edge-weight.

From Theorem (2.3.2) we can see that the minimum of the cut is trivially
achieved by setting all pi to −1 (or +1). In other words, V1 = V and V2 = ∅
(or vice versa). The problem with finding ’good’ clusters is that cut only
considers external cluster connections and does not consider internal cluster
connectivity. Solution to this problem is to find an objective function that
will ensure that each partition is approximately balanced.

The following objective function captures what we need:

Q(V1, V2) =
cut(V1, V2)

W (V1)
+
cut(V1, V2)

W (V2)
, (2.18)

where W (Vi) =
∑

l∈i Dll is the sum of the edge weights within a partition.
The smaller value of this function, more balanced partitioning. There

are two kinds of objective function, RatioCut [13] and the normalized cut
Ncut [14]. In RatioCut, the size of a subset Vi of a graph is measured by its
number of vertices |Vi|, while in NCut the size is measured by the weights
of its edges W (Vi). The definitions are:

RatioCut(V1, V2) =
cut(V1, V2)

|V1|
+
cut(V1, V2)

|V2|
, (2.19)

NCut(V1, V2) =
cut(V1, V2)

W (V1)
+
cut(V1, V2)

W (V2)
. (2.20)

The both objective functions try to achieve that the clusters are “balanced”,
as measured by the number of vertices or edge weights, respectively. In this
algorithm is used NCut. The normalized cut problem is NP-hard.

In the following text it is shown that the Rayleigh Quotient of the gener-
alized partition vector q equals the objective function value (Equation 2.18).

Lemma 2.3.2. Given graph G, let L and D be its Laplacian and vertex
weight matrices respectively. Let η1 = W(V1) and η2 = W(V2). Then the
generalized partition vector q with elements

qi =

 +
√

η2
η1
, i ∈ V1,

−
√

η1
η2
, i ∈ V2,

(2.21)

satisfies qTDe = 0, and qTDq = W (V).

Proof. Let y = De, then yi = W (Vi) = Dii. Thus

qTDe =

√
η2
η1

∑
i∈V1

W (Vi)−
√
η1
η2

∑
i∈V2

W (Vi) = 0. (2.22)

Similarly,

qTDe =
n∑
i=1

Diiq
2
i = η1 + η2 = W (V). (2.23)

Theorem 2.3.3. Using the notation of Lemma (2.3.2),

qTLq

qTDq
=
cut(V1, V2)

W (V1)
+
cut(V1, V2)

W (V2)
. (2.24)

Proof. It is easy to show that the generalized partition vector q may be
written as

q =
η1 + η2
2
√
η1η2

p+
η1 − η2
2
√
η1η2

e (2.25)

where p is the partition vector of (2.8). Using part 7 of Theorem (2.3.1), we
see that

qTLq =
(η1 + η2)

2

4η1η2
pTLp. (2.26)

Substituting the values of pTLp and qTDq, from Theorem (2.3.2) and Lemma
(2.3.2) respectively, proves the result.

Theorem 2.3.4. The problem

min
q 6=0

qTLq

qTDq
, subject to qTDe = 0, (2.27)

is solved when q is the eigenvector corresponding to the 2nd smallest eigen-
value λ2 of the generalized eigenvalue problem,

Lz = λDz. (2.28)

Proof. This is a standard result from linear algebra [15].

Consider Theorem (2.3.3) globally minimum solution of Equation 2.18
can be found using the generalized partition vector q. Thus, it turns out that
the first k eigenvectors of the generalized eigenproblem Lz = λDz provide
the solution to the relaxed problem.

Spectral Co-Clustering Algorithm

From Theorem (2.3.4) it can be seen that problem of finding the minimum
normalized cut can be solved with finding the second eigenvector of gener-
alized eigenvalue problem:

Lz = λDz. (2.29)

In the following text it is explained how to avoid working on the matrix
L(n+m)×(n+m), that is of larger dimensions than data matrix An×m and in-
stead how one can work with A. Normalizing the matrix A in certainr way
will give the desired partitions of the rows and the columns of A.

One of the properties of Laplacian matrix is that it can be written as
L = D −W , and since bipartite graph is used, weighted adjacency matrix
can be written as

W =

[
0 A
AT 0

]
(2.30)

Thus, Laplacian in this case will be

L =

[
D1 −A
−AT D2

]
(2.31)

where

D =

[
D1 0
0 D2

]
(2.32)

and D1(i, i) =
∑

j Ai,j is the sum of edge-weights incident on sample i, and
D2(j, j) =

∑
iAi,j is the sum of edge-weights incident on gene j. Further,

generalized eigenvector problem can be written in the following way:[
D1 −A
−AT D2

] [
x
y

]
= λ

[
D1 0
0 D2

] [
x
y

]
=⇒ D1x− Ay = λD1x,

−ATx+D2y = λD2y.
(2.33)

Both D1 and D2 are nonsingular matrices, so we can rewrite (2.33):

D
1
2
1 x−D

−1
2

1 Ay = λD
1
2
1 x,

−D
−1
2

2 ATx+D2
−1
2
y = λD

1
2
2 y.

(2.34)

If u = D
1
2
1 x and v = D

1
2
2 y, we get:

D
−1
2

1 AD
−1
2

2 v = (1− λ)u,

D
−1
2

2 ATD
−1
2

1 u = (1− λ)v
(2.35)

The singular value decomposition (SVD) of an n×m matrix A is a fac-
torization of the form UΣV ∗ where U is an n × n real or complex unitary
matrix, Σ is an n ×m rectangular diagonal matrix with non-negative real
numbers on the diagonal, and V is an m ×m real or complex unitary ma-
trix. The diagonal entries σi of the Σ are the singular values of A and the
columns of U and V are left-singular vectors and right-singular vectors of
A, respectively. The equations (2.35) are equations that determine singular

value decomposition of normalized matrix AN = D
−1
2

1 AD
−1
2

2 , so (2.35) can
be written as:

ANv = σu,
ATNu = σv,

(2.36)

where u and v are the left and right singular vectors of AN respectively,
while σ = (1 − λ) is the corresponding singular value of AN . This implies
that instead of computing the eigenvector of the second smallest eigenvalue of
(2.29), the left and right singular vectors corresponding to the second largest

singular value of AN , can be computed. Since u = D
1
2
1 x and v = D

1
2
2 y, then

the second eigenvector of L is given by:

z2 =

[
D

−1
2

1 u2

D
−1
2

2 v2

]
. (2.37)

Bipartition Case

Now, when u2 and v2 are known, the main goal is to extract the optimal
partition from these vectors. In other words we want to assign points to
clusters, based on lower-dimensional representation based on eigenvector.
The generalized partition vector q is two-valued, so the idea is to find bi-
modal distribution in the values of u2 and v2.The optimal bipartitioning is
obtained if z2(i) is assigned to the, earlier defined, bi-modal values m1 and
m2 such that the following sum of squares criterion is minimized,

2∑
j=1

∑
z2(i)∈mj

(z2(i)−mj)
2. (2.38)

This can be done using k-means algorithm (2.38).

Now the co-clustering algorithm can be stated:

1. Given data matrix A ∈ Rn×m, form normalized matrix An =

D
−1
2

1 AD
−1
2

2 .
2. Compute the u2 and v2, the second singular vectors of An and
create the vector z2 as in (2.37).
3. Run a one-dimensional K-means algorithm over z2, to obtain
desired bipartitioning.

Multipartition Case

This algorithm can be adapted for the general problem of finding k sample
and gene clusters. There are two basic approaches to partition a graph into k
clusters: recursive bi-partitioning and cluster multiple eigenvectors. Second
approach was chosen here. Collection of the l = dlog2 ke singular vectors
u2, u3, ..., ul+1 and v2, v3, ..., vl+1 often contains k-modal information about
the data set. Then l-dimensional data set can be formed:

Z =

[
D

−1
2

1 U

D
−1
2

2 V

]
, (2.39)

where U = [u2, u3, ..., ul+1] and V = [v2, v3, ..., vl+1].
Now, when data are mapped to a low-dimensional space, each l-dimensional

row, Z(i), can be assigned to the l-dimensional points mj, (j = 1, ...k), such
that the following sum of squares criterion is minimized

k∑
j=1

∑
Z(i)∈mj

||Z(i)−mj||2. (2.40)

Again, this can be done with k-means.
Co-clustering algorithm for problem of finding k columns and rows clus-

ters:

1. Given data matrix A ∈ Rn×m, form normalized matrix An =

D
−1
2

1 MD
−1
2

2 .
2. Compute l = dlog2 ke singular vectors of An, u2, u3, ..., ul+1 and
v2, v3, ..., vl+1and create the matrix Z
3. Run the k-means algorithm on Z, l-dimensional data, to obtain
the desired k biclusters.

One thing to underline is that n rows and m columns of data matrix are
converted to the n+m rows in matrix Z. Thus, both rows and columns are
treated as samples and clustered together.

2.3.4 Spectral Bi-Clustering algorithm

Spectral Bi-Clustering algorithm assumes that the data matrix has a hidden
underlying checkerboard pattern that can be discovered by permuting rows
and columns. The problem of finding checkerboard structure is solved using
eigenvectors. In order to make the pattern more obvious, the first step
is normalization of data matrix. There are three possible approaches to
normalize a data matrix: Independent rescaling of genes and conditions,
Bi-stochastization and Log-interactions normalization. Afterwards, SVD is
used to identify eigenvectors. While the Co-Clustering algorithm (Section
2.3.3) divides the genes and samples into the same number of clusters, Bi-
Clustering algorithm has one advantage, it allows that the number of gene
clusters and sample clusters can be different.

In analysis of cancer data sets the structure of data should be considered.
Spectral Bi-Clustering algorithm is designed to be suitable for checkerboard
structure. The reason this kind of structure might be suitable for a tu-
mor classification problem analyzed in this thesis is that there exist subsets
of highly active or almost completely inactive genes specific for the tumor
type. Thus, under this assumption, the data matrix can be organized in a
checkerboard-like structure with blocks of genes with high expression levels
and low expression levels. In Figure 2.4 can be seen the original matrix
that has hidden checkerboard structure and in Figure 2.5 can be seen the
same matrix with rearranged rows and columns where checkerboard pattern
is revealed.

Figure 2.4: Original data matrix

Figure 2.5: Rearranged data matrix to show biclusters

Eigenproblem and Checkerboard Structure

Eigenvectors are used to find a hidden checkerboard pattern in the data
matrix, if it exists. It is an eigenproblem with matrix AAT , where A is a
matrix that has a checkerboard structure. Let us consider two classification
vectors, one for the rows (samples) r and other for the columns c (genes).
Each of these vectors has piecewise-constant values corresponding to the row
and column partitions of the matrix. If matrix A is applied to a classification
vector for genes c, new classification vector for samples r′ is obtained, with
the same block pattern as r and similarly, if AT is applied to classification
vector for samples r, as result new gene classification vector c′ with the same
block pattern as c is obtained:

Ac = r′

AT r = c′
(2.41)

and after substitution:
AAT r = r′

ATAc = c′
(2.42)

Therefore, it can be concluded that checkerboard structure of A is recog-
nizable in piecewise constant structure of pair of eigenvectors r and c that
solves coupled eigenvalue problem where eigenvectors r and c have the same
eigenvalue λ2:

ATAr = λ2r
AAT c = λ2c

(2.43)

From linear algebra it is known that solving an eigenproblem involving AAT

is equivalent to finding singular value decomposition (SVD) of A. In this
decomposition, matrix A can be written as A = UΣV T . The columns of U
and V are eigenvectors of the matrices AAT and ATA, respectively and they
are singular vectors of A. To make pattern evident after finding eigenvectors,
all that is needed is to reshuffle rows and columns. What makes uncovering
the checkerboard pattern in matrix difficult is the different average amount
of expressions associated with particular genes or samples. This problem
can be solved by initial normalization of the data matrix A. This algorithm
uses three different normalizations to set each gene on the same scale.

Normalization

As mentioned before, the first step in spectral bi-clustering algorithm is data
matrix normalization. Kluger [4] introduced three possible normalization
procedures: Independent rescaling of genes and conditions, Bi-stochastization
and Log-interactions normalization.

Independent rescaling of genes and conditions
The similarity between expression levels of the two genes should be more ob-
vious if each gene is scaled so that they have the same mean value. Similarly
as explained in Co-clustering algorithm, here two diagonal matrices for scal-
ing are used, matrix R whose diagonal elements rii represent the row sums
of A and matrix C whose components are the column sums of data matrix

A. The matrix R−
1
2 is used for scaling rows and the matrix C−

1
2 is used for

scaling columns. Thus, if data matrix A is normalized, An = R−
1
2AC−

1
2 is

obtained and in that way checkerboard pattern would be more recognizable.
Figure 2.6 shows an example of a perfect checkerboard structure, but where
each row and column are multiplied by a random factor. After applying
described normalization to this matrix, result in Figure 2.7 with almost uni-
form clusters are obtained.

Figure 2.6: Checkerboard matrix before normalization

Figure 2.7: Checkerboard matrix after normalization (Independent rescaling)

Bi-stochastization
This is an approach that simultaneously normalizes genes and samples. Nor-
malization yields a matrix that has doubly stochastic-like structure and it
is called a bistochastic matrix. Such a matrix has a property that all rows
sum to a constant and all columns sum to a different constant.

Sinkhorn [16] proved that every entry-wise positive matrix can be made
doubly stochastic by multiplying with two diagonal matrices. Thus, nor-
malized matrix can be computed by repeating independent scaling of rows

and columns iteratively until convergence. The procedure starts with A1 =

R
− 1

2
0 AC

− 1
2

0 , A2 = R
− 1

2
1 A1C

− 1
2

1 , and general iteration is At+1 = R
− 1

2
t AtC

− 1
2

t . In
the Figure 2.8 can be seen the matrix from Figure 2.6 after bistochastization
and more obviously the checkerboard pattern.

Figure 2.8: Checkerboard matrix after normalization (Bi-stochastization)

Log-interactions normalization
As a third method of normalization, log-interactions normalization is used.
A useful process in transforming microarray data is taking logarithm as it
results in data distribution closer to normal distribution. The idea here is to
calculate the logarithm of the data and then extract the interactions between
the genes and the samples. In the following formula the final matrix can be
seen:

Kij = Lij − Li. − L.j + L.. (2.44)

Lij = logAij
Li. = 1

m

∑m
j=1 Lij is the average of i-th row,

L.j = 1
n

∑n
i=1 Li, is the average of j-th column and

L.. = 1
mn

∑n
i=1

∑m
j=1 Lij is the average of the whole matrix.

The value Kij captures interaction between row i and column j that can
not be explained by systematic variability among rows, among columns, or
within the entire matrix. The Figure 2.9 presents the matrix from Figure
2.6 after log-interactions normalization.

Figure 2.9: Checkerboard matrix after normalization (Log-interactions)

Partitioning vectors determination

When normalization of the data matrix is done SVD is applied to the nor-
malized matrix to reveal the checkerboard structure. In that step p singular
vectors of matrix A are obtained. Next step is to process these vectors to
find partitions.

First, what is important to mention is that in the case of Independent
rescaling and Bistochatizaton first (left and right) singular vectors are dis-
carded. It is because they do not contain any partitioning information.
Thus, if these two normalization techniques are used, the first singular vec-
tors of interests will be u2 and v2. In the case of Log-interactions normal-
ization, all singular vectors are meaningful.

Converting singular vectors into partitioning vectors is done as follows.
In the first step singular vectors are approximated with piecewise-constant
vectors. For this approximation is used one-dimensional k-means. As the
best singular vector is chosen the one that yields the lowest norm differ-
ence from its peace-wise approximation. In this algorithm there are two
approaches how to process these vectors further.

In the first approach, vectors of interest are the best left and the best right
singular vectors, u′ and v′, respectively. u′ determines the row partitioning
and v′ determines the column partitioning. In the end, by applying of the
k-means algorithm to the u′ and v′ the assignments of rows and columns to
biclusters can be determined.

In this thesis the second approach is used. Unlike the previous approach,
where data are projected just to the one best singular vector, here data is
projected to the subset of the best singular vectors. Let us denote the
number of the best singular vectors with q (q < p). Next, the matrix U ′

whose columns are the q best left singular vectors and matrix V ′ whose
columns are the q best right singular vectors are defined. In order to get row
labels, the rows of A are projected to AV ′. The matrix AV ′ has dimension
n× q. All of n rows are clustered using k-means and the desired row labels
are obtained. Similarly, column labels are obtained. Columns of matrix A
are projected to ATU ′, that has dimensions m × q, and after clustering m

rows with k-means, column labels are obtained.
The co-clustering algorithm can be summarized as follows:

1. Given data matrix A ∈ Rn×m, form normalized matrix by using
one of the three normalizations: Independent rescaling of genes and
conditions, Bi-stochastization and Log-interactions normalization
2. Compute first p singular vectors and choose the best q to obtain
U ′ and V ′.
3. Project the rows of A to AV ′ and run k-means algorithm to
obtain row labels.
Project the columns of A to ATU ′ and run k-means algorithm to
obtain column labels.

2.4 Cluster Validation

The term cluster validation is used to refer to the procedure of evaluating the
goodness of clustering algorithm results. This is important for comparing
clustering algorithms, comparing two sets of clusters, comparing two clusters
and to avoid finding patterns in random data. For measuring cluster quality
there are three categorizations of measures:
1. External: Compare clustering against prior or expert-specified knowledge
(i.e. ground truth) using certain clustering quality measures. Since the
“true” cluster number is known in advance, this approach is mainly used for
selecting the right clustering algorithm for a specific data set.
2. Internal: Evaluate the goodness of a clustering by considering how well
the clusters are separated and how compact the clusters are.
3. Relative: Directly compare different clusterings, usually those obtained
via different parameter settings for the same algorithm.

2.4.1 The Adjusted Rand Index

The Adjusted Rand Index is a measure of agreement between two parti-
tions: one given by the clustering process and the other defined by external
criteria. Given the data matrix A = {Aij}n×m, where n is the number of
rows (objects) and m is the number of columns (attributes), a partition of
n objects in r groups can be formed such that union of all the groups from
P = {p1, ..., pr} is equal to the entire object set and the intersection of any
two groups from P is empty. Given two partitions P and L = {l1, ..., lc},
with r and c groups, respectively, the contingency table Table 2.2 [17] can
be formed to indicate groups overlap between P and L where trc indicates
the total number of objects that simultaneously belong to rth cluster and cth

class. Suppose that P is a clustering result and L is our external criteria.

Cluster\Class l1 l2 · · · lc Sums
p1 t11 t12 · · · t1c t1+
p2 t21 t22 · · · t2c t2+
...

...
...

...
...

...
pr tr1 tr2 · · · trc tr+
Sums t+1 t+2 · · · t+c t++ = n

Table 2.2: Notation for the contingency table for comparing two partitions

Notation

• a - the number of pairs of objects that are in the same cluster in P
and in the same class in L

• b - the number of pairs of objects that are in the same cluster in P but
not in the same class in L

• c - the number of pairs of objects that are in the same class in L but
not in the same cluster in P

• d - the number of pairs of objects in different classes and different
clusters in both partitions

Alternatively representation of Table 2.2 based on this definition is 2 × 2
Table 2.3.

L
P Pair in same group Pair in different groups
Pair in same group a b
Pair in different groups c d

Table 2.3: 2× 2 Contingency Table Representation of the Partition Co-Occurrence Table

a, b, c and d we can calculate in the following way:

a =

∑r
i=1

∑c
j=1 t

2
ij − n

2
, (2.45)

b =

∑r
i=1 t

2
i+ −

∑r
i=1

∑c
j=1 t

2
ij

2
, (2.46)

c =

∑c
j=1 t

2
+j −

∑r
i=1

∑c
j=1 t

2
ij

2
, (2.47)

d =

∑r
i=1

∑c
j=1 t

2
ij + n2 −

∑r
i=1 t

2
i+ −

∑c
j=1 t

2
+j

2
(2.48)

With these four numbers we can represent different indices and one of
them is Rand index[18]. The Rand index is calculated by:

a+ d

a+ b+ c+ d
(2.49)

This index is in interval [0,1]. When two partitions agree perfectly, the
Rand index is 1. However, there is an issue with this metric. The expected
value of the index of two random partitions does not take a constant value
and when we increase the number of clusters it increases as well. One at-
tempt to overcome this problem is proposed by [19]:

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(2.50)

.
ARI is in interval [-1, 1], where 1 means agreement between partitions,

a value close to 0 is for random labeling independently of the number of
clusters and samples and -1 is for disagreement between partitions. The
expected value of ARI is 0 and it is a symmetric measure, i.e. ari(a, b) =
ari(b, a). This adjusted Rand index has been shown to be the most desirable
index for measuring cluster recovery because it does not depend on algorithm
or on number of clusters and has been used in several cluster validation
studies.

2.4.2 Silhouette Index

Silhouette index is an internal measure for cluster validation. The Silhou-
ette index is calculated using the mean intra-cluster distance and the mean
nearest-cluster distance for each sample. The silhouette value is a measure
of how similar a sample is to its own cluster compared to other clusters.

Let us assume that samples are clustered into k clusters. Take any sample
i in the data set, and denote by Ci the cluster to which it has been assigned.
When cluster Ci contains other objects apart from i, we can compute:

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j), (2.51)

where d(i, j) is the distance between samples i and j in the cluster Ci. It
represents average dissimilarity of i to all other objects of Ci. Let d(i, C)
denote a mean distance between sample i and all the points in a cluster A
that does not contain it. For a sample i one can compute the smallest mean
distance from all the points in any cluster that does not contain i:

b(i) = min
j 6=i

1

|Cj|
∑
j∈Cj

d(i, j). (2.52)

The cluster that has the smallest mean dissimilarity is called neighbor
of sample i, it is the second-best choice for sample i. Now, silhouette for a
single data point i (Figure 2.10) can be defined:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |C| > 1 (2.53)

From 2.53 can be seen that −1 ≤ s(i) ≤ 1, when s(i) is close to 1 then
sample i is well-clustered, in the case where s(i) is close to 0, it can be

considered as intermediate case, and in the case when s(i) is -1, sample i
is misclassified. The mean s(i) over all data of the entire data set is called
silhouette index:

SI = s(k), (2.54)

where s(k) is the mean s(i) over all data of the entire data set for k clusters.

Figure 2.10: An illustration of the elements involved in the computation of s(i), where
the object i belongs to cluster Ci[20].

2.4.3 Experimental Setup

As mentioned before, some form of dimensionality reduction was already
performed over original data excluding dimensions that did not show sig-
nificant variability. In the first step in analysis of gene expression data
sets three kinds of normalization are used: Z-normalization, sample-wise
normalization (SN) and range normalization (RN). Z-normalization is used
over feature values (genes) in cDNA data sets, so after this transformation
each feature have mean value 0 and variance 1. SN is used over samples
in Affymetrix data sets and after this transformation sum of values in each
sample is 1. Finally, range normalization is used in Affymetrix data over the
columns, transforming data values into [0, 1] interval.
After data are normalized three clustering algorithms are performed: K-
means, Co-Clustering algorithm and Bi-Clustering algorithm.
Important to mention is that K-means algorithm is used in two ways. First,
as a part of Co-Clustering and Bi-Clustering algorithms where K-means
is used to cluster data after mapping it in low dimensions. Second as in-
dependent clustering algorithm. As independent clustering algorithm it is
performed over all data sets and in original data as well as normalized data.
Co-Clustering algorithm is algorithm that is performed over all data sets
and in original and normalized data as well.
The last algorithm Bi-Clustering is performed only over original data in all
thirty-three data sets. As explained in Section 2.3.4, Bi-Clustering algo-
rithm in order to make checkerboard pattern more obvious as first step uses
three kinds of normalization, so there is no need to normalize data before
feeding them to algorithm. Each of the three Bi-Clustering normalization is
analyzed.
Different validation criteria (Adjusted Rand Index (ARI) and Silhouette

Index (SI)) are used to evaluated performances of the algorithms. Each al-
gorithm was performed twenty times yielding twenty indices values which
are later averaged to produce a single index value.

Implementation Details

All experiments were performed using Python programming language. It
contains numerous machine learning libraries including sklearn which is
used in this study. From this library all three clustering algorithms were im-
ported: KMeans, SpectralCoclustering, SpectralBiclustering. Also,
it contains both validation metrics: adjusted rand score and silhouette score.

Chapter 3

Results

In this thesis different clustering techniques are evaluated in the task of dis-
covering cancer subtypes based on gene expression data. Used data sets are
thirty-three publicly available microarray data sets. Considered clustering
techniques are Spectral Co-Clustering, Spectral Bi-Clustering and K-means.
In order to enhance the clustering results, additional normalization tech-
niques are included.

3.1 Data Preprocessing

3.1.1 Data Sets and Ground Truth Labels

Let us first inspect original data after corresponding normalization and Sil-
houette Index based on the ground truth class assignments. Heatmaps for
pairs of cDNA and Affymetrix data sets are presented in Figures 3.1 - 3.3.
Rows of each matrix are sorted according to ground truth labels. Although
in some cases we can see some regularity in the row space, in general it
is not obvious enough and there is no checkerboard pattern. Regarding
Affymetrix data sets, both Sample wise and Range Normalization are pre-
sented and there is clear difference between the two.

Figure 3.1: Alizadeh v2 and Lapointe v2 data sets after Z-normalization.

37

Figure 3.2: Gordon and Nutt v2 data sets after SN.

Figure 3.3: Gordon and Nutt v2 data sets after Range Normalization.

Silhouette Index over each normalized data set is presented in Figure 3.4.
SI values indicate small within class similarity, especially in case of cDNA
data sets. Also, there are negative values indicating high variability of gene
expression in samples within the same class. For some Affymetrix data sets
SI has more pronounced changes when different type of normalization is
used. For example, data set Nutt v3 has almost the smallest value in case
of SN, while in case of RN its value is the largest. This indicates that SI, as
estimated based on Euclidean distance, might not be the optimal objective
criteria when evaluating clustering partitions in this type of data. For these
reasons we are estimating Adjusted Rand Index, as an external objective
measure, directly comparing cluster and class labels. Moreover, this further
supports the need to explore bi-clustering results looking for some better
agreement between the subsets of genes and output labels.

Figure 3.4: SI values for ground truth classes. First row: cDNA data sets after Z-
normalization. Bottom left: Affymetrix data sets after SN. Bottom right: Affymetrix
data sets after Range Normalization

3.1.2 Outliers

As a first step in preprocessing outliers in gene expression values are ex-
cluded.

If the distribution of the data is normal there is a standard procedure
for detecting and handling outliers. In Figure 3.5 we can see distributions
of cDNA data sets which resembles normal so gene expression values at
distance larger than three standard deviations from the mean value were
considered as outlier values. Detected points are then simply projected in
the following manner: if the point value is larger than µ+ 3σ its value is set
exactly to µ+3σ and if the point value is smaller than µ−3σ its value is set
to µ− 3σ where µ, σ are mean value and standard deviation of the feature,
respectively.

Figure 3.5: Distribution of Bredel and Tomlins v1 data sets.

In Figure 3.6 we see distributions for Affymetrix data. These do not
resemble any known distributions so we can not use the same method for

handling outliers. Instead, we used Isolation Forest [21]. This is decision
three based algorithm for detecting outliers for data do not follow any known
distribution.

Figure 3.6: Distribution of Armstrong v2 and Singh data sets.

Percentages of outliers per data set can be seen in Table 3.1. Outliers for
cDNA data were handled for each feature separately, and in the table only
the average value for a set is printed. In general, cDNA sets exhibit lower
number of outliers compared to Affymetrix.

Affymetrix Data Sets cDNA Data Sets
Data Set % Data Set %
Armstrong-V1 1.40 Alizadeh-V1 0.51
Armstrong-V2 1.40 Alizadeh-V2 0.44
Bhattacharjee 1.50 Alizadeh-V3 0.44
Chowdary 1.96 Bittner 1.14
Dyrskjot 2.56 Bredel 0.79
Golub-V1 1.40 Chen 1.11
Golub-V2 1.40 Garber 1.39
Gordon 1.11 Khan 2.00
Laiho 2.77 Lapointe-V1 0.91
Nutt-V1 2.04 Lapoint-V2 1.02
Nutt-V2 3.70 Liang 0.74
Nutt-V3 4.76 Risinger 1.93
Pomeroy-V1 3.03 Tomlins-V1 0.90
Pomeroy-V2 2.43 Tomlins-V2 0.88
Shipp 1.31
Singh 2.00
West 2.08
Yeoh-V1 1.22
Yeoh-V2 1.22

Table 3.1: Average percantages of outliers per each Affymetrix and cDNA data set

3.1.3 Normalization

Normalization technique used depends both on clustering algorithm and
microarray experiments (Affymetrix and cDNA) of the considered data set.

Z-normalization is performed over cDNA data sets when using K-means
or Co-Clustering algorithms. Figure 3.7 shows Chen data set before and

after Z-normalization (for the sake of the visualization outliers are excluded).
When comparing two images, data after normalization exhibits more regular
shape (in accordance with N (0, 1) distribution). As expected the values stay
within ±3 standard deviation.

Sample-wise Normalization (SN) is used on Affymetrix data sets when
using K-means and Co-Clustering algorithms. The SN rescales data into
[0, 1] interval, row (sample) wise, so that the resulting row values are like
a distribution of gene expressions within each sample. Figure 3.8 shows
Pomeroy v1 data set before and after SN. Comparing the values after nor-
malization, it can be noticed that the normalized expression ranges are quite
balanced between the samples. Both, sizes of the boxes and of the whiskers
are similar across samples.
Range Normalization (RN) is another normalization approach for Affymetrix
data sets. Similar to SN, data are rescaled to [0, 1] interval but column-wise.
In Figure 3.9 one can see Chowdary original data set and after RN with
respect to genes (features).

In the Bi-Clustering algorithm original data are used as input. Nor-
malization techniques in this case are contained in the algorithm itself (In-
dependent rescaling of genes and conditions, Bi-stochastization and Log-
interactions normalization) Section 2.3.4.

Figure 3.7: Chen data set before and after Z-normalization.

Figure 3.8: Pomeroy v1 data set before and after SN.

Figure 3.9: Chowdary data set before and after Range Normalization.

3.2 K-means

K-means is one of the most commonly used algorithms for data clustering.
In this thesis K-means clustering approach was evaluated setting the num-

ber of clusters equal to the number of classes and the performance results
measured by ARI and SI are presented in Figures 3.10 and 3.11, respectively.
As in the initialization step K-means centroids are randomly selected, two
runs of algorithm can produce different clustering results. For this reason
in this work K-means was performed 20 times for each data set, hence the
ARI values are presented in form of box plots. The randomly selected actual
sample points have been used as initial centroids in each run.
ARIs for both cDNA (Z-normalized) and Affymetrix (SN and Range Nor-
malized) data are presented in Figure 3.10. Affymetrix data under SN ex-
hibit higher stability in predictions across different K-means runs compared
with other two. Also, ARI values in cDNA datasets are low; and even in
cases when some larger values are obtained, such as for Alizadeh v2 the
output is not stable and largely depends on initializations. Difference in
ARIs for two normalizations of Affymetrix sets is obvious. In SN case Arm-
strong v2, Chowdary and Yeoh v1 perform the best with stable partitions
corresponding closely to class distributions in these data sets. When Range
Normalization is used case, where in data set Gordon ARI improves to indi-
cate almost perfect match with ground truth. However, lack of consistency
in ARI values, depending on normalization type is noticeable. No universal
conclusions can be made, as even in the experiments with the same microar-
ray and tissue type the ARI values do not follow the same trend. We can
inspect if in the mentioned data sets (with high ARIs) biclustering results
would also be better, and how the ARI values change for other data sets.

Figure 3.10: Box plots for K-means ARI over each data set. First row depicts cDNA data
sets with Z-normalization. Affymetrix data sets are in the last two rows with SN and
Range Normalization, respectively.

Besides ARI, results can also be examined based on SI, reflecting how
similar is a sample to the samples within the same cluster, as opposed to
other samples. The SI index is low even for ground truth class distribution.
The SI values for cDNA are not very low, yet positive, indicating that in
average samples have positive SI. However, SI values for cDNA are not very
high either, telling us that clusters are not so obvious but also values are
positive which means that points not assigned to the wrong clusters either.
For Affymetrix data with SN normalization only Singh data set has high SI.
In RN case average SI is a bit higher but again only one data set (Chowdary)
stands out. These initial observations aligned with [22] where variability in
performance of K-means clustering is noted, and the data sets are coarsely
grouped into three categories based on the stability of the K-means results.
In the same work it was shown that in general the ensemble based approach
Evidence accumulation clustering, does improve results in data sets where
K-means produces more stable partitions (initialization independent).

Figure 3.11: Box plots for K-means SI over each data set. First row depicts cDNA data
sets with Z-normalization. Affymetrix data sets are in the last two rows with SN and
Range Normalization, respectively.

3.3 Clustering Results

An intuitive insight into the clustering results for two Affymetrix and two
cDNA is provided Figures 3.12-3.15. The heatmaps for Affymetrix data
are organised as follows: first row represents original data matrix, second
one is original matrix with rows and columns permuted according to re-
sults of Bi-Clustering algorithm, third row is data matrix after SN, forth
is SN data matrix with rows and columns permuted according to results
of Co-Clustering algorithm, fifth row is data matrix after RN, and the last
one is RN data matrix with rows and columns permuted according to re-
sults of Co-Clustering algorithm. In case of cDNA data we have only four
heatmaps since Co-Clustering considers only Z-normalization. For the sake
of visualization only every other column is plotted, as suggested in [23].

Figure 3.12: Heatmaps of Bhattacharjee 2001 data set. First row: original data; second
row: original data after Bi-Clustering; third row: data after Z-normalization; fourth
row: SN data after Co-Clustering; fifth row: data after RN; last row: RN data after
Co-Clustering.

Figure 3.13: Heatmaps of Singh data set. First row: original data; second row: original
data after Bi-Clustering; third row: data after Z-normalization; fourth row: SN data after
Co-Clustering; fifth row: data after RN; last row: RN data after Co-Clustering.

The data sets presented in Figures 3.12 and 3.13 are Affymetrix. Figure
3.12 shows the clustering results for Bhattacharjee 2001 data set. In the
image with Bi-Clustering results there is a visible checkerboard pattern dis-
tinguishing biclusters on the right side of the figure. For the Co-Clustering
with SN the pattern is not so obvious but we can see regularity in the middle
of the matrix, with two defined coclusters. In the case of RN normalization,
data are considerably different and coclusters are more obvious. There we
have several well defined coclusters. In Figure 3.13, with Singh data set re-
sults of Bi-Clustering algorithm are not easily discernible, but Co-Clustering
yields clear partitions. Again, when Range Normalization is applied the par-
titioning is more easily discernible.

Figure 3.14: Heatmaps of Khan data set. First row: original data; second row: orig-
inal data after Bi-Clustering; third row: data after Z-normalization; fourth row: Z-
normalization data after Co-Clustering.

Figure 3.15: Heatmaps of Lapointe v1 data set. First row: original data; second row:
original data after Bi-Clustering; third row: data after Z-normalization; fourth row: Z-
normalization data after Co-Clustering.

In the next two figures (3.14 and 3.15) cDNA data sets are considered.
In both, Khan and Lapointe v2 data sets Bi-Clustering and Co-Clustering
discover compact genes/samples sets.

In order to evaluate clustering results we will consider ARI (Section 2.4.1)
as an external measure of the clustering quality (compared to the ground
truth) and SI (Section 2.4.2) over obtained results. Due to the random
initialization of algorithms we performed twenty repetitions for each set and
in the rest of this section presented average values of ARI and SI.

Average Adjusted Rand Index (ARI) for each data set and each of
three clustering algorithms is presented in the Figure 3.16 separately for
Affymetrix and cDNA data. None of the algorithms has consistently su-
perior performance over others. In several data sets K-means yields higher
ARI, but more often one of the biclustering algorithms (Co-Clustering or
Bi-Clustering) is better. Also, it is obvious that in case of cDNA data
results are in general lower. An overall performance of algorithms over cer-
tain type of microarray data can be visualized by aggregating ARIs in the
form of box plots as presented in Figure 3.17. In top subfigure with cDNA
data Bi-Clustering algorithm proved to be best. In the bottom left with
SN Affymetrix data both median and lower quartile are highest for Co-
Clustering so we can conclude that this algorithm wins. In the bottom
right, with Range Normalized Affymetrix data, Bi-Clustering results seem
to be the best, but still very similar with Co-Clustering scores.

Figure 3.16: Mean ARI for different approaches for all datasets.

Figure 3.17: Box plots for mean ARI for different approaches aggregated over all datasets.

Next evaluation metric that is used is Silhouette Index (SI) and its results
are presented in Figure 3.18. Due to the nature of this score we can also
incorporate scores with ground truth labels. We can notice that for cDNA
data all the values are low which indicates that the underlying structure in
data is not well captured by the used similarity metrics and approaches. In
the case with Affymetrix data, some sets have significant higher scores than
others (e.g. Chowdrary). Again we consult box plots (Figure 3.19) to com-
pare overall performances. In the upper subfigure for cDNA data, original
labels have the lowest SI which indicates that ground truth labels are not
followed by the consistent expression of genes in data samples. The differ-
ence between algorithms performances is negligible. Bi-Clustering stands

out in Affymetrix data for both normalizations (SN and RN). Original data
again exhibits the lowest SI.

Figure 3.18: Mean SI for different approaches for all datasets.

Figure 3.19: Box plots for mean SI for different approaches aggregated over all datasets.

Proposed biclustering algorithms (Co-Clustering and Bi-Clustering) pro-
duce both, row and column labels. Hence, we can also consider genes as
inputs (each gene being represented by its values over all data samples). In
order to compare how coherent are gene expression values for genes with
the same cluster label, we have calculated the SI index for gene partitions.
Results are presented in Figures 3.20 and 3.21. For cDNA data obtained
SIs are quite low for both algorithms. On the other hand, Bi-Clustering

produces very high scores over the Affymetrix data for both normalization
approaches, significantly beating Co-Clustering.

Figure 3.20: Column-wise mean SI for different approaches for all datasets.

Figure 3.21: Box plots for column-wise mean SI for different approaches aggregated over
all datasets.

Chapter 4

Conclusions

The aim of this thesis is to explore methods that enable simultaneous cluster-
ing of both genes and samples. In this analysis thirty-three publicly available
microarray data sets are used. Nineteen of those are Affymetrix data sets,
and the other fourteen are cDNA data sets. In this thesis we considered two
appropriate clustering algorithms for this type of problem: Co-Clustering
and Bi-Clustering. In order to illustrate performance of some conventional
clustering algorithms on these data sets, K-means clustering was included.
Two validation criteria used here are the ARI as an external criterion and
SI as an internal evaluation criterion.

The analysis of samples within classes, as designated by the ground truth,
has indicated samples’ within class heterogeneity. The partition defined by
the class distribution exhibits low SI. i.e. on average a small similarity
of samples to the samples in the same class, as opposed to samples from
the other classes. This diversity of gene expressions within the same class
(same cancer type) already suggests potential difficulties in clustering of
the samples, as clustering approaches exploit sample similarity to unveil the
underlying data structure.

There is a noticeable difference between obtained results over two chip
platforms (cDNA and Affymetrix), as the type of measurements values differs
significantly. The use of normalization techniques is recommended in case
of Affymetrix data, as high range of input values, gene expressions, might
mask potentially relevant yet minor differences in expression of genes.

Visual inspection of data sets through heatmaps shows that expected
structure (checkerboard pattern) is achieved upon clustering. In Affymetrix
range normalized data sets the pattern is more obvious. As expected for the
study that encompasses a larger collection of data sets of different origin and
different microarray technologies, none of the examined approaches performs
consistently well.

For cDNA data sets ARI values of K-means partitions are low, but the
results are not very sensitive to initialization of cluster centroids. Likewise,
for Bi-Clustering and Co-Clustering ARI does not improve significantly. SI
values over cDNA data sets for the ground truth labels are very low, even
negative in some data sets. K-means produces on average higher SI values.
Bi-Clustering and Co-Clustering achieve similar low SI values. For biclus-
tering algorithms we can also inspect gene clusters in order to evaluate the

53

clustering with respect to genes (features). It can be observed if the genes
that are grouped together have similar expressions over all samples. In case
of cDNA data sets results, this type of similarity is low as well, as measured
by SI.

In Affymetrix data sets the effects of normalization as pre-processing step
should be examined as well. K-means with SN data exhibits high variability
of ARI values (i.e. different partitions, unstable clustering results), while in
case of RN both ARI and its variability are reduced. ARIs for Bicluster-
ing algorithms are comparable for both types of normalization, SN and RN,
while Co-Clustering is more sensitive to normalization type. The Silhouette
Index of the partition defined by the ground truth labels yields low val-
ues. Bi-Clustering partitions have higher SI values in almost all Affymetrix
sets regardless of normalization, as compared to Co-Clustering. When con-
sidering column-wise, gene clusters for Affymetrix data and both type of
normalization Bi-Clustering has significantly higher values compared with
Co-Clustering.

The results derived here are in accordance with those published in [8]
and [22]. In these studies authors used same gene expression data sets and
evaluated different clustering algorithms. The clustering results vary to a
large extent depending on data set irrespective of the algorithm used. It
was noticed that the performance and stability of K-means clustering on
a certain data set is informative providing quick insight into needs to use
more complex algorithms [22]. Another common conclusion is that due to
the nature of the data, different data origins, tissue and cancer types and
different data dimensionality approaches applied, some common guidance
on algorithm selection could not be offered.

There are some ambiguities that should be addressed in the future work.
The data sets originated from different laboratories and are provided with
reduced dimensionality without availability of the original data sets. For
these reasons further exploration of this relevant step in orginal data sets
was not possible. A different dimensionality reduction technique might help
in identification of the underlying data structure, as noise present in the data
hampers the use of many similarity metrics. Also, it should be inspected if
the ground truth labels are appropriate indicators of natural clusters. Some
more refined labeling procedure involving cancer sub-types with substantial
number of samples would benefit different machine learning approaches. The
potentially promising approach is the use of semi-supervised learning.

Bibliography

[1] A. Brazma and J. Vilo. “Gene expression data analysis”. In: FEBS
Letters (2000). doi: https://doi.org/10.1016/S0014-5793(00)
01772-5.

[2] G. Govaert and M. Nadif. Co-clustering: models, algorithms and ap-
plications. John Wiley & Sons, 2013.

[3] J. A. Hartigan. “Direct Clustering of a Data Matrix”. In: Journal of
the American Statistical Association (1972). doi: 10.1080/01621459.
1972.10481214.

[4] Y. Kluger et al. “Spectral Biclustering of Microarray Data: Cocluster-
ing Genes and Conditions”. In: Genome research 13.4 (2003), pp. 703–
716. doi: 10.1101/gr.648603.

[5] A. Ben-Dor et al. “Discovering Local Structure in Gene Expression
Data: The Order-Preserving Submatrix Problem”. In: RECOMB ’02:
Proceedings of the sixth annual international conference on Computa-
tional biology (2002), pp. 49–57. doi: https://doi.org/10.1145/
565196.565203.

[6] Reaping the Benefits of Genomic and Proteomic Research. 2006. url:
https://www.ncbi.nlm.nih.gov/books/NBK19861/.

[7] A. Tefferi et al. “Primer on Medical Genomics Part III: Microarray Ex-
periments and Data Analysis”. In: Mayo Clinic Proceedings 77 (2002),
pp. 927–940. doi: https://doi.org/10.4065/77.9.927.

[8] M.C. de Souto et al. “Clustering cancer gene expression data: a com-
parative study”. In: BMC Bioinformatics 9 497 (2008). doi: 10.1186/
1471-2105-9-497.

[9] H. Jia et al. “The latest research progress on spectral clustering”. In:
Neural Computing and Applications 24.7 (2014), pp. 1477–1486.

[10] A. Y. Ng, M.I. Jordan, and Y.Weiss. “On Spectral Clustering: Analy-
sis and an algorithm”. In: Advances in neural information processing
systems 2 (2002), pp. 849–856.

[11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[12] M. Fiedler. “Algebraic connectivity of graphs”. In: Czechoslovak Math-
ematical Journal 23 (1973), pp. 298–305. doi: http://eudml.org/
doc/12723.

55

[13] L. Hagen and A.B. Kahng. “New spectral methods for ratio cut par-
titioning and clustering”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 11 (1992), pp. 1074 –1085.
doi: 10.1109/43.159993.

[14] J. Shi and J. Malik. “Normalized cuts and image segmentation”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 22
(2000), pp. 888 –905. doi: 10.1109/34.868688.

[15] I.S. Dhillon. “Co-clustering documents and words using bipartite spec-
tral graph partitioning”. In: KDD ’01 (2001). doi: 10.1145/502512.
502550.

[16] R. Sinkhorn. “A Relationship Between Arbitrary Positive Matrices
and Doubly Stochastic Matrices”. In: Ann. Math. Statist. 35 (1964),
pp. 876–879. doi: 10.1214/aoms/1177703591.

[17] K.Y. Yeung and W. Ruzzo. “Details of the Adjusted Rand index and
Clustering algorithms Supplement to the paper ”An empirical study
on Principal Component Analysis for clustering gene expression data”
(to appear in Bioinformatics)”. In: Science 17 (Jan. 2001).

[18] W.M. Rand. “Objective Criteria for the Evaluation of Clustering Meth-
ods”. In: Journal of the American Statistical Association (1971), 846–850.

[19] L. Hubert and P. Arabie. “Comparing partitions”. In: Journal of Clas-
sification 2 (1985), 193–218. doi: https : / / doi . org / 10 . 1007 /

BF01908075.

[20] P.J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of Computational and
Applied Mathematics 20 (1987), pp. 53–65. doi: https://doi.org/
10.1016/0377-0427(87)90125-7.

[21] F.T. Liu, K. M. Ting, and Z. Zhou. “Isolation forest”. In: 2008 eighth
ieee international conference on data mining. IEEE. 2008, pp. 413–
422.

[22] I. Šašić et al. “Consensus Clustering for Cancer Gene Expression Data-
Large-Scale Analysis using Evidence Accumulation Approach”. In: In-
ternational Conference on Bioinformatics Models, Methods and Algo-
rithms. Vol. 4. SCITEPRESS. 2017, pp. 176–183.

[23] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. 2001.

Biography

Nataša Topić was born in Sombor on 24th of
February 1994. She finished elementary school
”Nikola Tesla” in Kljajićevo. After that, she
finished high school ”Veljko Petrović” in Som-
bor. She received her Bachelor degree in Ap-
plied Mathematics in 2017 at Faculty of Sci-
ences, University of Novi Sad, same year she
continued her Master studies in the field of
Data Science at the same faculty. She attended
ECMI Mathematical Modelling Week in sum-
mer of 2018 where she was included on project
”Diffusion and anomalous diffusion models:
simulation and application to biological data”.
Nataša currently works at Synechron.

UNIVERZITET U NOVOM SADU
PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:
RBR
Identifikacioni broj:
IBR
Tip dokumentacije: monografska dokumentacija
TD
Tip zapisa: tekstualni štampani materijal
TZ
Vrsta rada: master rad
VR
Autor: Nataša Topić
AU
Mentor: dr Tatjana Lončar-Turukalo
MN
Naslov rada: Evaluacija algoritama klasterovanja na podacima genskih

ekspresija
NR
Jezik publikacije: engleski
JP
Jezik izvoda: e
JI
Zemlja publikovanja: Republika Srbija
ZP
Uže geografsko područje: Vojvodina
UGP
Godina: 2021.
GO
Izdavač: autorski reprint
IZ
Mesto i adresa: Novi Sad, Trg Dositeja Obradovića 4
MA
Fizički opis rada: 4 poglavlja, 56 strana, 23 lit. citata, 41 figura, 4 tabele
FO
Naučna oblast: matematika
NO
Naučna disciplina: primenjena matematika
ND
Ključne reči: Klasterovanje, Spektralno Biklasterovanje, genske ekspre-

sije
UDK
Čuva se: u biblioteci Departmana za matematiku i informatiku, Prirodno-

matematičkog fakulteta, u Novom Sadu
CU
Važna napomena:

VN
Izvod: Tema ovog rada je analiza rezultata algoritama klasterovanje na

33 skupa koji sadrže podatke o ekspresijama gena raznih kancerogenih tkiva.
Skupovi podataka se razlikuju po tehnologijama kojim su ekspresije procen-
jene (čip tehnologije engl. cDNA i Affymetrix) i vrsti tkiva, što zahteva
različite pristupe u inicijalnoj obradi podataka. U tezi se evaluiraju i porede
performanse: algoritma K srednjih vrednosti, spektralnog bi-klasterovanja i
spektralnog ko-klasterovanja na ovim skupovima podataka.

IZ
Datum prihvatanja teme od strane NN veca:
DP
Datum odbrane:
DO
Članovi komisije:
KO
Predsednik: dr Dušan Jakovetić, vanredni profesor
Mentor: dr Tatjana Lončar-Turukalo, vanredni profesor
Član: dr Sanja Brdar, naučni saradnik

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCES

KEY WORDS DOCUMENTATION

Accession number:
ANO
Identification number:
INO
Document type: monograph type
DT
Type of record: printed text
TR
Contents code: master thesis
CC
Author: Nataša Topić
AU
Mentor: Tatjana Lončar-Turukalo, PhD
MN
Title: Clustering Gene Expression Data - Comprehensive Evaluation
XI
Language of text: English
LT
Language of abstract: e
LA
Country of publication: Republic of Serbia
CP
Locality of publication: Vojvodina
LP
Publication year: 2021.
PY
Publisher: author’s reprint
PU
Publ. place: Novi Sad, Trg Dositeja Obradovića 4
PP
Physical description: 4 chapters, 56 pages, 23 references, 41 figures, 4

tables
PD
Scientific field: mathematics
SF
Scientific discipline: applied mathematics
SD
Key words: Clustering, Spectral Biclustering, Cancer Gene Expression

Data
UC
Holding data: Department of Mathematics and Informatics’s Library,

Faculty of Sciences, Novi Sad
HD
Note:

N
Abstract: The topic of this thesis is the analysis of the results of cluster-

ing algorithms on 33 gene expression data sets of tissues with different types
of cancer. Data sets differ in the chip technologies by which expressions
were estimated (cDNA and Affymetrix) and tissue type, all of this requires
different approaches in the initial data processing. The thesis evaluates and
compares the performance of: K means algorithm, spectral bi-clustering and
spectral co-clustering on these data sets. AB

Accepted by the Scientific Board on:
ASB
Defended:
DE
Thesis committee:
DB
Chair: Dušan Jakovetić, PhD, associate professor
Mentor: Tatajana Lončar-Turukalo, PhD, associate professor
Member: Sanja Brdar, PhD, research assistant professor

