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Abstract  

Positional games are often played on different types of graphs. They involve 

two players whose goals oppose. The most popular game of this type is Tic-

Tac-Toe and its higher-dimensional generalizations. The game that is the focus 

of this paper is called the Non-bipartite game, played on the complete graph. 

Players are called Avoider and Enforcer. Their names say a lot about their 

goals. Avoider is trying to avoid creating a non-bipartite subgraph while 

Enforcer is trying to enforce Avoider to do exactly that. Our goal is to verify that  

the game is going to be played within the proven boundaries and to see where 

exactly is the duration of the game when both players stick to their optimal 

strategies. Avoiderôs strategy was laid out in detail, but for Enforcer, we have 

tried to make some improvements. In the future, it would be interesting to see 

how the duration of the game fluctuates when we change the priorities of the 

moves for each player. There is a lot of space for future investigation of this 

particular game, but also in general of positional games. 
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Introduction 
 

Positional games are a type of combinatorial games, researching a variety of two-player 

games to purely abstract games played on graphs and hypergraphs [5]. They can be 

described as an alternate occupation of the previously unclaimed elements of a given set 

ὢ that is called the board of the game. The focus of each player is a family Ὂ

ὃȟȣȟὃ Ṗς  of finite subsets of ὢ and we call them winning sets. This family is 

sometimes called a hypergraph of the game. There are three possible outcomes of each 

positional game: the first player has a winning strategy, the second one has it and both 

players have drawing strategies. The focus of this thesis is the Avoider-Enforcer games. 

In games of that type, we have two players. The first one is trying to avoid a graph property 

whilst the second one is trying to force him to claim the edges that he wants to avoid. The 

goal of Avoider is defined through a negation ï he wins if he does not occupy any member 

of the hypergraph-losing set [5]. Sometimes the victory of Enforcer is inevitable. In that 

case, a new and more interesting question arises, in how many moves will he manage to 

win? We measure the speed of victory in the number of moves (or sometimes rounds) 

needed for that victory to happen. Fast winning strategies for Avoider-Enforcer Non-

bipartite game will be the main part of this paper. This game is played on a complete 

graph where players alternately claim an edge following some strategies. Avoider loses 

the game as soon as a graph made up of his previously claimed edges becomes non-

bipartite. On the other hand, Enforcer is trying to enforce Avoider to claim an edge that is 

going to make his graph non-bipartite as early as possible during the game.  

The main contribution of this work is the implementation of different strategies and 

analysis of a different number of rounds required for Enforcer to win. It was known to us 

from before the size of the interval within which the game must end. But in this thesis, it 

is analyzed for the first time exactly where within it the values are and how we can maybe 

move them closer to the desired part of the interval. 
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1. Graph theory, preliminaries 
1.1 Definition and representation of a graph 

In the everyday world, we can find many relationships, structures, connections, etc. that 

can be represented using some mathematical objects. If a structure consists of a set of 

points that are usually named or marked in a way and if those points can be related 

somehow with some sort of lines, we can use graphs to represent the wanted structure 

and after that to do an interesting analysis on it.  

For better understanding, let us start with an example. We can take a group of people 

and represent each person as a point. The relationship between them can be represented 

with a line. We have a line that connects two points if two persons know each other 

otherwise there are no connections between them.  

Introducing the graph theoretic notation and well-known statements, we follow [9]. A 

graph Ὃ is usually defined as ordered pair ὠὋȟὉὋ  consisting of a set ὠὋ that is a 

set of vertices also called nodes, and ὉὋ  that is a set of edges that are unordered pair 

of vertices ὉὋ Ṗ  ὼȟώ ȿ ὼȟώ ‭ ὠὋ ὥὲὨ ὼ ώ together with an incidence function ‪  

which associates with each edge of Ὃ an unordered pair of vertices of Ὃ.  

Two main parameters that can easily be calculated are the order and size of a graph. 

Order is the number of vertices and usually is denoted by ὺὋ  and size is the number of 

edges usually denoted by ὩὋ.  

Graphs can easily be represented graphically and that is why they are named like that. 

Sometimes, it can be important to do the representation in a nice, clean way, because it 

can be easier to notice some of the properties the graph has. Furthermore, the same 

graph can be drawn in many different ways and you can find one example in Figure 1.1. 

FIGURE 1.1 DIFFERENT DRAWINGS OF THE SAME GRAPH 

 

Terms incident and adjacent are often used. The edge is said to be incident with its end 

vertices and the other way also holds. We use the term adjacent when we have two 

vertices that are incident with a common edge and also when having two edges that are 
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incident with a common vertex. Vertices are called neighbors if they are distinct and 

adjacent. The neighborhood of a vertex ὺ in graph Ὃ is a set of vertices that contains all 

vertices adjacent to ὺ.  

An edge that starts and ends in the same vertex is called a loop and an edge with distinct 

ends is called a link. If there are two links with the same pair of ends, then we have parallel 

edges. A graph is simple if it has no loops or parallel edges. 

 

1.2 Subgraphs and special families of graphs 

Starting from graph Ὃ, two common ways can be used to derive smaller graphs from Ὃ. 

As one can assume, we can delete an edge or a vertex in some ways. Two operations 

that can be helpful are edge deletion and vertex deletion. Ὃ ͵ Ὡ is a graph obtained from 

Ὃ by deleting the edge Ὡ. Similarly, Ὃ ɀ ὺ is a graph obtained by deleting vertex ὺ 

together with all the edges incident with it. Using these operations, we can create 

subgraphs.  

Speaking in a more general way, a graph Ὂ is called a subgraph of a graph Ὃ if ὠὊ Ṗ
ὠὋȟὉὊ ṖὉὋ, and ‪  is the restriction of ‪  to ὉὊȢ 

 

FIGURE 1.2 GRAPH ╖ (ON THE LEFT), SUBGRAPH ╕ OF THE GRAPH ╖ (ON THE RIGHT) 
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A spanning subgraph of graph Ὃ is a subgraph obtained by edge deletions only. Another 

way to define it is to say that a spanning subgraph is a subgraph whose vertex set is the 

entire vertex set of Ὃ. If we define Ὓ to be the set of deleted edges, then this subgraph of 

Ὃ is denoted by Ὃ ͵ Ὓ.  

A complete graph is a simple graph in which any two vertices are adjacent. A regular 

graph is a graph where each vertex has the same number of neighbors. A degree of a 

vertex of a graph is the number of edges incident with that vertex. The complete graph 
on ὲ vertices I usually denoted by ὑ . It has ὲὲ ρȾς edges. It is a regular graph and 

has a degree ὲ ρ. [7,9]  

 

 

 

FIGURE 1.3 EXAMPLES OF COMPLETE GRAPHS WITH DIFFERENT NUMBER OF VERTICES 

 

A graph is called bipartite if its vertex set can be partitioned into two subsets ὢ and ὣ so 

that every edge has one end in ὢ and one end in ὣ. That kind of partition ὢȟὣ is called 

a bipartition of the graph.  

A cycle is a simple graph whose vertices can be arranged in a cyclic sequence in a way 

that two vertices are adjacent if they are consecutive in the sequence. A cycle is consisted 

of at least three vertices. The length of a cycle is the number of its edges, and we can 

have odd and even cycles depending on their length.  

A path is a simple graph whose vertices can be arranged in a linear sequence in such a 

way that two vertices are adjacent if they are consecutive in the sequence, and are 

nonadjacent otherwise.  

In graph theory, Turán's theorem bounds the number of edges that can be included in 

an undirected graph that does not have a complete subgraph of a given size [22]. The 

special case of Turán's theorem is Mantelôs theorem that will be helpful later in the paper. 

ὑ ὑ ὑ  
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Theorem 1.1 (Mantelôs): [17] If a graph Ὃ on ὲ vertices contains no triangle then it 

contains at most  edges.  

1.3 Trees  

A tree is a connected acyclic graph and an acyclic graph is one that contains no cycles. 

Each component of an acyclic graph is a tree, these acyclic graphs are called forests. A 

connected graph must contain at least one path between any two vertices. So, trees are 

always connected, but we have exactly one path between any two vertices.  

Any graph in which all degrees are at least two contains a cycle. From that, it can be 

concluded that every tree contains a vertex of degree at most one and if the tree is 

nontrivial, it must contain that one vertex, and it is called a leaf of the tree. In Figure 1.4 

you can find a few examples of trees on six vertices. 

 

FIGURE 1.4 THE TREES ON SIX VERTICES  

 

A subtree of a graph is a subgraph which is a tree [9]. If this tree is a spanning subgraph, 

we call it a spanning tree. 

Theorem 1.2: A graph is connected if and only if it has a spanning tree. 

Proposition 1.3: In a tree, any two vertices are connected by exactly one path.  

Theorem 1.4: A graph is bipartite if and only if it contains no odd cycle.  

Proof:  

Firstly, we can easily see that a graph is bipartite if and only if each of its components is 

bipartite. Also, a graph contains an odd cycle if and only if one of its components contains 

an odd cycle. This is what we will need in further proving.  

ᵼ Let Ὃὢȟὣ be a connected bipartite graph. Then the vertices of any path in Ὃ belong 

alternately to ὢ and to ὣ. All paths that are connecting vertices in different parts are of 
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odd length and all paths connecting vertices in the same part are of even length. By the 

definition of Ὃ, each edge of Ὃ has one end in ὢ and one ned in ὣ. From that, we can 

conclude that every cycle of Ὃ is of even length.  

ᵺ Now, suppose that Ὃ is a connected graph without odd cycles. We will need Theorem 

1.2 and Proposition 1.3 to complete the proof.    

From Theorem 1.2 we can immediately conclude that Ὃ has a spanning tree Ὕ because 

it is connected. Now let ὼ be a vertex in Ὕ. Because of Proposition 1.3, we know that any 

vertex ὺ of Ὕ is connected to ὼ by a unique path in Ὕ. Let ὢ denote the set of vertices for 

which this path is of even length, and set ὣḊ  ὠ ͵ ὢ. Then ὢȟὣ is a bipartition of Ὕ. It is 

left to prove that this is also a bipartition of Ὃ.  

Let us consider an edge Ὡ  όὺ of ὉὋ ͵ ὉὝ and let ὖḊ  όὝὺ be the unique όὺ - path 

in Ὕ. The cycle ὖ  Ὡ is even, so ὖ must be odd. Therefore, the ends of ὖ, and hence the 

ends of Ὡ, belong to distinct parts. From here we can conclude that ὢȟὣ is a bipartition 

of Ὃ.                     Ǐ 

             

1.4 Tree-search algorithms 

The two most important and most used algorithms on graphs are BFS ï Breadth-first 

search and DFS ï Depth-first search.  

By graph traversal, it is meant visiting every vertex exactly once in a well-defined order.  

1.4.1 BFS  

Bondy and Murty dealt with and researched these algorithms in detail in their book [9]. 

BFS is a traversing algorithm that follows the rule ófirst com first servedô. That means that 

starting from the root/source (arbitrary vertex) it takes into account all of its neighbors first 

then moves along with visiting neighborsô neighbors. For the implementation of this 

algorithm, vertices are kept in a queue. A queue is a list ὗ that is updated when two 

situations occur. The first update can be adding a new element always at the end (the tail 

of the queue) and the second one is removing an element from the top (the head of the 

queue). Below you can find Algorithm 1.1 [9] together with a short illustration of how the 

algorithm works on the graph with 8 vertices that are connected in a way on Figure 1.5.  
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FIGURE 1.5 BFS EXAMPLE 

 

 

ALGORITHM 1.1 BFS ALGORITHM [9] 
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1.4.2 DFS 

DFS is also a traversing algorithm but it follows another kind of rules than BFS. It can be 

explained in the following way: it starts from the source/root vertex and goes as far as 

possible through the branch before backtracking. It is a recursive algorithm because it 

uses backtracking. We search for vertices by going ahead, if possible, else by 

backtracking. This algorithm can be implemented by using a stack. A stack is a list Ὓ and 

it may be updated in two ways ï by adding a new element at the top or by removing an 

element from its top. You can read more about this algorithm defined through steps [9]. 

In Figure 1.6 there is a simple example of how this algorithm works on a tree with 5 

vertices. 

 

 

 

FIGURE 1.6 DFS EXAMPLE 
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ALGORITHM 1.2 DFS ALGORITHM [9] 

1.4.3 Bipartite graph and BFS algorithm 

An interesting thing is that we can use the BFS algorithm to find out whether a graph is 

bipartite or not. We already talked about checking if a graph contains an odd cycle, but 

this is a different approach. By following these steps, we can determine the wanted 

property. Two colors are needed, we will use red and blue for simplicity. 

1) Assign a blue color to the source vertex. 

2) Color all of its neighbors with red color.  

3) Color all neighborôs neighbor with blue color. 

4) By repeating this process, assign a color to all the vertices in the graph.  

5) While assigning, if we find neighbors that are of the same color, then the graph is 

not bipartite, otherwise, it is.  

The following Theorem 1.5 can also be useful to understand why we can use this 

approach explained above.  

Theorem 1.5: [16] Let Ὃ be a graph. Then G is 2-colorable if and only if Ὃ is bipartite.  

Proof:  

Proof of this theorem is pretty straightforward.  
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ᵼ Let Ὃ be a 2-colorable graph. That simply means that we can color every vertex either 

red or blue, and no edge will have both endpoints colored the same color. Let ὢ denote 

the subset of red vertices, and let ὣ denote the subset of blue vertices. Since all vertices 

of ὢ are red, and all vertices of ὣ are blue, we can conclude that every edge has one 

endpoint in ὢ and the other in ὣ. So, Ὃ is bipartite. 

ᵺ Now suppose that Ὃ is a bipartite graph. That means that we can partition the vertices 

into two subsets ὢ and ὣ in a way that every edge has one end in ὢ and another in ὣ. If 

we color all the edges from ὢ in red and all the edges from ὣ in blue, we will get a proper 

coloring. Because two colors are used, we can say that Ὃ Is 2-colorable.          Ǐ 
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2. Positional games, preliminaries  
The term ópositional gamesô can be wrongly understood as being a part of classical Game 

Theory. Classical Game Theory is mostly based on the notions of uncertainty and lack of 

perfect information. On the other hand, positional games are perfect information games 

and because of that, they can be solved completely by an all-powerful computer. 

Positional games are closer to the so-called ñCombinatorial Game Theoryò in which 

games are based on algebraic arguments and various notions of decomposition [2]. 

Positional games are games that can be described as an alternate occupation of the 

elements of a given set ὢ that is called the board of the game [2,19]. We assume that ὢ 

is finite. Winning sets are the focus of each player, and they can be described as a family 

Ὂ ὃȟȣȟὃ Ṗς  of finite subsets of ὢ, this family is sometimes called the hypergraph 

of the game. [14] The outcomes of the game are ï the first player wins / the second player 

loses, the second player wins / the first player loses, or a draw. Each game scenario has 

exactly one of the outcomes. There is no randomness involved in these games. The 

outcome of each positional game is determined and speaking of the outcomes, combining 

with the strategies, these are the only possible ones [2]:  

1. the first player has a winning strategy,  

2. the second player has a winning strategy,  

3. both players have drawing strategies.  

Knowing that a game is determined and finding its actual outcome are two very different 

things. In principle, every game can be described by a tree of all possible plays, called 

the game tree. There is a vertex for every sequence of allowed moves of both players, 

including the empty sequence for the root of the game tree. Each sequence of moves is 

connected by an edge to a sequence one move shorter. Leaves are the final positions of 

the games. [2,12] 

The most famous positional game is Tic-Tac-Toe in two dimensions. As we know, this 

game is played by two players, alternately claiming one unoccupied cell from a 3-by-3 

board. A player who completes a winning line first wins.  We have eight winning lines, 

three vertical lines, three horizontal lines, and two diagonals. If none of these lines are 

claimed by neither one of the players, in that case, we have a draw.  

2.1 Maker ï Breaker games 

Generally speaking, in every positional game both players are trying to do two things 

simultaneously:  try to occupy a complete winning set and prevent the other player from 

occupying one for themselves. For many reasons, analyzing this approach is impractical 

and very complex. Because of that, we focus on games where the second player (SP) is 

not interested in occupying a winning set but achieving a draw, or basically, his strategy 

is focused on preventing the first player (FP) to win. Additionally, FP can concentrate on 

offense and completely forget about playing defense. By changing the strategies for both 

players, we are simplifying the game.  
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Definition 2.1: Let ὢ be a finite set and  Ṗ ς a family of subsets. In a Maker-Breaker 

game over the hypergraph ὢȟ :  

¶ the set ὢ is called the board and the elements of  Ṗ ς  are the winning sets; 

¶ the players are called Maker and Breaker; 

¶ during a particular play, the players alternately occupy elements of ὢ; as a default, 
we set Maker to start (unless stated otherwise); 

¶ the winner is: 
o Maker, if he occupies a winning set completely by the end of the game, 
o Breaker, if he occupies an element in every winning set.  

 

2.2 Biased games 

In many different Maker-Breaker games, Maker wins easily, so Chvátal and Erdös [23] 

were first to suggest that Breaker claims more than one edge per move in order to 

increase his chance of winning.  

Definition 2.2: Let ὴ and ή be positive integers, let ὢ be a finite set, and let  Ṗ ς  be a 

family of subsets of ὢ. The biased ὴȡή Maker-Breaker game ὢȠ  is the same as the 

Maker-Breaker game ὢȠ , except that Maker claims ὴ free board elements per move 

and Breaker claims ή free board elements per move. The integers ὴ and ή are referred 

to as the bias of Maker and Breaker, respectively. In the last move of the game, if there 

are fewer free board elements than his bias, a player claims every free board element. 

2.3 Avoider ï Enforcer games 

Avoider ï Enforcer games are in a way the opposite of MakerïBreaker games and that 

is why they are sometimes called Antimaker ï Antibreaker games. As their name says, 

we have two players, the first one is trying to avoid a graph property and the second one 

is trying to force him to claim the edges that he wants to avoid. The general setup is pretty 

much the same as in other positional games that are already described, we have the 

board ὢ and the collection of winning sets, but in these games, we refer to that collection 

as the collection of losing sets . Avoider is starting the game unless it is specified 

differently. [2,5] 

Let ὴ and ή be positive integers and let  be any hypergraph. In a (ὴȟήȟ) biased Avoiderï

Enforcer game two players take turns selecting previously unclaimed vertices of . 
Avoider selects exactly ὴ vertices per move and Enforcer selects exactly ή vertices per 
move. If the number of unclaimed vertices is strictly less than ὴ (or ή) before a move of 

Avoider (or Enforcer, respectively), then he must claim all of the remaining free vertices  
[3]. The game ends when all the elements of the board are claimed either by Avoider or 
Enforcer. The goal of Avoider is defined through a negation, that is, he wins if he does 

not occupy any member of the hypergraphïlosing set [5]. Enforcer wins if Avoider claims 
a whole set from the collection of losing sets. We can have a biased and unbiased version 
of this game. A biased game is more general and it is introduced to increase the playersô 
chances to win. An unbiased version is one where ὴ and ή are equal to 1. [2,3,5] 
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The most popular game of this type is the so-called óSimô. The game is played on the 

complete graph with 6 vertices. In every move, each player is coloring an edge in one 

color, for simplicity, we can say that Avoider is coloring in red, and Enforcer in blue. Losing 

sets are all triangles. If Avoider had created a red triangle by coloring edges, he had lost, 

otherwise, he is a winner.  

2.4 Fast winning strategies  

Both Maker-Breaker and Avoider-Enforcer games can be analyzed in order to create 

strategies that will take one or the other player towards the win. Another interesting 

question that we can ask is how long will it take for a player to win rather than who is 

going to win. [13] 

2.4.1 Fast winning in Maker-Breaker games 

Our focus here is on the unbiased games played by two players that are taking turns in 

selecting edges of a complete graph. For quite a few MakerïBreaker games, it is rather 

easy to determine the identity of the winner [11]. For example, Maker wins very easily in 

the connectivity game [6]. In that particular game, his goal is to claim a connected and 

spanning subgraph. Another good example is the Non-planarity game [4,15] with ὲ ρρ, 

where his goal is to create a non-planar graph. The maker will definitely manage to claim 

such edges that will create a non-planar graph irregardless of his strategy because it is 

known that every graph with more than σὲ  φ edges on ὲ vertices is non-planar. In 

these and similar games, the most significant part is óhow fast one can win?ô  

2.4.2 Fast winning in Avoider-Enforcer games 

Fast winning strategies for Avoider-Enforcer games will be the main part of this paper, 

particularly for the Non-bipartite game. Several well-studied positional games are an easy 

win for Enforcer. The previously mentioned non-planarity game can also be a good 

example of this. These strategies for the fast win in the non-planarity game are described 

in detail in [1] and later in this paper, we will be dealing with strategies for the Non-bipartite 

game. It is known that Enforcer will eventually win, but the interesting part is how long will 

Avoider manage to avoid losing.  
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3. Fast winning strategies in Avoider-
Enforcer games  
As it was mentioned previously, one player has a strategy for winning. In case we know 

the winner we are moving to the question of how fast that player can win. We will assume 

that we have a complete graph ὑ , the game is played on its edges Ὁὑ  and that the 

game is unbiased unless it is said otherwise.  

For a hypergraph , †  is said to be the smallest integer ὸ such that Enforcer has a 

strategy to win the game on  within ὸ moves. If Avoider wins, we say that †  Њ. We 

are interested in determining the value † . Let us assume that the set of hyperedges 

of  is a monotone increasing family. If the assumption is not correct, we can always 

extend it to an increasing family by adding all the supersets of its elements. [1] 

Definition 3.1: The extremal number of the hypergraph  is defined by the following 

equation: 

Ὡὼ άὥὼ ȿὃȿḊὃ Ṗὠ ȟὃᶱὉ . 

Theorem 3.2: [1] Giving a monotone increasing family  of hyperedges, we have 

Ὡὼ ρ  †  Ὡὼ ρ. 

Proof:  

We have two bounds for † , the upper and the lower one. First, let us prove the lower 

bound. Let Avoider fix an arbitrary ὃ Ṗὠ  before the game starts in a way that ὃ is an 

edge of  and ȿὃȿ  Ὡὼ Ȣ During the game, Avoider claims only the elements of ὃ as 

long as possible. By doing that, he will be able to claim at least half of the elements of ὃ 

without losing.  

Enforcer will surely win after Ὡὼ ρ rounds, no matter what his strategy is. At that 

point, Avoider has claimed Ὡὼ ρ vertices and a set with that many vertices must be 

an edge of , because of the way that Ὡὼ  was defined. That is how we got the upper 

bound.                   Ǐ 

3.1 Non-bipartite game 

We now take a closer look at the Non-bipartite game. As it was mentioned, this game is 

played on a complete graph where players alternately claim an edge following its strategy. 

Avoider loses the game as soon as his graph becomes non-bipartite. As its name says, 

Enforcer is trying to enforce the Avoider to claim an edge that is going to make his 

subgraph non-bipartite. Enforcer will eventually win the game, but the interesting question 

is ï how many moves will be necessary for Enforcer to achieve his goals.  
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Theorem 1.4 can be very helpful. That theorem equates this game with the game in which 

Enforcer aims to make sure that Avoider creates an odd cycle by claiming the edges in 

every round and Avoider is trying not to claim it. From Theorem 1.4, we know that if a 

graph contains an odd cycle it cannot be bipartite.  

Now, let us denote by ὔὅ the hypergraph whose hyperedges are the edge-sets of all 

non-bipartite graphs on ὲ vertices.  

From Theorem 3.2 and Theorem 1.1 we can conclude the following:  

ρ  † ὔὅ   ρ. 

It turns out that both upper and lower bounds can be improved. 

Theorem 3.3: [9] 

† ὔὅὲ
ς  —ὲ. 

As it was already proven by Hefetz, Krivelevich, Stojakoviĺ, and Szabó in [1], we can get 

more accurate boundaries than one stated in Theorem 3.3. Let us denote by † the number 

of rounds needed for Enforcerôs win in the Non-bipartite game. This means that after 

exactly † rounds, Avoider will claim an edge that will create an odd cycle together with his 

previously claimed edges.  

Theorem 3.4: 

  †  ρ. 

 

Proof:  

Upper bound - forcing an odd cycle fast  

Enforcerôs strategy is based on claiming the edges in a way that all the edges left for 

Avoider to choose are going to make Avoiderôs graph non-bipartite. 

His strategy should force Avoider to claim the edges of an odd cycle, and by doing that 

to lose the game, during the first  ρ moves. Each connected component of 

Avoiderôs graph in every stage of the game is bipartite. If that would not be the case, then 

the whole graph would not be bipartite and Avoider would have already lost. 

In every move, Enforcerôs primary goal is to claim an edge that connects two opposite 

sides of the bipartition of one of the connected components of Avoiderôs graph. If that is 

not possible and no such edge is ófreeô then he will claim an arbitrary edge. The edge that 

has been chosen arbitrarily is marked as ópossibly badô. It is obvious that in the next move 

Avoider cannot play inside any of his connected components, because by doing that he 
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would create an odd cycle. So, he is forced to merge two of his components. We know 

that the game starts with Î connected components (each vertex is one component 

because no edge has been claimed), this situation of merging two components can occur 

at most ὲ ɀ ρ times.  

Therefore, when it comes to the move where Avoider is not able to claim any edge without 

creating an odd cycle, his graph is of course still bipartite and all of Enforcerôs edges are 

compatible with that bipartition of Avoiderôs graph, except the ones that we marked as 

ópossibly badô. The total number of claimed edges to this point is at most ὲ ρ. The 

total number of the claimed edges is obtained based on Theorem 1.1 which says that if a 

graph on ὲ vertices does not contain a triangle, which is an odd cycle of length 3, then it 

contains at most  edges, together with the knowledge of how many times merging of 

connected components can happen which is ὲ ρ. So because of that the total number 

of moves Avoider has played in the entire game is at most ρ. 

Lower bound - avoiding odd cycles for long 

The strategy that will be explained below is a strategy for Avoider to keep his graph 

bipartite for at least  rounds. For technical reasons let us assume that ὲ is even. 

The idea is for Avoider to maintain a family of ordered pairs ὠȟὠ , where ὠ,ὠ Ṗ V(ὑ ), 

ὠ  ᷊ὠ =  ɲand ȿὠȿ  ȿὠȿ. The ordered pair that satisfies the conditions stated above is 

called a bi-bunch. Two bi-bunches ὠȟὠ  and ὠȟὠ  are disjoint if ὠ ᷾ ὠ  ᷊ ὠ᷾

 ὠ   ɲȢ A vertex is called untouched if it does not belong to any bi-bunch and all the 

edges incident with it are unclaimed. These terms have been introduced because, during 

the game, we will maintain a partition of the vertex set ὠὑ  into several pairwise disjoint 

bi-bunches, and a set of untouched vertices.  

Before the game starts, we have Î untouched vertices and no bi-bunches. Avoiderôs 

strategy is defined in the following way:  

The primary goal is to claim an edge across some existing bi-bunch, in other words, an 

edge ὼȟώ where ὼ ɴ  ὠ and ώ ɴ  ὠ for some bi-bunch (ὠ,ὠ). If no such edge is 

available, then he will try to claim an edge ὼȟώ where Ø and Ù are untouched vertices. In 

that case, a new bi-bunch must be created, so we will have  ὼ ȟ ώ . If neither of that 

is possible, he will claim an edge connecting two existing bi-bunches, that is, ὼȟώ such 

that there exist ὠȟὠ  and ὠȟὠ  with ὼɴ  ὠ and ώ ɴ  ὠ. In this step, he needs to 

replace two existing bi-bunches with a single new one ὠ  ᷾ὠȟὠ  ᷾ὠ . 

Some changes must be done on bi-bunches, depending on the edge that has been 
claimed by Enforcer. When claimed edge ὼȟώ is such that neither x nor y belongs to any 

bi-bunch, a new bi-bunch is introduced ὼȟώȟόȟὺ , where ό and ὺ are arbitrary 

untouched vertices. If there are no two untouched vertices (that can happen only once in 

the game) then the new bi-bunch is ὼȟ ώ . If Enforcer claims an edge (ὼȟώ) such that 
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ὼ  ɴὠ for some bi-bunch ὠȟὠ  and Ù is untouched, then we need to update the bi-

bunch or, in other words, replace the existing one with ὠ ᷾ ώȟὠ ᷾ ό , where Õ is 

an arbitrary untouched vertex. The next option is that the edge ὼȟώ claimed by the 

Enforcer is such that there are bi-bunches ὠ,ὠ) and ὠȟὠ  with ὼ  ɴὠ, ώ  ɴὠ. Then, 

these two bi-bunches are replaced with a single new one ὠ  ᷾ὠȟὠ  ᷾ὠ . Notice that 

Avoiderôs graph will not contain an edge with both endpoints in the same side of a bi-

bunch if we follow everything described above. Also note that if Enforcer claims an edge 
ὼȟώ, such that before that move one of the vertices was untouched, then that edge will 

be contained in the same side of some bi-bunch.  

Assume that Avoider claims an edge ὼȟώ such that before that move ὼ was untouched. 

Then Ù must also be untouched and there are no unclaimed edges across a bi-bunch at 

that point because of the Avoiderôs strategy. In Enforcerôs next move he will not be able 

to claim an edge across a bi-bunch and because of all that, the edge he will claim will 

have both endpoints in the same side of some bi-bunch. We can conclude that after every 

round in which one or both players claim an edge that is incident with an untouched vertex 

(that is not the next to last untouched vertex), the edge claimed by the Enforcer will be 

contained in the same side of some bi-bunch.  

By the bi-bunch maintenance rules explained throughout the proof, during every round 

the number of untouched vertices is decreased by at most 6. Therefore, by the time all 

but two vertices are not untouched at least  Enforcerôs edges will be contained on the 

same side of a bi-bunch. Consequently, when Avoider must claim an edge that will create 

an odd cycle, both players have claimed together all the edges of a balanced bipartite 

graph that complies with the bi-bunch bipartition, and at least another  edges. Putting 

all of this together we get a total of at least ẗ  edges claimed so at least  

rounds were played.                          Ǐ 

              

Now, let us go through one example of how this game can be played according to the 

above described strategies of Avoider and Enforcer. We will take a complete graph on 6 

vertices. In Figure 2.1 Avoiderôs edges are the blue ones and Enforcerôs are the red ones. 

In his first move, Avoider claims the edge ρȟς and we marked it as blue. We immediately 

create a bi-bunch ρȟς . Enforcer claims σȟτ and we marked it as red. After that 

move, a new bi-bunch is created σȟτȟπȟυ , and the first round is finished. In the next 

one, Avoider claims τȟυ and that move does not require any changes on any element 

of the list of bi-bunches. Enforcer claims ρȟσ and after that move, we are merging the 

bi-bunches and now we have one bi-bunch ρȟσȟτȟςȟπȟυ . Further, Avoider chooses 

πȟρ. In every move, his primary goal is to claim an edge that connects two opposite 

sides of a bi-bunch. Enforcer claims ρȟτ. The following move of Avoider is claiming ςȟσ 

and of Enforcer the claimed edge is πȟσ. Then, by following their strategies, Avoider 

chooses ςȟτ and Enforcerôs choice is πȟτ. There were no changes on the bi-bunch list 
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after these three moves. Avoider now claims ρȟυ and Enforcer follows with claiming 

σȟυ. These moves also do not require any changes on bi-bunches. And after all these 

rounds the only edge possible for Avoider to choose is πȟς and Enforcer follows with 

ςȟυ. Now, let us take a look at the bottom right graph in Figure 2.1. Only three edges 

are not claimed at this point. It is Avoiderôs turn to play. Whatever edge he chooses, the 

blue subgraph will stop being bipartite or in other words, he will create a cycle of odd 

length. By doing that, he loses the game. So, in this particular example, Avoider manages 

to keep his graph bipartite for 6 rounds, and in the 7th round, he will claim an edge that is 

going to end the game. If we calculate the upper and lower bound we will get 4.83 for the 

lower one and 8.5 for the upper one and obtained result, in this case, was 6.  

 

 

 

FIGURE 3.1 NON-BIPARTITE GAME ON THE COMPLETE GRAPH WITH 6 VERTICES 

 

3.2 Improving Enforcerôs strategy 

Based on the description of the strategies of both players, it can be concluded that 

Avoiderôs strategy is completely deterministic. On the other hand, within Enforcerôs 

strategy, there is an arbitrary part that leaves room for potential improvement.   

Enforcerôs strategy is easy to follow and does not contain many steps. His primary goal 

is to claim an edge that connects two opposite sides of the bipartition of Avoiderôs graph. 

Every connected component of Avoiderôs graph is a separate bipartition. The code for 

that part is explained in Algorithm 4.2. If he is unable to do that, he simply chooses an 

arbitrary edge. The main idea was to replace the arbitrary step with well-defined steps 

that will potentially improve his strategy and give him a faster win.  

After a thorough analysis of potential changes in Enforcerôs way of playing, we decided 

to compare two different approaches to defining his strategy. The first one is named 

óRandom strategyô and the second óTwin strategyô. In the Random strategy, Enforcer has 



Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game 

19 
 

only two possible choices. If it is possible, he will claim an edge that connects two opposite 

sides of the bipartition of one of the Avoiderôs connected components. This step was 

explained in the proof of Theorem 3.4. If that kind of edge does not exist, he is going to 

claim a randomly chosen edge. Because of this random part, every time the game is 

simulated it is possible to get a different result. The second strategy called the Twin 

strategy consists of three parts. First is always the same, so it has been already explained. 

The second and the third options are making a ótwinô to Avoiderôs strategy. We want 

Enforcer to claim the edges that Avoider has an intention to claim in his future moves. So, 

the second option for him is to claim an edge that is consisted of two untouched vertices. 

But, following his strategy for creating or altering bi-bunch, we need two more edges that 

are also untouched to put in a bi-bunch created at that point. If this move is not possible 

also, he will try to find an edge that connects two bi-bunches. By doing so, alterations 

must be done on bi-bunches ï they should be merged oppositely of merging when 

Avoider claims that kind of edge. If neither of these options is possible, he again claims 

an edge by random choice.  

After comparing these two types of strategies, one more idea came to life. We wanted to 

remove the random part completely, so after the first possible choice for Enforcer, which 

is already explained many times, the second option was to claim an edge whose vertex 

degrees give the smallest value when added together. Degree refers to a subgraph of 

claimed edges by that point. We called this strategy óThe smallestô.  
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4. Implementation of strategies  
4.1 Playersô strategies  

After a thorough analysis of game setting and strategies for each player, the next step 

was to implement them. The focus was on the question of how fast a player can win.  

Enforcer has a sure victory, but how fast he can achieve it?  We were interested in seeing 

how the number of rounds will change within the proven boundaries. As it was described 

and explained in the proof of Theorem 3.4, each player has predefined ways of choosing 

an edge in every round. Strategy for Avoider is completely deterministic, but for Enforcer, 

it is not as in some parts we have more than one option for the following move. Later, we 

will see how and does the results can be improved if we try to upgrade his strategy. 

The strategy of each player consists of different possible moves defined by priority. 

Therefore, in the Enforcerôs case, the situation is as follows: 

 

 

 

 

For Avoider, the situation is a little different. He has three possible moves defined by 

priorities and in every round, he will claim an edge by following one of these rules. When 

the moment comes that none of these moves are possible, at that time he is forced to 

choose the edge for which he will lose the game. His strategy can be explained in the 

following way: 

 

  

He will try to claim an edge which will connect two opposite sides of the bipartition of 

one of the Avoiderôs connected component. In every move that is his primary goal. 

Sometimes he will be unable to do that. In those cases he will claim an arbitrary edge.  

His first choice, if possible, is to claim an edge across some existing bi-bunch. If that 

kind of edge is not free (all edges of that type are already claimed) or does not exist 

(e.g. in the first move it will not) then he will try to claim an edge whose vertices are 

untouched by that point. If neither of that is possible, he will claim an edge connecting 

two existing bi-bunches. 
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4.2 Python 

The whole code was done in Python. Python is an interpreted, object-oriented, high-level 

programming language with dynamic semantics. It has a simple syntax and his programs 

are clear and easy to read. It supports both procedural and object-oriented programming. 

Python supports modules and packages, which can be very helpful if you need reuse. 

[8,21] 

Packages that were used the most in the programming process were described in the 

following paragraphs: 

1. Numpy  

NumPy stands for Numerical Python. It is the fundamental package for scientific 

computing and it is mostly used for working with arrays. Lists are slaw to process so 

NumPy gives as an array object that is up to 50 times faster than lists in Python. Many 

other packages are also built on top of this one.  

2. Matplotlib  

Matplotlib is a library used for visualization in Python. It is used for creating plots, 

histograms, bar charts, scatterplots, etc.  

3. NetworkX 

NetworkX is a library that is used the most in the programming of the game that we talked 
about earlier. It is a library for studying graphs and networks. NetworkX is a Python 

package for the creation, manipulation, and study of complex networks.  
 

We want to use data as effectively as possible, so that is why is important to store it 

properly. Data structures can be classified in several ways and you can see this 

classification in Figure 4.1.  

Using classes when coding was very useful because they are a way to define new sorts 

of stuff not previously used and implemented by other users.  
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FIGURE 4.1 CLASSIFICATION OF DATA STRUCTURES 

 

4.2.1 Game simulation code 

For the beginning, let us briefly recall the game and playersô strategies that are supposed 

to be implemented. The game is played on a complete graph on n vertices. Many different 

values of n were used. We have two opposing sides ï Avoider and Enforcer. The game 

is played until Avoider claims an edge that is going to make his graph non-bipartite. Each 

player has its strategy. Avoider is trying to play as long as possible without compromising 

the bipartite property of his graph. On the other hand, Enforcer is trying to force the 

Avoider to claim exactly that kind of edge that is going to make his graph non-bipartite. 

The focus of our experiment was to see how fast Enforcer can win. The main question is 

how many rounds are going to pass until we get to the point where Avoiderôs every choice 

from all the remained edges is going to make his graph non-bipartite.  

As we explained earlier in the paper, three different strategies for Enforcer have been 

implemented and analyzed. In accordance with these changes, it was necessary to adjust 

and change the code itself. However, some pieces of the code remained the same in 

each of the strategies and the way the data is stored has not changed. 

For graph representation, NetworkX was used. The Non-bipartite game is always played 

on a complete graph. In addition to constructing graphs node by node or edge by edge, 
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they can also be generated using a constructive generator. In our case, we use generator 

ÃÏÍÐÌÅÔÅÇͅÒÁÐÈÎ , where Î represents the number of vertices. Every edge was 

represented as a tuple with two elements. Throughout the whole game, it is necessary to 

follow unclaimed i.e. free edges as well as those previously claimed by each player. All 

of these were stored in different lists. We also developed a new class that we needed to 

store and manipulate objects called bi-bunches. The class consists of two lists that have 

no common elements and also have the same number of elements from the beginning 

until the end of the game. After creating this class, we also needed a list of all the bi-

bunches created during the game.  

To begin with, we needed a function that is going to tell us whether the Avoiderôs graph 

is bipartite or not. More details can be found in [10]. We proved earlier that this is 

equivalent to whether a graph contains no odd cycles. For the purpose of implementation, 

things written in [20] were very helpful. A round starts if the condition is satisfied, if it is 

not satisfied the game ends at that point. Pseudocode for the function that checks if a 

graph is bipartite follows under Algorithm 4.1.  

 

 

ALGORITHM 4.1 FUNCTION THAT ANSWERS THE QUESTION OF WHETHER A GRAPH IS BIPARTITE OR NOT 
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Avoiderôs strategy is always the same. He wants to claim an edge across an existing bi-

bunch. So, the first thing is to check whether a list with all the bi-bunches is empty or 

contains some elements. If it is not empty, we create all possible edges from existing bi-

bunches and find one that is not claimed previously ï if such edge exists. To create these 

edges, we wrote a function that is combining the elements from the two sets of a particular 

bi-bunch. Otherwise, if there is no matching edge or the list with bi-bunches is empty, the 

next step is to find two untouched vertices and to claim an edge incident with them. A 

vertex is untouched if it does not belong to any bi-bunch and all the edges incident with it 

are unclaimed. For checking whether a vertex is untouched, we also created a function 

that returns a Boolean value. If none of these two options were available, then we were 

checking if there are at least two bi-bunches and also whether there is at least one 

unclaimed edge that can connect two different bi-bunches. This pretty much summarizes 

the whole of Avoiderôs strategy. It is important to emphasize that after almost every move, 

it was necessary to make some changes to the existing bi-bunches or to create a new 

one. For that purpose, we created a few functions that merge the bi-bunches in a way 

defined in the proof of Theorem 3.4.  

Let us now move on to Enforcerôs strategies. In each of the three strategies we presented, 

his primary goal is the same. To recall, he needs to find an edge that connects two 

opposite sides of the bipartition of one of the Avoiderôs connected components. We 

created the function that returns a Boolean value that answers the question of whether 

such edges exist together with a list of all the edges that satisfy the condition. In Algorithm 

4.2 we created pseudocode for the solution of this step in the strategy. 

In Random strategy, if he was unable to claim such edge described in the previous 

paragraph, he will randomly choose one. For that, we used the choice() method that 

returns a randomly selected element from the specified sequence. That sequence in our 

case was a list of all unclaimed edges by that point. Changes on the bi-bunches had to 

be made depending on which edge was chosen. If the chosen edge is such that neither 

of its vertices belongs to any bi-bunch, a new bi-bunch was created and in that case, we 

also needed two untouched vertices to put in that bunch. To check these two things, we 

have defined functions. The first one that is answering the question of whether the chosen 

edge does not belong to any bi-bunch is called ófreeô. And the other is called óe2uô that 

stands for exist 2 untouched. Next, if Enforcer claims an edge such that one of its vertices 

belongs to some bi-bunch and the other one is untouched, that edge is named ósemi freeô. 

In that case, some alterations are done on the existing bi-bunch from which the mentioned 

vertex is. And the last case is that both vertices of the edge belong to some bi-bunch. 

That edge we named óoccupiedô.  

In the Twin strategy, we used similar functions and approaches as in Avoiderôs strategy. 

And for The smallest strategy, instead of the ÃÈÏÉÃÅ method, we introduce a function 

that we named ósmallestô that is returning the edge whose vertex degrees give the 

smallest value when added together. This degree refers to a subgraph of claimed edges.  



Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game 

25 
 

 

ALGORITHM 4.2 FUNCTION THAT ANSWERS THE QUESTION OF WHETHER THE PRIMARY STEP IN ENFORCERΩS STRATEGY 

CAN BE DONE 
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5. Results  
We have dealt with the analysis of this Non-bipartite game and within this chapter, we will 

talk about the results obtained in many different experiments. We are opposing strategies 

used to obtain these two theoretical limitations defined and proven in Theorem 3.4. We 

observe the duration of the game. The duration of the game is presented as the number 

of rounds required for Enforcer to win. The number of rounds if we follow the strategies 

explained before, should be at least   and not more than ρ where Î is the 

number of vertices. Avoiderôs strategy is unique and unchanged in all experiments. On 

the other hand, trying to enhance Enforcerôs play, we introduced three different strategies. 

After implementing these strategies and running many experiments, obtained results are 

presented in the following chapters. 

5.1 óRandom strategyô 

The first strategy that we are going to analyze is the Random strategy. The first few 

experiments were done by following the steps defined below. Numbering indicates the 

priority in selecting an edge. The players will always try to make the first move defined in 

their strategies. If they are not able to do that, they will move to the next option and so 

on.  

AVOIDERôS STRATEGY: 

1. Claim an edge across an existing bi-bunch. 

2. Claim an edge that will join two untouched vertices. 

3. Clam an edge that will connect two bi-bunches. 

ENFORCERôS STRATEGY:  

1. Claim an edge that connects two opposite sides of the bipartition of one of the 

Avoiderôs connected components.  

2. Randomly choose and claim an edge. 

 

5.1.1 Experiments 

These experiments were done on the complete graphs starting from the graph with 6 

vertices and ending with the graph that contains 50 vertices, but only on the even ones. 

For every number of vertices, the experiment was run 20 times. The most important thing 

was to calculate the upper and lower bound for each number of vertices and to follow the 

number of rounds for every played game and how it is changed within the boundaries. In 

other words, the idea was to see what result the opposing strategies of these two players 

give.  

Some general observations can be done on the obtained data. Firstly, we can tell that all 

the obtained numbers are between boundaries and that is something that was expected. 
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Secondly, it can be seen that for the smaller graphs number of rounds are almost the 

same in every experiment. For example, for the graph with 6 vertices, the number of 

rounds was always 7. As the graph was getting larger, the number of rounds started to 

change more drastically.   

Some statistical measures were needed. Mean, mode and, median were calculated. 

¶  Mean refers to the arithmetic mean ï the sum of numbers divided by how many 

numbers are being summed.  

¶ Mode od modus gives us the most frequently occurring or repetitive value in a 

range of given data.  

¶ Median represents the value that separates the set and divides it into lover and 

higher half. It is a number in the middle of the ordered set of values.  

For better visualization of the statistical measures and how they are different one from 

another, look at  Figure 5.1.  

 

   

FIGURE 5.1 STATISTICAL MEASURES [18] 

 

Now, let us take a look at Figure 5.2 to see our results. As it was already mentioned, for 

every graph size 20 games were played on it. We took the mode values to represent them 

on the plot. In Figure 5.2 in both the upper and lower bound and results we subtracted   

in order to emphasize differences between the values in the second-order term. Later in 

the paper, this way of presenting the results was always used for a clearer picture of the 

differences in results for different strategies. 
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FIGURE 5.2 RESULTS FOR 'RANDOM STRATEGY' ς 20 LAUNCHES ON GRAPHS FROM N=6 TO N=50 SUBTRACTED BY THE 

VALUE OF 
ἶ

 

 

What can be concluded is that for the smaller Î, the number of rounds was somewhere 

near the middle ï between the upper and lower bound. As Î was getting larger we can 

see that number of rounds was leaning towards the upper bound. That means that 

Avoider played the game better than Enforcer.  

It seemed like Enforcer was at its best in the games played on the graphs from ὲ ςπ to 

ὲ σπ because the curve is lowest there. Somewhere after ὲ σπ, all obtained values 

are closer to the upper bound in comparison to the lower one. That leaves us with a 

question of whether and how we can change Enforcerôs strategy to improve these results.  

In Figure 5.2 mode values were represented, but we also calculated mean and median. 

In Table 5.1 you can find precise values for the upper and lower bounds.  
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Number of 
vertices 

6 8 10 12 14 16 18 20 22 24 26 

Lower 

bound 
4.83 8.50 13.17 18.83 25.50 33.17 41.83 51.50 62.17 73.83 86.5 

Upper 

bound 
8.5 13 18.5 25 32.5 41 50.5 61 72.5 85 98.5 

Mean 7 11 16 21.95 28.6 36.65 45.6 55.65 66.25 78.48 91.1 

Mode 7 11 16 22 29 37 46 56 66 78 91 

Median 7 11 16 22 29 37 46 56 66 78 91 

 

28 30 32 34 36 38 40 42 44 46 48 50 

100.17 114.83 130.5 147.17 164.83 183.5 203.17 223.83 245.5 268.17 291.83 316.5 

113 128.5 145 162.5 181 200.5 221 242.5 265 288.5 313 338.5 

105.15 120.1 135.85 156.4 174.9 194.85 216.05 238.3 260.55 282.5 306.85 331.4 

105 120 135 156 176 193 215 240 265 283 307 328 

105 120 136 156.5 175 195 215.5 238.5 260 283 307 330.5 

TABLE 5.1 STATISTICAL MEASURES 

 

From the given data, we can conclude that mean, modus, and median are not very 

different from each other. In fact, in numerous cases, they are the same.  

At the end of this case, let us take a look at the plots in the following pages that are 

showing obtained results from done experiments for ὲ ρπ, ὲ σπ, and ὲ υπ.  
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FIGURE 5.3 OBTAINED RESULTS APPLYING THE RANDOM STRATEGY FOR N = 10 

 

 

FIGURE 5.4 OBTAINED RESULTS APPLYING THE RANDOM STRATEGY FOR N = 30 

 

 

FIGURE 5.5 OBTAINED RESULTS APPLYING THE RANDOM STRATEGY FOR N = 50 
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One more thing that would also be interesting to see and can be helpful later when 

comparing the strategies is how far the average number of rounds was from lower and 

how far from the upper bound. We wanted to get a percentage of the interval in which the 

obtained value is located. We have done that by calculating the value of this formula  

where ὒὋ stands for the length of the game presented as the number of rounds, ὒὄ for 

the lower bound, and Ὗὄ for the upper bound.  

 

Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 
28 38.83% 
30 38.54% 

32 36.90% 
34 60.22% 

36 62.27% 
38 66.76% 

40 72.24% 
42 77.50% 
44 77.18% 

46 70.49% 
48 70.94% 

50 67.73% 

 

TABLE 5.2 WHERE IN THE INTERVAL ARE OBTAINED RESULTS 

 

We can draw some conclusions by looking at the percentages in the table. The lower the 

percentage, the faster the Enforcer managed to win within the proven boundaries. The 

lowest percentage is σφȢωπϷ obtained for the graph with 32 vertices. Observing these 23 

values for different graph sizes, for this ó32-nodeô graph, the Enforcer achieved the fastest 

victory and played the best. The highest percentage was obtained for the ó42-nodeô graph 

with the value of χχȢυπϷ and that is the best result in favor of Avoider. The average 

number of rounds is located at υτȢτψϷ of the interval. The number of rounds was never 

too close to the lower bound. We wanted to change that by improving Enforcerôs strategy. 

Later in the paper, we will see if that was possible by comparing in detail obtained results. 

5.1.2 Experiments on larger graphs 

We saw how the number of rounds changed within the boundaries and how for the smaller 

graphs we got pretty similar values for every game that has been played, and for larger 

ones how these results differ one from another. The next idea was to make sure that 

these strategies work for the bigger graphs also ï the ones with a larger number of 

vertices. Previously it has also been seen that for larger graphs, the number of rounds 

Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 
6 59.09% 
8 55.56% 

10 53.13% 
12 50.54% 

14 44.29% 
16 44.47% 

18 43.46% 
20 43.68% 

22 39.52% 
24 41.34% 
26 38.33% 
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was closer to the upper bounds, but the largest graph had 50 vertices. So, we thought it 

might be interesting to see how these numbers will behave for even larger graphs. Games 

were simulated for every even graph from 50 vertices to 100 vertices. In Figure 5.6 we 

can see the results. The same ótrickô was used ï subtraction by the value of   to get a 

better visualization of the data. 

 

FIGURE 5.6 RESULTS FOR ΨwANDOM STRATEGYΩ - GRAPHS FROM N=50 TO N=100 SUBTRACTED BY THE VALUE OF 
ἶ

 

 

Firstly, we can see the curve is very close to the upper bound for almost every size of a 

graph starting from ὲ υπ and ending with ὲ ρππ. This is telling us that Avoiderôs 

strategy opposed to his opponent's strategy gives much better results. He was able to 

prolong the game almost to the maximum number of rounds in some cases.  
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To confirm what can be seen in Figure 5.6 just by looking at it, we created Table 5.3 which 

will tell us where in the interval obtained values are located. We used the same formula 

as before and obtained the following figures. 

  

Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 

76 100% 

78 68.81% 

80 73.91% 

82 90.09% 

84 77.88% 

86 66.22% 

88 52.42% 

90 80.60% 
92 77.22% 

94 59.09% 

96 78.14% 

98 53.57% 

100 60.31% 

 

TABLE 5.3 WHERE IN THE INTERVAL ARE OBTAINED VALUES 

From Table 5.3 we can see that almost all of the values are in the upper part of the interval 

(percentages greater than 50). The lowest is for the graph with 70 vertices with the value 

of τυȢφπϷ. And the greatest one is for the graph with 76 vertices where it is equated with 

the upper bound giving the result of ρππϷ. The average position of the game length is at 

χρȢπρϷ of the interval.  

5.1.3 Conclusions for óRandom strategyô 

By observing the results for graphs starting with ὲ φ and ending with ὲ υπ and 20 

launches for each value of ὲ, we can see that Avoiderôs strategy was better in some ways 

than Enforcerôs because, within the interval in which the game had to end, Avoider 

managed to prolong the game for a long time. The average number of rounds was at 

υτȢτψϷ of the interval which is somewhere in the middle, a bit closer to the upper bound.   

And if we move our attention to graphs with ὲ υπ to ὲ ρππ we can see that the 

average number of rounds was at χρȢπρϷ of the interval. We can conclude that for the 

larger graphs the curve is moving more and more to the upper bound which means that 

Enforcer was slower and slower in achieving the win. This is not an unexpected result, 

because if we recall the strategies, we can see that Avoiderôs strategy was more detailed 

and not one move was based on an arbitrary choice of an edge. On the other side, 

Enforcerôs strategy consisted of only one well-defined step. He followed only one rule and 

Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 
50 61.36% 

52 82.48% 

54 59.86% 

56 87.76% 

58 70.39% 

60 61.78% 

62 72.22% 

64 82.04% 

66 73.84% 

68 62.71% 

70 45.60% 

72 80.75% 

74 67.19% 
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if that was not possible, he would randomly choose an edge. These edges were marked 

as possible bad ones because they were probably going to ruin the strategy. This is a 

part of the game that seemed like it needs an improvement. Enforcerôs strategy must be 

defined in a more deterministic way in order to get better results. We were hoping that 

these improvements would shift the curve down. And so the next strategy called Twin 

was born. 

 

5.2 óTwin strategyô  

The first logical improvement of Enforcerôs strategy was to define and prioritize his moves 

in a way that will óspoilô the Avoiderôs strategy.  

This improvement was based on óblockingô those moves interesting to Avoider. Recall that 

Enforcer has the same primary goal in choosing an edge in each of these simulations. 

The other moves in this particular strategy that we named Twin are similar to Avoiderôs 

moves. By following these steps when choosing an edge, he might be able to finish the 

game earlier than before. New strategy for Enforcer follows: 

1. Claim an edge that connects two opposite sides of the bipartition of one of the 

Avoiderôs connected components.  

2. Claim an edge that connects two untouched vertices. (Just a reminder, he will need 

two more untouched vertices to put in a bi-bunch based on the rules for creating 

and manipulating with bi-bunches)  

3. Claim an edge that will connect two bi-bunches. 

4. If none of these options is possible, choose randomly. 

Now, looking at the two strategies, they are pretty similar. It seems like this could help 

Enforcer to win the game faster. Let us see the results of experiments done in the same 

way as for óRandom strategyô and try to compare them. The main question is: Was Avoider 

forced by Enforcer to claim an edge that will end the game sooner than before?  

5.2.1 Experiments 

After the done changes on Enforcerôs strategy, we would like to see whether these 

numbers of rounds are closer to the lower bounds. That would be a good indicator that 

we are on a right track. In Figure 5.7 we can see what we got by applying an improved 

strategy for Enforcer. The mode values were used, the same as for the Random strategy. 
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FIGURE 5.7 RESULTS FOR 'TWIN STRATEGY' ς 20 LAUNCHES ON GRAPHS FROM N=6 TO N=50 SUBTRACTED BY THE VALUE 

OF 
ἶ

 

 

By looking at Figure 5.7 we can see that the black curve that represents mode values for 

done experiments is somewhere in the middle of the interval. Even more, it is leaning 

towards the lower bound. If we compare it with Figure 5.2 we can definitely see that some 

improvements for Enforcer have been made.  

Based on this figure we can say that the curve, which represents mode values from our 

experiments, is shifted downward. And if we briefly recall the plots for Random strategy 

and the cases for Î values around 45 when the mode was almost equal to the upper 

bound and compare it to this case, we can conclude that it is drastically lower and much 

closer to the lower bound, which goes in favor of Enforcer, than before. 

It would be convenient to have a table with statistical measures for these experiments 

also to compare it with the first one. 
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Number of 
vertices 

6 8 10 12 14 16 18 20 22 24 26 

Lower 
bound 

4.83 8.50 13.17 18.83 25.50 33.17 41.83 51.50 62.17 73.83 86.5 

Upper 
bound 

8.5 13 18.5 25 32.5 41 50.5 61 72.5 85 98.5 

Mean 7.05 11 16.1 21.85 28.75 36.8 45.35 55.45 66.3 78.3 91.15 

Mode 7 11 16 22 29 37 45 55 66 78 91 

Median 7 11 16 22 29 37 45 55 66 78 91 

 

28 30 32 34 36 38 40 42 44 46 48 50 

100.17 114.83 130.5 147.17 164.83 183.5 203.17 223.83 245.5 268.17 291.83 316.5 

113 128.5 145 162.5 181 200.5 221 242.5 265 288.5 313 338.5 

105.05 119.55 134.45 154.9 172.8 192.6 213.65 234.65 256.6 278.85 304.7 328 

105 119 136 157 172 189 210 232 255 275 299 325 

105 119.5 135.5 155 172 192.5 213 233.5 255 278 303 328 

TABLE 5.4 STATISTICAL MEASURES FOR TWIN STRATEGY 

 

We can make some conclusions about these experiments, not comparing them with the 

previous ones. For smaller graphs, it can be concluded that the number of rounds for 

every played game is almost the same. On the other hand, for the bigger graphs, we can 

see that numbers are changing. Also, as for the previous strategy, mean, mode, and 

median are very similar, in a lot of cases they are equivalent. In the pages that follow you 

can find plots to get a better understanding of where these numbers are and how they 

are changing.  
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FIGURE 5.8 OBTAINED RESULTS APPLYING THE TWIN STRATEGY FOR N = 10  

 

 

FIGURE 5.9 OBTAINED RESULTS APPLYING THE TWIN STRATEGY FOR N = 30 

 

 

FIGURE 5.10 OBTAINED RESULTS APPLYING THE TWIN STRATEGY FOR N = 50 
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As we talked about it earlier, by calculating where within the interval obtained values are 

located and comparing them with the same results for other strategies, we can see the 

differences and how each change moves the number of rounds whether up or down the 

interval. In Table 5.5 we calculated the percentage of the interval in which the obtained 

values for every graph size are located. 

 

Number 

of 
vertices 

The percentage of the 

interval in which the 
obtained value is located 

28 38.05% 
30 34.51% 

32 34.14% 
34 50.43% 

36 49.28% 
38 53.53% 

40 58.79% 
42 57.95% 

44 56.92% 

46 52.54% 
48 60.79% 

50 52.27% 

 

TABLE 5.5 WHERE IN THE INTERVAL ARE OBTAINED RESULTS 

 

Some conclusions can be drawn from these results. Firstly, we can find the smallest value 

within this interval. That value is στȢρτϷ and it is obtained for the graphs of size 32. It is 

interesting to notice that for the Random strategy, the lower percentage was also obtained 

for the graphs of size 32. The highest percentage was obtained for the ô48-nodeô graph 

and that value was φπȢχωϷ. The highest value for the Random strategy was χχȢυπϷ. This 

can be an indicator that we are on the right track because we are moving the curve to the 

lower bound of the interval and that is what we wanted to achieve by introducing these 

improvements in Enforcerôs strategy. The average number of rounds is located at τψȢσψϷ 

on the interval. That is also an improvement, comparing it with the υτȢτψϷ obtained for 

the Random strategy.  

5.2.2 Experiments on larger graphs 

Based on the conclusion that more differences have been seen in the larger graphs after 

the changes on Enforcerôs strategy, we were curious to see if improvements are going to 

be more visible for even larger graphs. Let us start with Figure 5.11 to visualize the 

obtained figures.  

Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 
6 60.45% 

8 55.56% 
10 55.00% 

12 48.92% 
14 46.43% 
16 46.38% 

18 40.58% 
20 41.58% 

22 40.00% 
24 40.00% 

26 38.75% 
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FIGURE 5.11 RESULTS FOR Ψ¢WIN STRATEGYΩ - GRAPHS FROM N=50 TO N=100 SUBTRACTED BY THE VALUE OF 
ἶ

 

 

From Figure 5.11 we can notice that in some parts, we can see that the curve is leaning 

towards the lower bound and that was not the case in the Random strategy. Somewhere 

around ὲ χπ the curve is almost ógluedô to the upper bound and no improvement should 

be expected there, but for the values of Î close to 60 and also 90, it seems that some 

improvements were achieved. The best result was obtained for ὲ υφ and ὲ υψ and 

after that ὲ χτ. Pretty good results are also visible for ὲ ωπ, ὲ ως and ὲ ωτ. The 

whole curve is shifted towards the lower bound, for some values of n more, for some less, 

but in general, it is lower.  

The same as for the Random case, to confirm what can be seen in Figures 5.11 we 

created Table 5.6 which will tell us exactly where within the interval these obtained lengths 

of the games are located. 
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Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 

76 87.82% 

78 59.90% 

80 62.12% 

82 58.96% 
84 53.00% 

86 47.30% 

88 55.07% 

90 34.05% 

92 41.77% 

94 36.78% 

96 63.56% 

98 51.19% 
100 41.63% 

 

 TABLE 5.6 WHERE IN THE INTERVAL ARE OBTAINED RESULTS 

In Table 5.6 we can see that there is a lot more than one value located in the lower part 

of the interval as was the case with the Random strategy. The lowest percentage is 

obtained for the ô90-nodeô graph with the amazing result of στȢπυϷ. Just to compare, for 

the graph of the same dimension in the Random strategy, the length of the game was at 

ψπȢφπϷ of the interval. This is a great improvement. The average position of the game 

length is at υχȢτςϷ of the interval. 

5.2.3 Conclusions for óTwin strategyô 

After various analyzes regarding the Twin strategy, it can be concluded that it gives quite 

good results. By applying this strategy, Enforcer managed to match Avoiderôs brilliant 

strategy, which we know gives great results for him. Compared with the Random strategy, 

it gives much better results for Enforcer in the form of shortening the game i.e. the speed 

of his victory. Specific figures speak in favor of this and we see that in the case of 20 runs 

for graphs up to ὲ υπ the average position of the length of the game within the interval 

is at τψȢσψϷȢ In the case of graphs larger than 50 up to those with 100 vertices, this 

number is υχȢτςϷ which is a significant improvement in comparison with χρȢπρϷ 

obtained for the Random strategy. 

5.3 óThe smallestô  

For The smallest strategy we chose to do the following changes in Enforcerôs strategy: 

1. He tries to find and claim an edge that connects two opposite sides of the 

bipartition of one of the Avoiderôs connected components.  

2. He claims an edge whose vertex degrees give the smallest value when added 

together. 

Number 
of 

vertices 

The percentage of the 
interval in which the 

obtained value is located 

50 84.09% 

52 64.96% 

54 59.86% 

56 34.69% 

58 34.87% 
60 57.96% 

62 50.00% 

64 46.11% 

66 63.37% 

68 83.05% 

70 85.16% 

72 93.58% 

74 35.94% 
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This strategy is different from the others because this second option is always possible 

to achieve and also there is almost no random part as in the previous two. The only case 

where we have a random part is if there are several edges with the same sum after adding 

the degrees of their vertices.  

Firstly, we run 20 experiments for every value of Î, starting from 6 and ending with 50. 

We have chosen this approach because it would be easy to compare it with the previous 

two strategies. Figure 5.12 is showing the results of this strategy.  

FIGURE 5.12 RESULTS FOR 'THE SMALLEST' STRATEGY ς 20 LAUNCHES ON GRAPHS FROM N=6 TO N=50 SUBTRACTED 

BY THE VALUE OF 
ἶ

 

 

Simply by looking at Figure 5.12 we can say that the black curve, which shows the modes 

of obtained values, is somewhere in between those boundaries. For nôs smaller than 30 

the result is stable somewhere in the middle of the interval. After that, it starts to move in 

the wanted direction but not for long. It seems like it starts to move more to the upper part 
















