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Chapter 1

Introduction

Predicting the future started fascinating me from the early age. For
centuries, people have been trying to find ways to deal with the forthcoming,
and foresee the future. The motivation behind it is usually materialistic,
however its charm might even be in the power that complements the ability
to do so. What is more, that curiosity led to the marvelous results in the field
of applied mathematics. Mathematical modelling emerged as a consequence
of formalizing the nature, in an attempt to mathematize the world around
us.

The task to formally and precisely describe natural phenomena is non-
trivial. Firstly, there are many factors, whose existence is not as evident,
and defining them would be extremely complicated, as we are not fully
aware of their properties. There is also choosing the approach for solving
a problem. Mathematics offers a variety of tools, so finding a path is a
matter of preference. Same task can be modelled in plethora of ways, so
the question arises: Which model is the best? The correct answer is usually
unobtainable, however in the set of different descriptions of a problem, it is
possible to distinguish the one (or multiple) that describes the problem the
most efficiently.

With the advancement of technology and computers, we acquired the
machinery to simulate the reality more precisely. Consequently, a break-
through of new methods of modelling occured (one of which is machine
learning) . The advent of internet networked the world, and created a de-
mand for more robust and complex methods which are designed for nonlinear
and multidimensional problems. Mathematical apparatus has received the
application in a larger scale than ever before. Moreover, the models with
mathematical background have become omnipresent in our everyday lives.

This tesis will focus on an optimization algorithm and implementing
it in a machine learning model. The goal is to present the reasoning behind
this method’s functionality and formally prove the techniques used. Along-
side the theoretical part, an industrial application is included. Namely the
motivation of the thesis, besides the full implementation of the model, is to
apply the algorithm to a real world issue. The industrial problem that will
be analysed is introduced in the last chapter. Suffice it to say, the reader
will witness the beautiful ’life cycle’ of a real world mathematical problem,
and the amount of theory that is necessary to and solve it.
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Chapter 2

Machine learning

Machine learning (ML) studies algorithms which simulate human learn-
ing and experience. Using probability, statistics and numerical analysis it is
possible to "teach" a computer, with a quantified certainty, how to predict,
cluster or identify properties of an entity. These methods have found their
application in various forms, in fields such as agriculture, banking, medical
diagnosis, insurance, marketing etc, and they are still evolving to this day.
Based on the nature of a problem, there are different variants of ML which
can be used to tackle the problem, the most frequent being: supervised,
unsupervised and reinforced learning. Supervised learning (which we will
focus on) is used to extract the rules from the input data to determine the
output information. The main goal of these algorithms is to predict a char-
acteristic (target, label) of a sample, with the help of its attributes (features).

Figure 2.1: Scheme of supervised learning

Preprocessing the data is the first step in every method. Without
modifying the data correctly, most of the algorithms would not be able to
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train properly. The datasets contain rows of samples, where each column
represents an attribute (feature), and every sample can have a target value,
which we want to predict.

These datasets exist in various forms, hence the most common steps
in the preprocessing are, dealing with the missing data, and encoding the
nonnumerical features into real numbers. The rows with the missing data
can either be deleted, or if there are too many of such rows, one can ap-
proximate the missing values. In order to encode the string features, it is a
common practice to use dummy variables. Each feature, that has k differ-
ent categories, is turned into k columns, where every column represents one
category of the feature. The sample can have the value 1 or 0, depending
on whether it belongs to the category. Similar technique can be applied
to labels. If the target set is non ordered and non numerical, the targets
can be encoded with either dummy variables, or a single column with 0
and 1 values, in the case of binary classification. Note that samples don’t
need to have labels, however in that case, you may want to apply clustering
algorithms to find the clusters and make labels artificially.

The second step of supervised learning is splitting the data into two
parts. The purpose of the first set (training set) is to fit the model, while the
latter (test set) is used to validate the efficiency of the system. Scaling the
data is also recommended after the split, however it is not always necessary
for the algorithm to function properly. After training the model, the test
data is processed, and with the usage of known features we receive the label
predictions as the output values. We can then compare them to the real
test labels, and approximately calculate the efficiency of the model.

The sample sets can have a numerical or categorical label, hence there
are two types of algorithms, for regression and classification. Various meth-
ods have been developed with the same goals, that is to maximize the num-
ber of correct predictions and minimize the error. In order to achieve highest
predicting performance, an objective (loss, cost) function is defined, which
measures the distance of predicted from the true label values. Training the
algorithm implies minimizing the loss, after which the optimal parameters
are derived in order to improve the model. Nonetheless, there are various
optimization methods, all of which are extremely reliant on the properties
of the objective function.

As mentioned, datasets with categorical labels require classification
methods, due to the fact that they use cost functions designed for binary
labels. Specifically, binary classification is applied if there are only two
label categories. For the algorithms to evaluate the predictions correctly,
numerous loss functions are employed, one of which is hinge loss. Namely,
the machine learning method we will discuss is the support vector machine
(SVM). Its cost function, hinge loss, is going to be analysed and we will
prove model’s functionality .
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Chapter 3

Hinge loss

3.1 SVM for binary classification
Hinge loss is a cost function used for training binary classifiers. The

most noteworthy example is its implementation in the support vector ma-
chines (SVM). Namely, the goal of the (linear) SVM algorithm is to detect
an optimal hyperplane in the n-dimensional space (where n is the number
of features) which separates the two classes of points. Note that the hyper-
plane is a n− 1 dimensional subspace for the n-dimensional space. In R3 it
is a plane, whereas in R2 it is a straight line. Figure 3.1 shows separating
hyperplanes, for a 2 dimensional dataset.

Figure 3.1: Separating hyperplane in R2, Source: [TDS]

As we can see, there are more than a single separating line, however
the algorithm will search for the one that has the widest margin. We define
the margin of a hyperplane as the minimal distance from the hyperplane
to the dataset points. The points laying on it are called support vectors.
Resulting maximized hyperplane can be seen in Figure 3.2.
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3.1. SVM FOR BINARY CLASSIFICATION

Figure 3.2: Support vectors and optimized margin in R2, Source: [TDS]

The width of the margin can be calculated as: 2
‖x‖ , where x is the

coefficient vector of the hyperplane. To maximize it, we need to minimize
‖x‖. What is more, based on two classes, we have the following constraints:

〈x, ωi〉 ≥ 1, if ti = +1, i = 1, ...,K (3.1)

〈x, ωi〉 ≤ −1, if ti = −1, i = 1, ...,K (3.2)

where K is the number of points in the plane (samples), ωi, i = 1, ...,K
are the sample attribute vectors, and ti ∈ {−1, 1} is the target value of the
sample ωi. Here, we denote the scalar product of vectors as 〈·, ·〉. These
constraints can be simplified in the form of one inequality:

ti ∗ 〈x, ωi〉 ≥ 1, i = 1, ...,K (3.3)

We get the following constrained quadratic optimization problem:

min
x

1
2‖x‖

2, subject to ti ∗ 〈x, ωi〉 ≥ 1, i = 1, ...,K (3.4)

which has a unique solution. Since we are minimizing a convex function with
an affine constraint function, this problem is convex, for which we know that
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3.1. SVM FOR BINARY CLASSIFICATION

local solutions are global. This case is called a ’hard margin’, and it is ap-
plicable only in the linearly separable dataset.

When the dataset is not linearly separable, which in reality is most
often the case, SVM applies what is called a ’soft margin’. That is, when
the data is being misclassified, the penalty function establishes slight toler-
ance for mistakes. In other words, this problem of misclassification is solved
by ’softening’ the constraint by employing the hinge loss with an L2 reg-
ularization factor. We will define the L2 regularized binary hinge loss as
f : Rn → R,

f(x) := λ

2 ‖x‖
2 + 1

K

K∑
i=1

l(ti, x, ωi), (3.5)

where K ∈ N is the number of samples, λ > 0 a regularization parameter,
ωi ∈ Rn, i = 1, ...,K are the feature vectors of each sample, and t ∈ RK
is the vector of corresponding real labels, with ti ∈ {−1, 1} . Independent
variable x ∈ Rn represents the coefficient vector of the hyperplane, which
we will need to find to achieve the optimal setting. Function l(ti, x, ωi) is
the basic hinge loss defined as:

l(ti, x, ωi) = max(0, 1− ti ∗ 〈x, ωi〉), ti ∈ {−1, 1}. (3.6)

More common in literature, the hinge loss (3.6) can be written as:

l(t, y) := max(0, 1− t ∗ y), t ∈ {−1, 1}, y ∈ R.

where y = 〈x, ωi〉 in equation (3.6).

Figure 3.3 shows the graph of the function for t = 1. It can be seen
that the error penalization in the objective function increases the closer the
y is to 0, and the further y is from t, on the opposite side of 0, the lesser the
loss is. This intuitively satisfies the constraint (3.3) mentioned previously.
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3.1. SVM FOR BINARY CLASSIFICATION

Figure 3.3: Hinge loss for t=1

We can notice that the hinge loss with the L2 regularization (3.5) is
constructed out of two parts. The first one λ

2‖x‖
2 is the regularizator, which

has the task to decrease the importance of misclassification. The second
part, however, is meant to measure the mean distance of all predictions
from real label values. Suffice it to say, as λ gets larger, the latter part has
less of an impact on the loss.

Additionaly, in the case when |〈x, ωi〉| ≥ 1 the cost function does not
increase, whereas if |〈x, ωi〉| ≤ 1 the loss starts to build up.

Figure 3.4: Hard margin (left) and Soft margin (right), Source: [TDS]
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3.2. SVM FOR ANOMALY DETECTION

In order to find the appropriate coefficients for classifying the samples the
following optimization problem is solved:

min
x
f(x) = min

x
(λ2 ‖x‖

2 + 1
K

K∑
i=1

l(ti, x, ωi)). (3.7)

The hinge loss function is not differentiable on its entire domain. However,
we can calculate the subderivative. Firstly, we will need to define the index
sets as:

E = {i ∈ {1, ...,K}, 1− ti〈x, ωi〉 > 0} (3.8)

M = {i ∈ {1, ...,K}, 1− ti〈x, ωi〉 = 0} (3.9)

W = {i ∈ {1, ...,K}, 1− ti〈x, ωi〉 < 0} (3.10)

Sets E,M,W represent the indexes of samples that are within, on and outside
of the margin respectively. Consequently, the subderivative is defined as:

∂f(x) = λx− 1
K

K∑
i=1

βitiωi = λx− 1
K

∑
i∈E

tiωi −
1
K

∑
i∈M

βitiωi. (3.11)

βi =


1 i ∈ E
[0, 1] i ∈M
0 i ∈W

(3.12)

The hinge loss can also be used as a cost function for outlier detection
algorithms.

3.2 SVM for anomaly detection
The datasets are often filled with imbalanced samples that stand out from
the rest, and should be extracted. The anomaly (outlier) detection is a
convenient process which is used to discover and eliminate such data. In
industry, detecting anomalies within the operating systems can be benefi-
cial, as we can predict the malfunctioning of the equipment and mitigate
the potential losses. These outliers can be detected in many ways, however,
different methods may not discover the same anomalies within the set. One
of such methods is the ’one class SVM’, which is an unsupervised machine
learning method. As the name suggests, the notion is similar to the binary
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3.2. SVM FOR ANOMALY DETECTION

classification SVM, where we are trying to find the optimal hyperplane to
classify the data. However, one class SVM doesn’t use labels for training,
hence it is considered to be an unsupervised algorithm. The algorithm sep-
arates the points from the origin by finding the separating hyperplane with
the largest margin based on the features. In Figure 3.5, we can see that the
separating line defines the anomaly boundary.

Figure 3.5: One class SVM hyperplane for a 2-dimensional set

To find the optimal hyperplane we solve the following optimization problem:

min
x,r

1
2‖x‖

2 − r, subject to |〈x, ωi〉| ≥ |r|, i = 1, ...,K (3.13)

The samples ωi for which |〈x, ωi〉| ≤ |r| are considered to be anomalies.
Adding the regularization parameter and the hinge loss penalization, we
can rewrite the problem as:

min
x,r

f(x, r) = min
x,r

(λ‖x‖2
2 − λr + 1

K

K∑
i=1

max{0, r − 〈x, ωi〉}
)
, (3.14)
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3.2. SVM FOR ANOMALY DETECTION

We can also find the subgradient of f(x, r), as:

∂xf(x, r) = λx− 1
K

K∑
i=1

βiωi = λx− 1
K

∑
i∈E′

ωi −
1
K

∑
i∈M′

βiωi

∂rf(x, r) = −λ+ 1
K

∑
i∈E′

1 + 1
K

∑
i∈M′

βi

∂f(x, r) =
[
∂xf(x, r) ∂rf(x, r)

]
(3.15)

where,

E′ = {i ∈ {1, ...,K}, r − 〈x, ωi〉 > 0} (3.16)

M′ = {i ∈ {1, ...,K}, r − 〈x, ωi〉 = 0} (3.17)

W′ = {i ∈ {1, ...,K}, r − 〈x, ωi〉 < 0} (3.18)

and βi is as in (3.12)

The optimization problems (3.7) and (8.2), require minimizing a non-
smooth function. The traditional minimization methods have trouble in
dealing with large and sparse datasets, thus the stochastic method is pro-
posed. To solve this, we are going to use the gradient sampling for nons-
mooth functions, which was first introduced by Burke, Lewis and Overton
[BLO], and later revisited and upgraded by Kiwiel [KIW]. However, we will
need to show its functionality and prove the convergence first. In order to
do so, basic theory of nonsmooth analysis needs to be introduced.
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Chapter 4

The nonsmooth analysis

4.1 Generalized gradient

The terms and ideas presented in this chapter are mostly from [CLA], and
the notation is directly taken from it. The rest is adapted to be in the spirit
of Clarke’s work.

Suppose (X, ‖ · ‖) is a Banach space, where X is a nonempty set, con-
taining elements x (vectors).

Definition 1. Let Y ⊆ X, and f : Y → R. We say that f is rank K
Lipschitz continuous if, for a nonnegative scalar K holds:

|f(y1)− f(y2)| ≤ K‖y1 − y2‖, for all y1, y2 ∈ Y. (4.1)

This condition, intuitively speaking, means that the function is not ’too
steep’. Notice that the function doesn’t need to be differentiable in order
to be Lipschitz continuous, however all differentiable functions are Lipschitz
continuous. For example f = |x| is Lipschitz continuous, but not differen-
tiable at x = 0.

We say that f is locally Lipschitz (near x), if for some ε > 0, f satisfies
the condition 4.1 on the ball B(x, ε) := {x′, ‖x− x′‖ < ε}. This leads us to
the term generalized directional derivative.

Definition 2. Let f be locally Lipschitz at x, and let v be a vector in X
different from x. We define the generalized directional derivative of f at x,
denoted as fo(x; v), in the following way:

fo(x; v) = lim sup
y→x,t→0

f(y + tv)− f(y)
t

(4.2)

where y ∈ X, and t > 0.

This definition does not imply the existence of any limit, because it
involves only the behaviour of f near x. It also differs from traditional def-
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4.1. GENERALIZED GRADIENT

inition of directional derivative, as the base point y is not fixed.

Theorem 1. [CLA] Let f be a rank K locally Lipschitz continous function
at x.

i) The function v → fo(x; v) is finite, positively homogenous, and subaddi-
tive on X, satisfying:

|fo(x; v)| ≤ K‖v‖

ii) fo(x; v) is upper semicontinuous as a function of (x, v) and, is rank K
Lipschitz on X in terms of v alone.

iii) fo(x;−v) = (−f)o(x; v)

Proof. From Lipschitz inequality, we know that:

|f(y + tv)− f(y)
t

| ≤ K ‖y + tv − y‖
t

= K‖v‖

As |fo(x; v)| is the lowest upper bound, it is bounded by K‖v‖. This proves
the part (i).
Positive homogeneity comes from:

fo(x;λv) = lim sup
y→x,t→0

f(y + λtv)− f(y)
t

= λ lim sup
y→x,p→0

f(y + pv)− f(y)
p

.

We get the subadditivity from the following:

fo(x; v + w) = lim sup
y→x,t→0

f(y + tv + tw)− f(y) + f(y + tw)− f(y + tw)
t

≤ lim sup
y→x,t→0

f(y + tv + tw)− f(y + tw)
t

+ lim sup
y→x,t→0

f(y + tw)− f(y)
t

= fo(x; v) + fo(x;w)
(4.3)

which proves i).
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4.1. GENERALIZED GRADIENT

For ii), we will need sequences {xi} and {vi} which converge to x and
v respectively. Thus, for each i, there exists yi ∈ X, ti > 0, such that if:

‖yi − xi‖ <
1
i

+ ti, then

fo(x; v)− 1
i
≤ fo(xi; vi) = f(yi + tivi)− f(yi)

ti

= f(yi + tiv)− f(yi)
ti

+ f(yi + tivi)− f(yi + tiv)
ti

≤ f(yi + tiv)− f(yi)
ti

+K‖vi − v‖.

(4.4)

which, after applying the upper limit (as i→∞), takes the form:

lim sup
i→∞

fo(xi; vi) ≤ fo(x; v).

Hence the upper semicontinuity has been established.

Finally, for v, w ∈ X we have (from Lipschitz inequality):

f(y + tv)− f(y) ≤ f(y + tw)− f(y) +K‖v − w‖,

for y near x, and t approaching 0. After dividing by t and applying upper
limits (lim supy→x,t→0 f) we get:

fo(x; v) ≤ fo(x;w) +K‖v − w‖.

This implies Lipschitz continuity for the second argument, and proves ii).
The following holds:

fo(x;−v) = lim sup
x′→x,t→0

f(x′ − tv)− f(x′)
t

= lim sup
u→x,t→0

(−f)(u+ tv)− (−f)(u)
t

,where u = x′ − tv.

= (−f)o(x; v)

(4.5)
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4.1. GENERALIZED GRADIENT

�

The following theorems, which we will not prove, will give us the tools to
define the generalized gradient. However, first we need to define the space
of linear functionals.

Definition 3. Let (X, ‖·‖X), and (Y, ‖·‖Y ) be normed spaces over the same
field F . Function f : X → Y is linear, if for each α, β ∈ F , and x, y ∈ X

f(αx+ βy) = αf(x) + βf(y). (4.6)

The set of all continuous linear functions from X to Y is denoted as L(X,Y ).

Definition 4. Let X be a vector space over F . Linear function f : X → F
is called a linear functional on X.

The set L(X,Y ) is a vector space over F , if the addition of the vectors
f, g ∈ L(X,Y ), and multiplication by scalar α ∈ F is defined as:

(αf + βg)(x) = αf(x) + βg(x), for every x ∈ X. (4.7)

If Y = R, then the space L(X,R) is Banach, and we call it the dual space
of X, denoted as X ′.

Definition 5. Linear function f : X → Y is bounded if there exists M > 0,
such that

‖f(x)‖Y ≤ ‖x‖X , for every x ∈ X. (4.8)

Theorem 2. [HP] Linear function f : X → Y is continuous iff it is bounded.

This lets us formulate the Hahn-Banach theorem.

Theorem 3 (Hahn-Banach,[HP]). Let X be a vector space over R, and
p a subadditive and positively homogenous functional on X. Let A be a
nonempty subspace of X and f : A→ R a linear functional for which holds

f(x) ≤ p(x), for every x ∈ A.

then, there exists a linear functional F ∈ X ′ satisfying:

F|A = f, F (x) ≤ p(x), for every x ∈ X. (4.9)

where F|A is the restriction of F over A,
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4.1. GENERALIZED GRADIENT

The Hahn-Banach Theorem claims that any positively homogenous
and subadditive functional on X has at least one linear functional on X
which it majorizes. Therefore, with the results of Theorem 1, a linear func-
tional ξ : X → R exists, such that for every vector v ∈ X, fo(x, v) ≥ ξ(v)
holds. Note that ξ is bounded, thus belonging to the dual space X ′, of
continuous linear functionals on X. We will denote the elements of X ′ as
ξ(v) = (ξ, v). This notation was used in [CLA], and it is similar to the one
of the scalar product’s. As the similarity isn’t only of the visual kind, it is
left this way.

Definition 6. We can define the generalized gradient of f at x as a subset
of X∗:

∂f(x) = {ξ ∈ X∗ : fo(x; v) ≥ (ξ, v) for all v in X} (4.10)

The norm of the dual space is defined in the following way:

‖ξ‖∗ = sup{(ξ, v) : v ∈ X, ‖v‖ ≤ 1} (4.11)

Next theorem states some basic properties of the set.

Theorem 4. [CLA] Let us assume f is a rank K Lipschitz continuous func-
tion (near x). Then:

i) ∂f(x) is a nonempty, convex set and ‖ξ‖∗ ≤ K for every ξ ∈ ∂f(x)

ii) For every point v ∈ X,

fo(x; v) = max{(ξ, v) : ξ ∈ ∂f(x)}. (4.12)

Proof. The nonemptiness follows from the Hahn-Banach theorem, whereas
the convexity can easily be shown. If we take ξ, θ ∈ ∂f(x) then:

fo(x; v) ≥ max{(ξ, v), (θ, v)} ≥ (λξ + (1− λ)θ, v), for all v ∈ X,λ ∈ [0, 1]

Thus λξ + (1− λ)θ ∈ ∂f(x). The upper bound we get from Theorem 1.

To prove ii), we suppose that for some v ∈ X, fo(x; v) exceeds the
maximum, (4.12). The version of the Hahn-Banach theorem states that,
there is a linear functional ξ, which is majorized by fo(x; ·), and it equals
f at the point v. From that proposition, ξ belongs to ∂f(x), and we get a
contradiction: fo(x; v) > fo(x; v), hence confirming the theorem. �
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4.1. GENERALIZED GRADIENT

The following lemma shows the equivalency of the relations of dual
sets and the respective support functions.

Lemma 1. [CLA] Suppose that sets Σ,Ω ⊂ X∗ are closed and convex.
Then

Σ ⊂ Ω iff sup{(ξ, x) : ξ ∈ Σ} ≤ sup{(η, x) : η ∈ Ω}. (4.13)

for all x ∈ X. Function σ(x) = sup{(ξ, x) : ξ ∈ Σ} is also called a support
function

Proof. The first direction is trivial. The second direction is derived from
the proposition that in a locally convex space, each closed convex set is an
intersection of all the half-spaces which contain him.

�

Useful property of the generalized gradient ∂f(x) is that it reduces to the
standard derivative if f is C1, and to the subdifferential of convex analysis,
in the case when f is convex. The set ∂f(x) can be written in different
forms, one of which we will show. First let us recall the standard definition
of a directional derivative.

Definition 7. Let F : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y ), where X and Y are Banach
spaces. Directional derivative of F at x in the direction v is

F ′(x; v) := lim
t→0

F (x+ tv)− F (x)
t

= (DF (x), v). (4.14)

when the limit exists.

We say that F has a Gâteaux derivative at x , denoted as DF (x), if for
every v ∈ X, F ′(x; v) exists. Additionaly, Gâteaux derivative is an element
of the continuous linear functionals, the space L(X,Y ). Connection between
the functional Df and function f can be seen in the following proposition:

Theorem 5. [CLA] Let f be locally Lipschitz at x and admit a Gâteaux
derivative Df(x). Then Df(x) ∈ ∂f(x).

Proof. From the definition, f ′(x; v) = (Df(x), v). We know that f ′(x; v) ≤
fo(x; v), thus fo(x; v) ≥ (Df(x), v). This, together with the definition of
∂f(x), implies the required inclusion Df(x) ∈ ∂f(x) .

�
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4.1. GENERALIZED GRADIENT

For the following statement, we will first need to recall the famous
Boltzano Weierstrass theorem.

Theorem 6 (Boltzano Weierstrass). Every bounded sequence in Rn has a
convergent subsequence.

Further, an equivalent definition of ∂f(x) is given.

Theorem 7. [CLA] Let f be Lipschitz continuous near x, and suppose D
is an open dense subset of Rn where f is differentiable. Then

∂f(x) = conv{lim∇f(xi) : xi → x, xi ∈ D}, (4.15)

where conv(·) denotes the convex hull of a set. The convex hull of the set is
the unique minimal convex set containing it.

Proof. From Theorem 4 (i), ∂f is locally bounded near x, and from Theorem
5 we have ∇f(xi) ∈ ∂f(xi). Hence, from Bolzano-Weierstrass Theorem,
there exists a convergent subsequence {∇f(x′i)} of the sequence {∇f(xi)}.
The limit of such subseqence remains in ∂f(x), which we need to show. It is
known from the definition of ∂f(xi) that fo(xi, v) ≥ (∇f(x′i), v), and from
Theorem 1 (the semicontinuity of fo) that fo(x, v) ≥ (lim∇f(x′i), v). This
implies the inclusion lim∇f(x′i) ∈ ∂f(x). Hence, it follows that the set:

{lim∇f(xi) : xi → x, xi ∈ D} (4.16)

is a subset of ∂f(x). It is nonempty, bounded and closed, hence it is a
compact set. As ∂f(x) is convex, the right hand side of 4.15 is contained in
the ∂f(x). The second inclusion will follow from Lemma 1, after we show
that the fo(x; v) doesn’t exceed the support function of the right hand side
(as fo(x; v) is the support function of ∂f(x)) . To achieve this we will need
another lemma.

Lemma 2. [CLA] For any v ∈ Rn, and ε > 0,

fo(x; v)− ε ≤ lim sup{∇f(y) · v : y → x, y ∈ D} =: α. (4.17)

Proof. From the definition of the upper limit, there exists δ > 0, such that
the condition y ∈ B(x, δ) implies ∇f(y) · v ≤ α+ ε. Since D is dense in Rn,
the measure of D ∩ B(x, δ) differs from 0. Now, consider the line segments
Ly = {y + tv : 0 < t < δ

2|v|}. From Fubini’s theorem, for almost every

17



4.1. GENERALIZED GRADIENT

y ∈ B(x, δ2), the function is differentiable. Thus

f(y + tv)− t(y) =
∫ t

0
∇f(y + sv) · vds

follows from the Fundamental theorem of calculus. Since we have that |y +
sv − x| < δ for 0 < s < t, ∇f(y + sv) · v ≤ α+ ε holds, hence

f(y + tv)− f(y) ≤ t(α+ ε)

Consequently,
fo(x; v) ≤ α+ ε

which completes the proof of Lemma 2, and Theorem 7.
�

Definition 8. We define ε-subdifferential of function f as

∂εf(x) := conv∂f(B(x, ε)). (4.18)

The terms stationarity and ε-stationarity are introduced in the following
way.

Definition 9. Let f be Lipschitz continuous near x. We say that x is sta-
tionary for f if 0 ∈ ∂f(x), and ε-stationary for f if 0 ∈ ∂εf(x).

Now, as an introduction to Lebourg’s theorem, we will demonstrate some
basic calculus of ∂f(x).

Theorem 8. [CLA] Let us assume that f is a Lipschitz continuous function
near the point x.

i) If s ∈ R, then ∂(sf)(x) = s∂f(x).

ii) If x is a point where f reaches maximum or minimum, then 0∈
∂f(x).

iii) If fi, i = 1, ..., n is a finite family of Lipschitz functions near x,
then their sum f =

∑
fi is also Lipschitz near x, and

∂(
∑

fi)(x) ⊂
∑

∂fi(x).
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4.1. GENERALIZED GRADIENT

Proof. We know that sf is Lipschitz near x. Additionaly, when s is non-
negative (sf)o = sfo holds, which would imply that ∂(sf)(x) = s∂f(x). For
a negative scalar s, it is now sufficient to prove the case when s = −1. From
4.10, an element ξ ∈ X∗ belongs to ∂(−f)(x) if and only if (−f)o(x; v) ≥
(ξ, v), for all v. Theorem 1 (iii) allows us to write fo(x;−v) ≥ (ξ, v). As ξ
is a linear functional, from its homogeneity it follows that (ξ,−v) = (−ξ, v),
which implies that fo(x;−v) ≥ (−ξ, v) and −ξ ∈ ∂f(x). Consequently,
ξ ∈ −∂f(x), thus proving i).

Since ∂(−f) = −∂f , for (ii) it is enough to prove the instance when
x is a local minimum. However, in that case, for any v ∈ X, the definition
of a minimum implies that fo(x, v) ≥ 0 = (0, v) (rate of change can only be
positive near x). Hence, 0 ∈ ∂f(x).

To prove iii), first notice that the right-hand side of the inclusion
(
∑
∂fi(x)) represents a set of points ξ, obtained by the sum

∑
ξi, where ξi ∈

∂fi(x). For n = 2, we have to prove that ∂(f1 + f2)(x) ⊂ ∂f1(x) + ∂f2(x),
and the case n = k will inductively follow. After applying Lemma 1, we need
to prove the inequality: (f1 + f2)o(x; v) ≤ fo1 (x; v) + fo2 (x; v). Furthermore,
from the definition:

(f1 + f2)o(x; v) = lim sup
y→x,t→0

(f1 + f2)(y + tv)− (f1 + f2)(y)
t

≤ lim sup
y→x,t→0

f1(y + tv)− f1(y)
t

+ lim sup
y→x,t→0

f2(y + tv)− f2(y)
t

= f1(x; v) + f2(x; v)
(4.19)

thus proving iii). �

One very important property of the gradient set is given in the form
of a mean value theorem. It will have a role in proving the functionality of
the [KIW] optimization method. Foremost, a directional derivative can be
denoted as:

fo(x; v) = lim sup
y→x,t→0

f(y + tv)− f(y)
t

= max(∂f(x), v). (4.20)

Where, (∂f(x), v) =: {(ξ, v), ξ ∈ ∂f(x), v ∈ X}
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4.2. THE LEBOURG’S MEAN-VALUE THEOREM

4.2 The Lebourg’s mean-value theorem

Theorem 9 (Lebourg). [CLA] Let x, y ∈ X be arbitrary points, and
suppose that f : X → R is a Lipschitz continuous function on an open set
containing the line segment [x, y]. Then there exists a vector u ∈ (x, y) such
that

f(y)− f(x) ∈ (∂f(u), y − x). (4.21)

For the proof, the following lemma is introduced. Let us first denote the
point x+ t(y − x) by xt.

Lemma 3. [CLA] The function g : [0, 1] → R defined by g(t) = f(xt) is
Lipschitz on interval (0,1), and inclusion holds:

∂g(t) ⊂ (∂f(xt), y − x). (4.22)

Proof. The Lipschitz continuity of g is implied by the fact that f is Lipschitz.
Since both sets from (4.22) are convex, knowing Lemma 1, we only need to
prove

max{(∂g(t), v)} ≤ max{(∂f(xt), v(y − x))} (4.23)

Notice that supremum became maximum, as functionals are linear, contin-
uous and defined on the closed segment. Additionally, the left side of the
ineqality equals go(t; v). Hence

go(t; v) = lim sup
s→t,λ→0

g(s+ λv)− g(s)
λ

= lim sup
s→t,λ→0

f(x+ (s+ λv)(y − x))− f(x+ s(y − x))
λ

(=) ≤ lim sup
y′→xt,λ→0

f(y′ + λv(y − x))− f(y′)
λ

= fo(xt; v(y − x)) = max(∂f(xt), v(y − x)).

(4.24)

Proof of Lebourg’s theorem. Observe the help function θ : [0, 1] → R, de-
fined by

θ(t) = f(xt) + t[f(x)− f(y)].

Notice that θ(0) = θ(1) = f(x), which from continuity implies the existence
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4.3. CARATHÉODORY’S THEOREM

of a point t ∈ (0, 1), which minimizes or maximizes θ. By Theorem 8 (ii),
we know that 0 ∈ ∂θ(t).
From Theorem 8 (i), (iii) and Lemma 3, we have:

0 ∈ ∂θ(t) = ∂(f(xt) + t[f(x)− f(y)])

⊂ ∂f(xt) + t∂[f(x)− f(y)]

⊂ (∂f(xt), y − x) + [f(x)− f(y)],

(4.25)

which implies (if we take u = xt)

0 = [f(x)− f(y)] + (ξ, y − x)

⇒f(y)− f(x) ∈ (∂f(u), y − x)
(4.26)

where ξ ∈ ∂f(u). This proves Lebourg’s mean value theorem.
�

Some basic notion of convex analysis will be required, when proving
the convergence of the algorithms. The Carathéodory’s theorem follows.

4.3 Carathéodory’s theorem

As one of the basic principles in convex analysis, Caratheodory’s theorem
has many applications. Intuitively, it states that any point in the convex
hull of the set C ⊂ Rn (denoted as conv(C)), can be represented as the
convex combination of at most n+ 1 points in C.

Definition 10. Set C is convex if it cointains every line segment that con-
nects each pair of points from the set:

x, y ⊂ C ⇒ λx+ (1− λ)y ⊂ C (4.27)

Definition 11. A point x ∈ C is said to have a convex combination if there
exists k ∈ N , ωi > 0 and xi ∈ C, i = 1, ..., k, such that

x =
k∑
i=1

ωixi, and
k∑
i=1

ωi = 1 (4.28)

Definition 12. We define (equivalently) a convex hull of the set C , conv(C),
as the set of all convex combinations of points in C.
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4.3. CARATHÉODORY’S THEOREM

Definition 13. Closure of the set C is defined as:

cl(C) =
⋂
B(C, ε) (4.29)

where, B(C, ε) =
⋃
{x : ‖x− c‖ ≤ ε, for some c ∈ C}.

Theorem 10 (Carathéodory,[DU]). Let x ∈ conv(C), where C ⊂ Rn.
Then there exists n+1 vectors (not necessarily distinct) x0, ..., xn ∈ C, such
that x ∈ conv(x0, ..., xn).

Proof. Knowing that x belongs to the convex hull of C, from the Definition
6, we can find k ∈ N , ωi > 0 and xi ∈ C, i = 0, ..., k such that

x =
k∑
i=0

ωixi, and
k∑
i=0

ωi = 1.

If k ≤ n there is nothing more to prove. Suppose that k > n. Since the
dimension of the space is n, we know that the vectors x1−x0, ..., xk−x0 are
linearly dependent. Thus, there exist scalars λi, i = 1, ..., k, which are not
all zeros, and

∑k
i=0 λixi = 0 holds. Let us define λ0 = −

∑k
i=1 λi. It follows

that
∑k
i=0 λixi = 0, and for at least one index i, λi > 0. Now:

x =
k∑
i=0

ωixi − γ ∗ 0

=
k∑
i=0

ωixi − γ
k∑
i=0

λixi

=
k∑
i=1

(ωi − γλi)xi

(4.30)

If we choose γ = min
0≤i≤k

{ωi
λi
, λi > 0

}
= ωj

λj
, for some j = 0, ..., k, we have

that

ωi + γλi ≥ 0, i = 0, ..., k with ωj + γλj = 0 and
k∑
i=0

(ωi + γλi) = 1.

So we can omit j-th element, and write x as a convex combination of k
elements. This can be done until k = n. �
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4.4 Geometric representation

In this section, we will show some basic geometric concepts related to the
gradient.

Definition 14. Let C ⊂ X. The distance function dC(·) : X → R is defined
by

dC(x) = inf{‖x− c‖ : c ∈ C}. (4.31)

In the case when C is closed, we know that x ∈ C iff dC(x) = 0. The func-
tion dC is globally Lipschitz, which the following theorem states.

Theorem 11. [CLA] The distance function dC is globally Lipschitz on X
(also known as a short map):

|dC(x)− dC(y)| ≤ ‖x− y‖, (4.32)

Proof. By the definition of infimum, for ε > 0, there exists c ∈ C, such that
dC(y) ≥ ‖y − c‖ − ε. Hence,

dC(x) ≤ ‖x− c‖ ≤ ‖x− y‖+ ‖y − c‖

‖x− y‖+ dC(y) + ε

dC(x)− dC(y) ≤ ‖x− y‖+ ε

(4.33)

Similarly, we get dC(x) − dC(y) ≥ −(‖x − y‖ + ε), from which the desired
statement follows.

�

Suppose that x ∈ C. We say that a vector v ∈ X is tangent to C at x
if doC(x; v) = 0. More formally:

Definition 15. The set of all tangets to C at x is denoted as TC(x) and

TC(x) = {v ∈ Rn : doC(x; v) = 0, } (4.34)

where

doC(x; v) = lim sup
y→x,t→0

dC(y + tv)− dC(y)
t

(4.35)
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4.4. GEOMETRIC REPRESENTATION

From Theorem 1, TC(x) is a closed and convex cone in X, and it always
contains 0. We can define a normal cone, using the tangent set.

Definition 16. The set of vectors ξ ∈ X∗ is called a normal cone if its
elements only form obtuse or right angles with the vectors from the tangent
cone:

NC(x) = {ξ ∈ X∗ : (ξ, v) ≤ 0 for all v in TC(x)} (4.36)

Figure 4.1 shows the normal and tangent cone for different type of points of
a set. We can notice that none of the vectors from the normal cone form an
acute angle with a tangent cone vector.

Figure 4.1: Five normal and tangent cones, red and green respectively

Suppose that C ⊂ Rn is a closed convex set. For a scalar product
〈·, ·〉, and a vector y ∈ C, 〈y, ·〉 is a bounded linear functional on C, thus we
can use the scalar product in the previous definition (instead of the general
functional).

We define an ortogonal projection of a point z on the closed convex
set C as:

proj(z|C) = {y′ : ‖z − y′‖ = min
y∈C
‖z − y‖}. (4.37)

This implies,
proj(0|C) = {y′ : ‖y′‖ = min

y∈C
‖y‖} (4.38)
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Suppose that ‖y′′‖ = miny∈C ‖y‖ . We know that ‖y′′‖ = dC(0), which is the
distance of vector 0 from the set C. Hence, we can write y′′ = proj(0|C). As
y′′ is the projection of 0 onto C, y′′ ∈ TC holds, and we have 〈y′′,−y′′〉 ≤ 0.
This implies −y′′ ∈ NC(y′′), thus 〈−y′′, y − y′′〉 ≤ 0, for every y ∈ C. We
can conclude that:

‖y′′‖ = min
y∈C
‖y‖ ⇔ ‖y′′‖2 ≤ 〈y, y′′〉, for every y ∈ C (4.39)

Based on these principles, the gradient sampling optimization algorithm
was constructed by Burke, Lewis and Overton [BLO], and later enhanced
by Kiwiel [KIW]. This algorithm minimizes nonsmooth functions, and can
be used in mentioned optimization models. The next chapter will introduce
the Kiwiel’s method, some modifications, and prove the convergence of all
versions.
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Chapter 5

The Gradient Sampling method

The Burke, Lewis, Overton’s algorithm minimizes a locally Lipschitz func-
tion f : Rn → R, which is continuously differentiable on an open dense
subset D ⊂ Rn, and has bounded level sets. At each iteration, it computes
gradients of f at the current iterate and atm ≥ n+1 points from the ε-radius
ball. From these gradients, an optimal descent direction can be found, as
the solution of a quadratic program. Armijo line search provides the next
iterate candidate, by calculating the step size of the iteration. It does so by
finding the maximum step in the chosen direction, such that the condition
of the sufficient descent holds. In the case the new iterate doesn’t belong to
D, it is slightly perturbed, so that it preserves the Armijo condition.

There are two convergence results, based on whether the ε radius is
constant or reduced dynamically. The first one states that with the proba-
bility 1, given the constant radius ε, the gradient sampling (GS) algorithm
generates a sequence with a cluster point, which is ε-stationary. In the case
when ε is reducing, they established that if the algorithm converges to a
point, the limit of the sequence is a stationary point for f (with probability
1).

Kiwiel’s results are however stronger. For a fixed ε, he shows that
every cluster point generated by the GS algorithm is ε-stationary, almost
always. Whereas, when ε is dynamically reduced, every cluster point of an
arbitrary subsequence is stationary, without the assumption that the whole
sequence converges. Evidently, the latter results are strictly better. In both
cases, it will be showed that the algorithm terminates with probability 1.

Alongside these changes, Kiwiel made a revision of the algorithm, in
which the perturbation of the Armijo candidate is limited by the step size,
instead of the ε radius as before. This modification allows slightly weaker
assumptions, however the results are strong. For a fixed ε, with probability
1, either the f -values go to −∞, or every cluster point of a subsequence of
iterates is ε-stationary. When ε is reduced, again, it is showed that either
the iterates go to −∞ or every cluster point they make is stationary.

There are three modifications of the GS algorithm in Kiwiel’s work,
with the intention to improve the practical performance. Since the search
directions are normalized, as the algorithm converges, Armijo’s line search
can grow to infinity. Hence the different approaches are recommended, all
of which will be covered.
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5.1 The Algorithm

Firstly we will assume that the function f : Rn → R is locally Lipschitz and
continuously differentiable on an open dense subset of D of Rn. We will
use the second definition of the generalized gradient (also called Clarke’s
subdifferential),

∂f(x) = conv { lim
j→∞

∇f(yj)→ x, yj ∈ D} (5.1)

Similarily, a Clarke ε-subdifferential is defined as:

∂εf(x) := conv ∂f(B(x, ε)). (5.2)

We can approximate this set with:

Gε(x) := cl conv ∇f(B(x, ε) ∩D), (5.3)

as it is clear that Gε(x) ⊂ ∂εf(x), and ∂ε1 ⊂ Gε2 for 0 ≤ ε1 < ε2. Again,
we say that x is stationary for f if 0 ∈ ∂f(x), and ε-stationary for f if
0 ∈ ∂εf(x). The following is the Kiwiel’s GS algorithm, which does not
require compact level sets as the previous version.

GS algorithm [KIW]

Step 0 (the initialization). Initialize with x1 ∈ D, optimality toler-
ances νopt, εopt ≥ 0, line search parameters β, γ ∈ (0, 1), reduction factors
µ, θ ∈ (0, 1], a sampling radius ε > 0, a stationarity target ν1 ≥ 0, and a
sample size m ≥ n+ 1. Set k:=1.

Step 1 (gradient sampling). Sample m points {xki }mi=1 from B(xk, εk).
If {xki } /∈ D, stop. Otherwise, set the approximation of Gε:

Gk := conv{∇f(xk),∇f(xk1), ...,∇f(xkm)}. (5.4)

Step 2 (direction search). Set gk := proj(0|Gk)

Step 3 (stopping criterion). If ‖gk‖ ≤ νopt and εk ≤ εopt, stop.

Step 4 (radius update). If ‖gk‖ ≤ νk, set νk+1 := θνk, εk+1 := µεk,
tk := 0, xk+1 := xk and go to Step 7. Otherwise, set νk+1 := νk, εk+1 := εk,
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and

dk = − gk

‖gk‖
. (5.5)

Step 5 (Armijo line search). Find the step size with the Armijo search:

tk := max{t : f(xk + tdk) < f(xk)− βt‖gk‖, t ∈ {1, γ, γ2, ...}}. (5.6)

Step 6 (differentiability check and update). If xk + tdk ∈ D, set
xk+1 := xk + tkd

k. Otherwise, let xk+1 be a point in D that satisfies:

f(xk+1) < f(xk)− βtk‖gk‖, (5.7)

‖xk + tkd
k − xk+1‖ ≤ min{tk, εk} (5.8)

Step 7 (start again). Increase k by 1, and go to Step 1.

Notice that the algorithm keeps the iterates inside the set D. What is
more, from Step 2, gk = proj(0|Gk) ⇔ ‖gk‖ = ming∈Gk ‖g‖, which implies
‖gk‖ = dGk(0). Thus, from equation (4.39), it is known that 〈g, gk〉 ≥ ‖gk‖2,
for all g ∈ Gk. Since ∇f(xk) ∈ Gk and (5.5), we have that:

〈∇f(xk), gk〉 ≥ ‖gk‖2

〈∇f(xk),−‖gk‖dk〉 ≥ ‖gk‖2

−〈∇f(xk), dk〉 ≥ ‖gk‖

〈∇f(xk), dk〉 ≤ −‖gk‖.

(5.9)

Armijo line search is hence well defined, as we have chosen a valid descent
direction. Therefore, t′ > 0 exists, such that f(xk + tdk) < f(xk)− βt‖gk‖,
for all t ∈ (0, t′).

The main difference between Kiwiel’s algorithm and Burke, Lewis and
Overton’s is the stronger requirement of Step 6 in the latter. In the case
when xk+tkdk /∈ D, xk+1 can be found from a uniform distribution in B(xk+
tkd

k,min{tk, εk}/i), for i ∈ N . By Armijo condition, and the continuity of f ,
this procedure terminates with probability 1. Contrasting, the original GS
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algorithm requires to find x̂k in B(xk, εk), such that xk+1 = x̂k + tkd
k ∈ D

and xk+1 satisfies (5.7). The desired iterate can be sampled from uniform
distribution on B(xk, εk/i) with the probability 1. Thus x̂k := xk+1 − tkdk
satisfies the original conditions, and explains the part of (5.8) with εk. The
presence of tk in (5.8) yields, with help from the reverse triangle inequality:

∣∣∣‖xk − xk+1‖ − tk‖dk‖
∣∣∣ ≤ ‖xk + tkd

k − xk+1‖ ≤ min{tk, εk} ≤ tk (5.10)

from where ‖xk+1 − xk‖ ≤ 2tk follows, knowing that ‖dk‖ = 1. Thus, from
5.7

f(xk+1) ≤ f(xk)− β 1
2‖x

k+1 − xk‖‖gk‖. (5.11)

This inequality holds in both cases, when xk+1 = xk + tkd
k and xk+1 = xk.

The algorithm stops when the values ‖gk‖ and ‖εk‖ are low enough, as only
then are we guaranteed the closeness to Clarke’s stationarity.
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Chapter 6

Convergence analysis

The following two lemmas will have a major role in proving the convergence
of the algorithm.

Lemma 4. [KIW] Let ∅ 6= C ⊂ Rn be a compact convex set, and β ∈ (0, 1).
If 0 /∈ C, there exists δ > 0 such that u, v ∈ C and ‖u‖ ≤ dC(0) + δ imply
〈u, v〉 > β‖u‖2.

Proof. Suppose the opposite, that is, we can pick two sequences {ui}, {vi} ⊂
C satisfying ‖ui‖ ≤ dC(0) + 1/i and 〈ui, vi〉 ≤ β‖ui‖2. Since C is compact,
limits stay in C, so ui → û ∈ C, vi → v̂ ∈ C, and 〈û, v̂〉 ≤ β‖û‖2. The
inequality ‖û‖ ≤ dC(0) and 0 /∈ C imply that ‖û‖ = dC(0) , thus û =
proj(0|C) 6= 0. For such û, from (4.39), 〈û, v〉 ≥ ‖û‖2 follows. Contradiction,
as β ∈ (0, 1).

�

The second lemma will cover basic properties of the set of points close
to a given point x̄, which can be used to provide a δ-approximation of the
least-norm element of Gε(x̄). For ε, δ > 0 and x̄, x ∈ R, we define a measure
of proximity to ε−stationarity as

ρ(x̄) := dGε(x̄)(0), (6.1)

which represents the distance of 0 from the Clarke’s ε−subdifferential. Let

Dm
ε (x) :=

m∏
1

(B(x, ε) ∩D) ⊂
m∏
1
Rn, (6.2)

Ḡ = Ḡ({yi}m1 ) = conv{∇f(y1), ...,∇f(ym)}, (6.3)

Vε(x̄, x, δ) := {(y1, ..., ym) ∈ Dm
ε (x) : dḠ(0) ≤ ρε(x̄) + δ}. (6.4)
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Lemma 5. [KIW] Let ε > 0 and x̄ ∈ Rn. Then the following holds:

(i) For any δ > 0, there is τ > 0 and a nonempty open set V ⊂
Vε(x̄, x, δ) for all x ∈ B(x̄, τ), and dḠ(0) ≤ ρε(x̄) + δ for all (y1, ..., ym) ∈ V .

(ii) Assuming 0 /∈ Gε(x̄), pick δ > 0 as in Lemma 4 for C := Gε(x̄),
and τ, V as in statement (i). Suppose that at iteration k of GS algorithm,
Armijo search is reached (Step 5) with xk ∈ B(x̄,min{τ, ε/3}), εk = ε and
(xk1, ..., xkm) ∈ V . Then tk ≥ min{1, γε/3}

(iii) If limk max{‖xk − x̄‖, ‖gk‖, εk} = 0 with gk ∈ ∂εkf(xk) for all k,
then 0 ∈ ∂f(x̄).

Proof. (i) Let u ∈ conv∇f(B(x̄, ε) ∩ D) be such that ‖u‖ < ρε(x̄) + δ.
From Carathéodory’s theorem (10), there exists (x̄1, ..., x̄m) ∈ Dm

ε (x̄) and
λ ∈ Rm+ with λT e = 1, such that u =

∑m
i=1 λi∇f(x̄i). Since f is continu-

ously differentiable on the open set D, there exists ε̄ ∈ (0, ε) such that the
set V :=

∏m
i=1 intB(x̄i, ε̄) lies in Dm

ε−ε̄ and ‖
∑m
i=1 λi∇f(ȳi)‖ < ρε(x̄) + δ for

all (y1, ..., ym) ∈ V . Thus, for all x ∈ B(x̄, τ), where τ := ε̄, the inclusion
B(x̄, ε − ε̄) ⊂ B(x̄, ε) yields that Dm

ε−ε̄ ⊂ Dm
ε , from which V ⊂ Vε(x̄, x, δ)

holds.

(ii) Define Ḡk({xki }m1 ) := conv{∇f(xki )}m1 . Since (xk1, ..., xkm) ∈ V ⊂
Vε(x̄, x̄, δ), from (i) we get dGk(0) ≤ ρε(x̄) + δ and Ḡk ⊂ Gε(x̄) from 5.3).
As xk ∈ B(x̄, ε/3) ∩D, ∇f(xk) ∈ Gε(x̄) holds. Hence, by the construction
of gk = proj(0|Gk), it follows that g ∈ Gε(x̄) (as Gk ⊂ Gε) and clearly
‖gk‖ = dGk(0) ≤ ρ(x̄) + δ ((xk1, ..., xkm) ∈ V ). From Lemma 4,

(v, gk) > β‖gk‖2, for all v ∈ Gε(x̄). (6.5)

Suppose the opposite, that tk < min{1, γε/3}. Then as tk is the maximum
γl, l ≥ 0 for which Armijo condition holds, for t = γ−1tk we have

−βγ−1tk‖gk‖ ≤ f(xk + γ−1tkd
k)− f(xk). (6.6)

Additionaly, the Lebourg’s theorem 9 states that there exists xko ∈ [xk, xk +
γ−1tkd

k], and vk ∈ ∂f(xko) such that

f(xk + γ−1tkd
k)− f(xk) = (vk, γ−1tkd

k) = γ−1tk(vk, dk) (6.7)
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From (6.6), and dk = −gk
‖gk‖ it follows that,

−βγ−1tk‖gk‖ ≤ γ−1tk(vk, dk)

−β‖gk‖ ≤ (vk, dk)

β‖gk‖2 ≥ (v, gk).

(6.8)

Thus from (6.5), vk /∈ Gε(x̄). However, γ−1tk‖dk‖ ≤ ε/3, and ‖x̄−xk‖ ≤ ε/3
imply that xko ∈ B(x̄, 2ε/3), hence vk ∈ Gε(x̄), which is a contradiction.

(iii)Since we know that gk ∈ ∂εkf(xk), latter follows from the closed-
ness (and compactness) of ∂f , as the limits stay in the compact set.

�

As mentioned, there are two types of convergence results. First we
will focus on the Kiwiel’s algorithm, where the εk and νk are decreasing.

Theorem 12. [KIW] Let {xk} be a sequence generated by the GS algoritm,
with ν1 > νopt = εopt = 0 and µ, θ < 1. Then, the algorithm does not stop
almost always, and either limk f(xk) = −∞, or νk → 0, εk → 0 and every
cluster point of {xk} is stationary.

Proof. Finding the nondifferentiable point in Step 1 has the zero proba-
bility of occuring, hence let us suppose that the algorithm didn’t termi-
nate. Moreover, if f → −∞, there is nothing to prove, so we assume that
infk f(xk) > −∞. From 5.7 we have

βt1‖g1‖ < f(x1)− f(x2)

βt2‖g2‖ < f(x2)− f(x3)

·

·

·

βtk‖gk‖ < f(xk)− f(xk+1)

(6.9)

Summing everything gives β
∑k

1 ti‖gi‖ < f(x1)− f(xk+1), thus if k →∞

∞∑
1
ti‖gi‖ <

1
β

(f(x1)− lim
k
f(xk)) < 1

β
(f(x1)− (−∞)) <∞ (6.10)
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From (5.11), similarly
∞∑
1
‖xk+1 − xk‖‖gi‖ <∞ (6.11)

Suppose that there exist k1, ν̄, ε̄ > 0, such that νk = ν̄ and εk = ε̄, for k ≥ k1.
That would mean that the algorithm would never terminate. Knowing that
‖gk‖ ≥ ν̄ =const, from (6.10) and (6.11) we have tk → 0, and ‖xk+1−xk‖ →
0. Consequently the limit x̄ exists, such that xk → x̄. Since the stationarity
target, and sampling radius are not reducing, we have two cases.

First, assume that 0 /∈ Gε̄(x̄). If we choose δ, τ and V as in Lemma 5
(ii), we can pick k2 ≥ k1, such that xk ∈ B(x̄, ε̄/3) and tk ≤ min{1, γε̄/3}.
Thus (xk1, ..., xkm) /∈ V for all k ≥ k2, since tk is not larger than min{1, γε̄/3}.
Suffice it to say, this event has the probability 0 of happening, as we choose
(xk1, ..., xkm) independently and uniformly from Dm

ε̄ (x̄), which contains the
open set V 6= ∅ which has nonzero measure.

Now, suppose that 0 ∈ Gε̄(x̄), which means ρε(x̄) = 0. For δ := ν̄/2
and τ, V from Lemma 5, we can choose k3 ≥ k1 such that xk ∈ B(x̄, τ).
However from ν̄ ≤ ‖gk‖ ≤ dḠk(0), we have that (xk1, ..., xkm) /∈ V for all k ≥
k3. The probability of this event occuring is also 0. Hence the assumption
that a lower bound different from 0 exists was incorrect.

Finally, let us observe the case when εk → 0, νk → 0, and {xk} has
a cluster point x̄. If that cluster point is also a limit, then by Lemma 5,
0 ∈ ∂f(x̄), hence the point is stationary. Suppose that xk 6→ x̄. We need
to prove that limk max{‖xk − x̄‖, ‖gk‖} = 0 (εk is approaching zero, thus
smaller than the rest of max function). Considering the opposite, there
exists ν̄, k̄ > 0, and a convergent subsequence of {xk}, whose set of indexes
we will denote as K := {k, k ≥ k̄ : ‖xk − x̄‖ ≤ ν̄}. For such ν̄, we know that
‖gk‖ > ν̄, for all k ∈ K. Hence, 6.11 gives us:

∑
k∈K ‖xk+1−xk‖ <∞. Since

xk 6→ x̄, there is ε such that for each k ∈ K there exists ¯̄k > k satisfying
‖x

¯̄k − xk‖ > ε and additionally ‖xi − x̄‖ ≤ ν̄ for k ≤ i < ¯̄k. Thus, we have

ε < ‖x
¯̄k − xk‖ = ‖x

¯̄k + x
¯̄k−1 − x

¯̄k−1...+ xk+1 − xk+1 − xk‖

≤
¯̄k−1∑
i=k
‖xi+1 − xi‖ < ε

(6.12)

which follows for a large k from
∑
k∈K ‖xk+1−xk‖ <∞, hence a contradic-

tion. �

This proves the convergence of Kiwiel’s GS algorithm, for reducing
factors. The following theorem focuses on the original GS, also with non-
constant εk, νk.
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Theorem 13. [KIW] Let {xk} be a sequence generated by the original
(BLO) GS algorithm, with ν1 > νopt = εopt and µ, θ < 1. Suppose that the
level set {x : f(x) < f(x1)} is bounded. Then the algorithm does not stop
with probability 1, νk → 0, εk → 0, there is a subsequence K ⊂ {1, 2, ...}
such that limk∈K g

k = 0 and every cluster point of {xk}k∈K is stationary for
f .

Proof. Again, as in the previous theorem, there are two main cases for εk
and νk. The first one, where the factors approach 0, is easier. If we take
K := {k : νk+1 ≤ νk}, it is implied that limk∈K g

k = 0, and the rest follows
from (iii).

We need to reconsider the second case when there exists k1 such that
νk = ν̄ > 0 and εk = ε̄ > 0, for k > k1. Since ‖gk‖ ≥ ν̄, from 6.10,
limk tk = 0. Sequence {f(xk)} is decreasing and the set {x : f(x) < f(x1)}
is compact, hence there exists a subsequence J ⊂ {1, 2, ...} and a limit x̄ such
that limk∈J xk = x̄. Therefore, limk∈J tk = 0 as well, so we argue as in the
last theorem, when 0 ∈ Gmε and when it is not in the set. We deduce that k4
and V exist, and similarly that (xk1, ..., xkm) /∈ V ⊂ Dm

ε for all k > k4, k ∈ J ,
which has the probability of occuring 0.

�

For a fixed radius, we have another two theorems. The first one is for
Kiwiel’s [KIW] algorithm, whereas the latter is for the original [BLO].

Theorem 14. [KIW] Let {xk} be a sequence generated by GS algorithm
(Kiwiel’s) with ν1 > νopt = 0, ε1 = εopt = ε > 0, and µ = 1. With probability
1, the algorithm stops at some iteration k with 0 ∈ Gε(xk), or limk f(xk) =
−∞, or a subsequence exists K ⊂ {1, 2, ...} such that limk∈K g

k = 0 and
every cluster point x̄ of {xk}k∈K satisfies 0 ∈ ∂εf(x̄) (ε-stationary).

Proof. If the algorithm terminated at iteration k, it happened at Step 3
with probability 1, thus 0 = gk ∈ Gε(xk). We may assume that it doesn’t
stop and that infk f(xk) > −∞. From the proof of Theorem 9, almost
always infk ‖gk‖ = 0, hence the infimum stays in the ∂εf(·), as the Clarke’s
ε-subdifferential is a closed set. �

Theorem 15. [KIW] Let {xk} be a sequence generated by the original GS
algorithm (BLO), with ν1 = νopt = 0, ε1 = εopt = ε > 0 and µ = 1. Suppose
the set {x : f(x) ≤ f(x1)} is bounded. Then almost always, either the
algorithm terminates at some iteration k with 0 ∈ Gε(xk), or limk g

k = 0
and every cluster point x̄ of {xk} satisfies 0 ∈ ∂εf(x̄).

Proof. As before, assume that the termination did not happen, as there
would be nothing to prove. Suppose the opposite, that there exists J ⊂
{1, 2, ...}, and ν̄ > 0, such that infk∈J ‖gk‖ > ν̄. Now, as f(xk) is decreasing
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and the level set {x : f(x) ≤ f(x1)} is compact, there exists a convergent
subsequence limk∈J x

k = x̄ (without the loss of generality). From 6.10,
limk∈J t

k = 0, hence as in Theorem 9, we argue whether or not 0 is in
Gε(x̄). Again we deduce that there exists k5 and an open set V such that
(xk1, ..., xkm) /∈ V ⊂ Dm

ε (xk), which occurs with probability 0, since the vector
product is sampled independently and uniformly from Dm

ε (xk). This implies
that almost always the theorem is indeed correct. �

Theorem 12 is stronger than 13, however it was achieved by a slight
alteration. The original algorithm required compact level sets and resam-
pling wasn’t controlled in Step 6 with tk as in Kiwiel’s method. Nonetheless,
the result of this renewed algorithm is that all cluster points are stationary,
which was an open question in [BLO]. The following section will focus on
more slight changes to the algorithm that will have an impact in the practical
sense.
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Chapter 7

Modifications

In practice, both algorithms are implemented similarly. However confirming
the differentiability in each iteration can be problematic. In order to remove
that step, algorithm can be modified even more. There will be three different
methods introduced in this section, for all of which will the convergence be
proved,

7.1 Nonnormalized search directions
The problem with GS algorithm is that sometimes, as the search directions
dk := −gk/‖gk‖ are normalized, Armijo’s line search can grow to infinity.
This happens, for example, when xk+1 = xk + tkd

k for almost all k and
tk = ‖xk+1 − xk‖ → 0. To resolve this issue, we consider the direction
dk = −gk, as in the gradient descent method in the smooth case.

Formally, the relations 5.5-5.8 from the GS algorithm are replaced by

dk := −gk (7.1)

tk := max{t : f(xk + tdk) < f(xk)− βt‖gk‖2, t ∈ {1, γ, γ2, ...}}. (7.2)

f(xk+1) < f(xk)− βtk‖gk‖2, (7.3)

‖xk + tkd
k − xk+1‖ ≤ min{tk, εk}‖dk‖ (7.4)

By doing so, the equation (5.11) still holds, since ‖xk+1 − xk‖ ≤ 2tk‖dk‖ =
2tk‖gk‖. Lemma 5 (ii) is replaced by:

Lemma 6 (Lemma 5 (ii)’). [KIW] Let ε > 0 and x̄ ∈ Rn. Assuming
0 /∈ Gε(x̄), choose δ > 0 as in Lemma 4 for C := Gεx̄, and τ, V as in Lemma
5 (i). Suppose that xk ∈ B(x̄,min{τ, ε/3}), εk = ε, and (xk1, ..., xkm) ∈ V .
Then tk ≥ min{1, γε/3k̄}, where k̄ is the Lipschitz constant of f on B(x̄, 2ε).
Proof. Following the proof of Lemma 5 (ii), we can get 6.8 by assuming
that tk ≤ min{1, γε/3k̄} instead. We get the same contradiction as before,
since γ−1tk‖dk‖ < γ−1tkk̄ < ε/3 yields vk ∈ Gε(x̄), whereas from Lebourg’s
theorem we get vk /∈ Gε(x̄) for vk ∈ ∂f(x̄). �
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7.2. SEARCHING WITHIN THE TRUST REGION

Further, proofs are modified similarly. For example, equation 6.10,
using 7.3 becomes

∞∑
k=1

tk‖gk‖2 <∞, (7.5)

and the theorems 12-15 follow. Asymptotically, this new direction may be
better, however it can be worse inititally when ‖gk‖ is large. Scaling dk

might help, so that the first trial point xk + dk is close enough to xk. If we
use the sampling radius εk as the measure of "closeness", we get the second
variant of the algorithm.

7.2 Searching within the trust region

The idea is to restrict the Armijo line search to the trust region B(xk, εk).
Relations 5.5-5.8 are replaced by

dk := −εkgk/‖gk‖, (7.6)

tk := max{t : f(xk + tdk) < f(xk)− βtεk‖gk‖, t ∈ {1, γ, γ2, ...}}. (7.7)

f(xk+1) < f(xk)− βtkεk‖gk‖, (7.8)

‖xk + tkd
k − xk+1‖ ≤ min{tk, εk}‖dk‖ (7.9)

Again, (5.11) holds as ‖xk+1 − xk‖ ≤ 2tk‖dk‖ = 2tkεk. The Lemma 5 (ii)
becomes:

Lemma 7 (Lemma 5 (ii)”). [KIW] Let ε > 0 and x̄ ∈ Rn. Assuming
0 /∈ Gε(x̄), choose δ > 0 as in Lemma 4 for C := Gε(x̄), and τ, V as in Lemma
5 (i). Suppose that xk ∈ B(x̄,min{τ, ε/3}), εk = ε, and (xk1, ..., xkm) ∈ V .
Then tk ≥ γ/3.

Proof. As in the previous modification, we change the assumption to tk <
γ/3, and use dk := −εkgk/‖gk‖ to get (vk, gk) ≤ β‖gk‖, and γ−1tk‖d‖ =
γ−1tkεk = γ−1tkε ≤ ε/3 to get vk ∈ Gε(x̄) (x̄ is from Lebourg’s), hence a
contradiction.

�
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7.3. LIMITING THE LINE SEARCH

The equation 6.10 now becomes

∞∑
k=1

tkεk‖gk‖ <∞ (7.10)

which is used to prove analogously the rest of the convergence theorems.

7.3 Limiting the line search
First if we generalize the series of equations 5.5-5.8, we get

dk := −αkgk, αk > 0, (7.11)

tk := max{t : f(xk + tdk) < f(xk)− βt‖dk‖‖gk‖, t ∈ {1, γ, γ2, ...}}. (7.12)

f(xk+1) < f(xk)− βtk‖dk‖‖gk‖, (7.13)

‖xk + tkd
k − xk+1‖ ≤ min{tk, εk}‖dk‖ (7.14)

where αk = 1/‖gk‖ in the original algorithm, αk = 1 in the first, and
αk = εk/‖gk‖ in the second modification. The corresponding lower bounds
of tk produced by the Lemma 5(ii),(ii)’ and (ii)” have the form of tk >≥
min{1, γε/3‖dk‖}. This procedure introduces a lower bound (min{1, γε/3‖dk‖})
to tk during the line search, and it accepts the null step size (tk = 0) in the
case the bound is reached. After that, the Step 1 resamples the gradient
bundle Gk, so that the search direction improves eventually (if xk is not
stationary already). With this implementation, the control of differentia-
bility becomes unnecessary. The improved Armijo line search and updated
Lemma 5 (ii) follow:

Step 5’(Limited search)

(i) Choose an initial step size t ≥ min{1, γεk/3‖dk‖}.

(ii) If f(xk + tkd
k) < f(xk)− βt‖dk‖‖gk‖, return tk := t.

(iii) If t ≤ min{1, γεk/3‖dk‖}, return tk := 0.

(iv) Set t := γt and go to (ii).
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7.3. LIMITING THE LINE SEARCH

Lemma 8 (Lemma 5(ii)”’). [KIW] Let ε > 0 and x̄ ∈ Rn. Assuming
0 /∈ Gε(x̄), choose δ > 0 as in Lemma 4 for C := Gεx̄, and τ, V as in
Lemma 5 (i). Suppose that xk ∈ B(x̄,min{τ, ε/3}), εk = ε, (xk1, ..., xkm) ∈ V
and dk := −αgk with αk > 0. Then the Step 5’ finds a step size tk ≥
min{1, γε/3‖dk‖}.

Proof. Similarly as before, we use 6.5 to get to the contradiction. Sup-
pose t ∈ (0, ε/3‖dk‖). From Lebourg’s mean value theorem, there is v ∈
∂f(x), x ∈ [xk + tkd

k, xk] such that f(xk + tkd
k) − f(xk) = t〈v, dk〉. It

follows that (v, dk) < −β‖dk‖‖gk‖ , hence v /∈ Gε(x). From t‖dk‖ < ε/3
and ‖xk − x̄‖ < ε/3 we know that x ∈ B(x̄, 2ε/3) and thus v ∈ Gε(x), a
contradiction. �

From this lemma, the analogue convergence theorems follow. We can con-
trol the number of f -evaluations made by the Step 5’ via the choice of the
step size t. If we choose t := min{1, εk/3‖dk‖}, only one evaluation occurs.
However, if the initial step size t looks small, we can divide t by γ (t =: t/γ),
until f(xk + tdk) ≥ f(xk)−βt‖dk‖‖gk‖, then tk := γt. Here, the trade-off is
lowering the number of f -evaluations for the cost of more gradient sampling
at Step 1. More modifications can be done to the lower bound of tk, after
which the convergence is preserved.

The replacement of standard Armijo line-search makes confirmation of
differentiability in xk and inclusion of ∇f(xk) ∈ Gk obsolete. A simplified
version of the algorithm can be made in the following way: At Step 0,
we select an arbitrary x1 ∈ Rn. At Step 1, we set Gk := conv{∇f(xki )}mi=1.
Additionaly, the Step 5 is replaced by Step 5’. Finally, at Step 6, set xk+1 :=
xk+tkdk. From Step 5’, the equation 7.13 holds if tk > 0, and the inequality
5.11 is valid. The theorems for convergence hence follow. Unfortunately, it
is not proven that the event xk /∈ D has probability 0, however in practice
it rarely happens.

In the last section, an implementation of the algorithm will be shown in
the programming language Python, and its application in the SVM method
will be demonstrated. The results will be presented for four different datasets,
which will all be of different sizes.
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Chapter 8

Numerical results

8.1 Binary classification

First, let us go back to the section 3.1, equations (3.7) and (3.11), where we
defined the binary hinge loss with the regularization factor and its subdif-
ferential. Namely, the problem we are solving in the SVM has the form:

min
x
f(x) = min

x
(λ2 ‖x‖

2 + 1
K

K∑
i=1

l(ti, x, ωi)) (8.1)

The columns of matrix ω are different attributes, whereas the samples are
represented by rows. Hence ωi ∈ Rn, i = 1, ...,K. The variable x ∈ Rn is the
vector of weight coefficient we are searching for. We start by creating the
function and its subdifferential with the help of Python’s ’numpy’ library
A.1. The function hinge_izvod returns the subderivative of f at the point x,
and tells whether the function is differentiable. However, when the function
is non differentiable at x, that subderivative is not used in the algorithm,
as the algorithm resamples the vector in that case. In figure A.2 we can see
the implementation of the Kiwiel’s GS algorithm.

Similarly, the modifications of the algorithm have also been imple-
mented. There are four algorithms in total, the (regular) gradient sampling
algorithm [5.1], the nonnormalized gradient sampling [7.1], the limiting line
search [7.3] and the trust region gradient sampling algorithm [7.2]. The
codes for the modifications are in the appendix (A.3,A.4 and A.5).

During the implementation, a problem at Step 2 arises. Notice that
finding gk = proj(0|Gk) translates to finding a vector with a minimum
norm from the convex hull of the sampled gradient vectors. Practically
speaking, that means it is necessary to solve a quadratic constrained op-
timization problem: minλ ‖Gλ‖2, λe = 1, λi > 0, where λ ∈ Rm is the
convex combination coefficient vector and G ∈ Rn,m is the matrix whose
columns are sampled gradients. To solve this problem, a Python library
module ’scipy.optimize’ is used, together with the SLSQP (Sequential Least
Squares Quadratic Programming) method. This is a Lagrangian optimiza-
tion method described in [DK], by Dieter Kraft.

The preprocessing of the datasets has been accomplished using the
Python library ’sklearn’. For every dataset, the label column has been
transformed to only contain 1 and -1 values, and the features have been
encoded and standardized accordingly. Additionaly, the missing data was
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8.1. BINARY CLASSIFICATION

either deleted or approximated, depending on the set. Table 1 shows the
dimensions of the four tested datasets.

K n K-train K-test
Mushroom 8124 112 6499 1625

Adult 32561 108 26048 6513
Heart 303 13 242 61
Bank 45211 48 36168 9043

Table 8.1: Tested datasets’ properties

Each dataset has been split into training and test set. The gradient
sampling algorithm is using the training set to find the coefficients, and it
validates the predictions after each iteration with the test set.

8.1.1 Mushroom dataset

Here, we are trying to predict whether the mushroom is edible (1) or not
(-1). We are given 8124 samples, with 22 non numerical attributes. One
of the columns had too much missing values, hence it was removed from
the dataset. Once the features had been encoded, the number of columns
went up to 112, all of which only consisted of 0 and 1 values. After splitting
the dataset into training and test set, the data has been standardized. The
algorithm was trained with parameters:νopt = 0.005, εopt = 0.1, β = 0.1,
γ = 0.85, µ = 0.35, θ = 0.5, ε1 = 0.5, ν1 = 0.12, αk = 1 (for limiting line
search) and m = 120.

Namely, the limiting line search from 7.3 has two ways of being im-
plemented. The first one chooses the step size t = min{1, γε/3‖dk‖}. If the
Armijo condition isn’t satisfied, the point needs to be resampled (tk = 0),
since min{1, γε/3‖dk‖} is the lower bound of tk in this modification. How-
ever, if the condition holds, we update the step size tk = t and proceed to
the next step.

The second way starts off the same, with the lower bound being
t = min{1, γε/3‖dk‖} in the case Armijo condition holds, else tk = 0 and we
resample the iterate. We proceed to update t = t/γ as long as Armijo con-
dition is satisfied. At the end of the loop, tk = γt satisfies the requirement.
The second method proved to be much more efficient for the mushroom set.
For the rest of the datasets it also showed to be the best. As we can see
in Figure 8.1, the limiting line search is the slowest, and in Figure A.2 it is
much faster.
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8.1. BINARY CLASSIFICATION

Figure 8.1: The norm of the sampled gradient, first method

Here, the limiting line search modification is slower, as the resampling
is more frequent the closer we get to the stationary point. The nonnormal-
ized gradient sampling appears to be unstable at the end, as the gradients
are not controlled by normalization. The trust region gradient sampling ap-
pears to be the most stable, however it is slower than the regular gradient
sampling, as it is using the smaller search steps in general. In the following
figure, we can see a drastical difference in the limiting gradient sampling
modification’s performance.

Figure 8.2: The norm of the sampled gradient, second method
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8.1. BINARY CLASSIFICATION

The Figure 8.3 shows the loss values of the training sets and test sets
for each algorithm: the gradient sampling, limiting gradient sampling, trust
region gradient sampling and nonnormalized gradient sampling respectively.

Figure 8.3: Loss values for each algorithm

The blue line in each panel of Figure 8.3 is the loss of the training set,
whereas the orange line represents the loss of the test set. We can notice
that the test loss is a bit larger, although not by much. In Figure 8.4 the
training loss is compared between the methods.

Figure 8.4: Training loss of the mushroom dataset
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The loss comparison follows the gradient norm comparison of the al-
gorithms, and both imply that the limiting gradient sampling converges the
fastest for this dataset.

With the calculated coefficients, we can predict the target column of
the test set. If we use the ’metrics’ module of the sklearn library, we easily
calculate the efficiency of the SVM algorithm. For the mushroom dataset,
the SVM predicted the test target with 99% accuracy.

8.1.2 Adult dataset

In this dataset, the goal is to find out whether the person makes more or less
than 50000$ a year. The features that are given are personal information of
the observed people, such as: working class, age, education, marital status
etc. After deleting the rows with the missing values we are left with 32561
samples.

As in the previous dataset, the features had to be encoded, which
made the problem more difficult, due to the fact that the number of fea-
tures increased from 15 to 108. The Figure 8.11 shows the efficiency of the
algorithms.

Figure 8.5: The norm of the chosen sampled gradient at each iteration

We have got similar results in terms of algorithm’s performances, with
gradient sampling and limiting gradient sampling being much faster than the
other two algorithms. However, the nonnormalized and trust region gradient
sampling appear to be more stable as they converge. This might be due to
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the sparse data, and the dimension of the set. The Figure 8.6 follows the
previous plot with the same observations. With the accuracy of 82.8% the
SVM predicts the labels of the test set.

Figure 8.6: Training loss of the adult dataset

8.1.3 Heart dataset

Here, we need to predict the risk of the person getting a heart attack, given
the health examination results. The features are already in the numerical
form, hence there is no need for encoding. Figures 8.7 and 8.8 display the
flow of the algorithms.

Figure 8.7: The norm of the chosen sampled gradient at each iteration
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This is the smallest dataset, consisting of only 303 samples and 13
attributes. Notice that unlike in the previous sets, the limiting gradient
sampling doesn’t seem to be the most efficient algorithms. Also, all of
the algorithms converge extremely fast and unstable, the slowest being the
nonnormalized gradient sampling. The SVM’s accuracy using the calculated
coefficients is 72.1%.

Figure 8.8: Training loss of the heart dataset

Figure 8.9: Loss values for each algorithm of the heart set
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8.1.4 Bank dataset

With the personal information of the users, and previous interactions with
the bank, we predict whether the client will support the bank’s campaign.
This is the largest dataset tested (sample wise), with 45211 samples and
48 features after the encoding. The SVM predicted the labels with 89.8%
accuracy. Following graphs illustrate the convergence.

Figure 8.10: The norm of the chosen sampled gradient at each iteration

Figure 8.11: Training loss of the bank dataset
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We can notice that the gradient sampling and the limiting gradient sam-
pling displayed an outstanding performance in most of the datasets. The
nonnormalized and the trust region modifications however seem to be the
slowest for the larger and more robust datasets.

8.2 Industrial application - anomaly detection
So far, we have seen the notion of the SVM and how to implement it, we have
proved the functionality behind the gradient sampling algorithms, and we
managed to apply the binary classification method on four datasets. Now,
as the climax and the resolution of this story, this section will consider an
industrial problem. Here, the section 3.2 will be materialized, by applying
the anomaly extraction one class SVM (OCSVM).

As mentioned, finding anomalies is of great importance in industry
as it can predict the malfunctioning of infrastructures, and thus prevent
unnecessary losses. There are many algorithms that can achieve this, how-
ever different problems might require different approaches. We will cover the
Smart Logistics system that uses Cellular IoT (CIoT) for operating, which is
discussed in [LS], and we will try to predict the anomalies using the OCSVM.

Namely, the breaktrough of Internet of Things (IoT) and the massive
integration of IoT devices in systems such as Smart Factories, Smart Grids,
Smart Logistics and others, caused an influx of challenges. The requirement
to secure and manage the large scale data, also the control of the intelligent
manufacturing are all important factors that need to be adressed. This is
where machine learning algorithms prove to be helpful. Some of the security
issues and threats in industrial IoT networks can be solved by anomaly and
intrusion detection, malware analysis and DDoS attacks detection, all of
which are considered to be a part of the machine learning toolkit.

The goal of this section is to implement the optimization algorithms
in order to find the anomalies within the dataset from M. Lukić, M.Savić
[LS]. The mentioned research is part of the H2020 C4IIoT project-Cyber
security 4.0: protecting the Industrial Internet of Things. The project is
funded by the European Union’s Horizon 2020 research and innovation pro-
gramme. Its purpose is to build and demonstrate a novel and unified IIoT
cybersecurity framework for malicious and anomalous behavior anticipation,
detection, mitigation, and end-user informing.

For this purpose the dataset was generated using NB-IoT (Narrow-
band Internet of Things) edge nodes. NB-IoT is a narrowband radio tech-
nology for IoT devices and applications requiring wireless transmission over
a more extended range at a relatively low cost. It is a type of Cellular IoT
(CIoT) that can be integrated in the existing 3GPP 4G/5G architecture,
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and coexist with the 4G and 5G technology. They created a setup where an
edge node has been attached to a box-shaped container inside a transport
vehicle moving through the city of Novi Sad. The devices were connected
to the NB-IoT network, and the connectivity was uninterrupted along the
paths. They collected the positioning data from the Global Navigation Sys-
tem Satellite-GNSS module (timestamp, latitude, longitude, altitude, speed
and number of satellites in range), as well as the outputs of the Inertial
Measurement Unit-IMU (acceleration and magnetic field along the 3 spa-
tial axes). The time resolution (sampling period) of the GNSS samples was
approximately 10 s, whereas the sampling period of the IMU was approx-
imately 15 ms. Additionaly, they calculated the root mean square as well
as the arithmetic mean for the acceleration and magnetic field samples col-
lected within a GNSS sampling interval.

The dataset is ordered by timestamp, and it had been split into train-
ing and test set by taking out random chunks of the data from the dataset.
The training set has 11743 samples, whereas the test set has 1380 samples.
There are two cases to be considered. The first one includes latitude and
longtitude in the dataset, whereas the second doesn’t consider the position-
ing. There are 13 attributes in total (11 in the second case), all of which are
numerical and have been scaled. For the test data ground truth anomalies
are given, which will be used to check whether the detected anomalies are
real. Beforehand, in the section 3.2 we introduced the method for finding
anomalies by minimizing the function:

min
x,r

f(x, r) = min
x,r

(λ‖x‖2
2 − λr + 1

K

K∑
i=1

max{0, r − 〈x, ωi〉}
)
, (8.2)

Modifying the hinge loss from the binary classification gives us the required
function that ought to be minimized. The accuracy of the OCSVM is given
by computing the following basic measures:

1. TP (true positives) - the number of correctly predicted anomalies

2. FP (false positives) - the number of times the model predicted an anomaly
when it wasn’t one

3. FN (false negatives) - the number of times the model didn’t predict the
anomaly when it should’ve

4. TN (true negatives) - the number of correctly predicted non-anomalous
samples.
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From these, we derive the standard measures:

Precision (P) = TP

TP + FP (8.3)

Recall (R) = TP

TP + FN (8.4)

Accuracy (A) = TP + TN

FP + FN + TN + TP (8.5)

F1 score (F1) = 2 · P ·R
P +R

(8.6)

Precision measures the percentage of correctly identified anomalies. Small
precision implies that the model makes a lot of mistakes when finding out-
liers, and ’falsely alarms’ the system. Recall reflects the percentage of true
anomalies spotted. If it is low, it means the model will not detect real
outliers, as it doesn’t alarm anomalous events efficiently.

Less important in anomaly detection, the accuracy measures how effi-
ciently does the model find both the anomalies and the non-anomalies. High
accuracy doesn’t necessarily imply that the model is valid, as it is more im-
portant to identify the anomalous data than to predict the non anomalous
samples. Last but not least, the F1 score measures the harmonic mean and
it weights the precision and recall equally. It favours the models that do not
show extreme behaviour, the ones having extremely low precision and high
recall and vice versa. These measures can also be presented as the confusion
matrix, which is defined as follows:

[
TN FP
FN TP

]

For both cases all metrics have been calculated. Parameters that have
been used for training are: νopt = 0.0005, εopt = 0.4, β = 0, γ = 0.8, µ =
0.6, θ = 0.8, ε1 = 0.8, ν1 = 0.6, λ = 0.05 and m = 20. After the training
of the four algorithms presented in chapters 5 and 7, the anomalies were
predicted on the test set, for both cases (with and without the position).
The algorithms converged and the results are presented in Table 8.2. As
we can see, the model is more precise when it uses the location, however
the second model has higher recall and f1 score. The difference is not as
significant as one would expect.
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With location Without location
Accuracy 0.729 0.718
Precision 0.738 0.681
Recall 0.414 0.448
F1 score 0.531 0.541

Consfusion matrix
[

793 75
299 212

] [
762 107
282 229

]

Table 8.2: Results for both datasets

The Figure 8.12 and 8.13 show the training loss of the algorithms for both
datasets, whereas in Figure 8.14 and Figure 8.13 we can see the unstable
norm of the sampled gradients at each iteration of the algorithms.

Figure 8.12: Training loss of the C4IIoT dataset (no location)
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Figure 8.13: Training loss of the C4IIoT dataset (location)

Figure 8.14: The norm of the gradient at each iteration (no location)
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Figure 8.15: The norm of the gradient at each iteration (location)

The trust region gradient sampling method had the most ’trouble’ converg-
ing, whereas the limiting gradient sampling appears to be the most efficient.
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Chapter 9

Conclusion

In this paper, we have looked back on the principles of Machine learning, the
SVM binary classification method and the one class SVM for anomaly ex-
traction. After introducing the binary hinge loss, we came across constrained
minimization problems which needed to be solved in order to implement the
SVM models accordingly.

The recommended method for solving them was the gradient sampling
(for nonsmooth functions) algorithm. In order to prove its functionality,
nonsmooth analysis theory is used. We stated Lebourg’s and Carathéodory’s
theorems, and we introduced concepts necessary for defining the gradient
sampling algorithm. The proofs for convergence of the Kiwiel’s and Burke,
Levis, Overton’s original gradient sampling method have been provided.
Additionaly, the modifications have been made for the purpose of easier
practical implementation and higher efficiency, and its convergence has also
been proven.

Afterwards, the algorithms were used in the practical sense for predict-
ing the labels of four different datasets. All of the versions of the algorithms
successfully converged, with some being faster at the time than the oth-
ers. We managed to train the SVM and present the results, however some
aspects of the model like overfitting were not discussed.

The last section focuses on the industrial application of the algorithm.
The dataset which had been generated for a C4IIoT project, was modified to
fit our gradient sampling algorithm. Namely, this dataset had been created
using NB-IoT edge nodes which were attached to the transport vehicle mov-
ing through the city of Novi Sad. With the time resolutions of 10s and 15ms,
the positioning data had been collected from the GNSS and IMU modules
respectively. The outlier detection method was trained on the training set
and it was used to identify the test set anomalies. In the end, the confussion
matrix, precision, recall and accuracy were calculated, and the plots which
show the convergence of the four algorithms were presented.

With this, the wonderful cycle of applying the mathematical aparatus con-
cludes.
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Appendix A

The Python code

Figure A.1: Hinge loss and its subdifferential, utility functions
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Figure A.2: The gradient sampling algorithm
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Figure A.3: The Nonnormalized gradient sampling algorithm
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Figure A.4: The Limiting line search gradient sampling algorithm
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Figure A.5: The Trust region gradient sampling algorithm
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Figure A.6: Hinge loss for one class SVM
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