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Abstract

Positional games are often played on different types of graphs. They involve
two players whose goals oppose. The most popular game of this type is Tic-
Tac-Toe and its higher-dimensional generalizations. The game that is the focus
of this paper is called the Non-bipartite game, played on the complete graph.
Players are called Avoider and Enforcer. Their names say a lot about their
goals. Avoider is trying to avoid creating a non-bipartite subgraph while
Enforcer is trying to enforce Avoider to do exactly that. Our goal is to verify that
the game is going to be played within the proven boundaries and to see where
exactly is the duration of the game when both players stick to their optimal
strategies. Avoi der 6s st riradetailgbut fovBrdorcdr, ave lshveo u t
tried to make some improvements. In the future, it would be interesting to see
how the duration of the game fluctuates when we change the priorities of the
moves for each player. There is a lot of space for future investigation of this
particular game, but also in general of positional games.
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Introduction

Positional games are a type of combinatorial games, researching a variety of two-player
games to purely abstract games played on graphs and hypergraphs [5]. They can be
described as an alternate occupation of the previously unclaimed elements of a given set
@ that is called the board of the game. The focus of each player is a family "O
O g Pc¢ of finite subsets of & and we call them winning sets. This family is
sometimes called a hypergraph of the game. There are three possible outcomes of each
positional game: the first player has a winning strategy, the second one has it and both
players have drawing strategies. The focus of this thesis is the Avoider-Enforcer games.
In games of that type, we have two players. The first one is trying to avoid a graph property
whilst the second one is trying to force him to claim the edges that he wants to avoid. The
goal of Avoider is defined through a negation i he wins if he does not occupy any member
of the hypergraph-losing set [5]. Sometimes the victory of Enforcer is inevitable. In that
case, a new and more interesting question arises, in how many moves will he manage to
win? We measure the speed of victory in the number of moves (or sometimes rounds)
needed for that victory to happen. Fast winning strategies for Avoider-Enforcer Non-
bipartite game will be the main part of this paper. This game is played on a complete
graph where players alternately claim an edge following some strategies. Avoider loses
the game as soon as a graph made up of his previously claimed edges becomes non-
bipartite. On the other hand, Enforcer is trying to enforce Avoider to claim an edge that is
going to make his graph non-bipartite as early as possible during the game.

The main contribution of this work is the implementation of different strategies and
analysis of a different number of rounds required for Enforcer to win. It was known to us
from before the size of the interval within which the game must end. But in this thesis, it
is analyzed for the first time exactly where within it the values are and how we can maybe
move them closer to the desired part of the interval.

g a me
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1. Graph theory, preliminaries

1.1 Definition and representation of a graph

In the everyday world, we can find many relationships, structures, connections, etc. that
can be represented using some mathematical objects. If a structure consists of a set of
points that are usually named or marked in a way and if those points can be related
somehow with some sort of lines, we can use graphs to represent the wanted structure
and after that to do an interesting analysis on it.

For better understanding, let us start with an example. We can take a group of people
and represent each person as a point. The relationship between them can be represented
with a line. We have a line that connects two points if two persons know each other
otherwise there are no connections between them.

Introducing the graph theoretic notation and well-known statements, we follow [9]. A
graph "Ois usually defined as ordered pair & "OHO "O consisting of a set @ "O that is a
set of vertices also called nodes, and O "O that is a set of edges that are unordered pair
of vertices OO P afw Sahudi & 'O ¢ Qo w together with an incidence function [
which associates with each edge of "Oan unordered pair of vertices of "O

Two main parameters that can easily be calculated are the order and size of a graph.
Order is the number of vertices and usually is denoted by 0 "O and size is the number of

edges usually denoted by Q0.

Graphs can easily be represented graphically and that is why they are named like that.
Sometimes, it can be important to do the representation in a nice, clean way, because it
can be easier to notice some of the properties the graph has. Furthermore, the same
graph can be drawn in many different ways and you can find one example in Figure 1.1.

HGUREL.1 DIFFERENT DRAWINGSTEE SAME GRAPH

Terms incident and adjacent are often used. The edge is said to be incident with its end
vertices and the other way also holds. We use the term adjacent when we have two
vertices that are incident with a common edge and also when having two edges that are

2
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incident with a common vertex. Vertices are called neighbors if they are distinct and
adjacent. The neighborhood of a vertex 0 in graph "Ois a set of vertices that contains all
vertices adjacent to v.

An edge that starts and ends in the same vertex is called a loop and an edge with distinct
ends is called a link. If there are two links with the same pair of ends, then we have parallel
edges. A graph is simple if it has no loops or parallel edges.

1.2 Subgraphs and special families of graphs

Starting from graph "Q two common ways can be used to derive smaller graphs from "O
As one can assume, we can delete an edge or a vertex in some ways. Two operations
that can be helpful are edge deletion and vertex deletion. "O, Qis a graph obtained from
"Oby deleting the edge ‘Q Similarly, "Oz U is a graph obtained by deleting vertex U
together with all the edges incident with it. Using these operations, we can create
subgraphs.

Speaking in a more general way, a graph "Ois called a subgraph of a graph “Oif & "O P
®Oh0O™0O P 0"0,and[ is the restriction of[ to O "O8

HGUREL.2GRAPHy (ON THE LEFTSUBGRAPH OF THEGRAPHy (ON THE RIGHT

g a me
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A spanning subgraph of graph "Ois a subgraph obtained by edge deletions only. Another
way to define it is to say that a spanning subgraph is a subgraph whose vertex set is the
entire vertex set of "O If we define "Yto be the set of deleted edges, then this subgraph of
“Ois denoted by 'O Y

A complete graph is a simple graph in which any two vertices are adjacent. A regular
graph is a graph where each vertex has the same number of neighbors. A degree of a
vertex of a graph is the number of edges incident with that vertex. The complete graph
on ¢ vertices | usually denoted by 0 . It has & &€ p ¥q edges. It is a regular graph and
has a degree ¢ p. [7,9]

FGUREL.3EXAMPLES OF COMPLERAPHS WITH DIFFERENUMBER OF VERTICES

A graph is called bipartite if its vertex set can be partitioned into two subsets ®and @so
that every edge has one end in @and one end in & That kind of partition @ is called
a bipartition of the graph.

A cycle is a simple graph whose vertices can be arranged in a cyclic sequence in a way
that two vertices are adjacent if they are consecutive in the sequence. A cycle is consisted
of at least three vertices. The length of a cycle is the number of its edges, and we can
have odd and even cycles depending on their length.

A path is a simple graph whose vertices can be arranged in a linear sequence in such a
way that two vertices are adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise.

In graph theory, Turén's theorem bounds the number of edges that can be included in
an undirected graph that does not have a complete subgraph of a given size [22]. The
special case of Turan'stheoremi s Mant el 6s t heorem t hat

g a me

wi ||



Analysis of fast winning strategies in Avoider-En f o rNorelri fiar t i t e fi

Theorem 1.1 [{7Mia grapH "®an )< vertices contains no triangle then it

contains at most— edges.
1.3 Trees

A tree is a connected acyclic graph and an acyclic graph is one that contains no cycles.
Each component of an acyclic graph is a tree, these acyclic graphs are called forests. A
connected graph must contain at least one path between any two vertices. So, trees are
always connected, but we have exactly one path between any two vertices.

Any graph in which all degrees are at least two contains a cycle. From that, it can be
concluded that every tree contains a vertex of degree at most one and if the tree is
nontrivial, it must contain that one vertex, and it is called a leaf of the tree. In Figure 1.4
you can find a few examples of trees on six vertices.

HGUREL.4 THE TREES ON SIRRTICES

A subtree of a graph is a subgraph which is a tree [9]. If this tree is a spanning subgraph,
we call it a spanning tree.

Theorem 1.2: A graph is connected if and only if it has a spanning tree.
Proposition 1.3: In a tree, any two vertices are connected by exactly one path.
Theorem 1.4: A graph is bipartite if and only if it contains no odd cycle.

Proof:

Firstly, we can easily see that a graph is bipartite if and only if each of its components is
bipartite. Also, a graph contains an odd cycle if and only if one of its components contains
an odd cycle. This is what we will need in further proving.

t Let 'O be a connected bipartite graph. Then the vertices of any path in "Obelong
alternately to @ and to c All paths that are connecting vertices in different parts are of

5
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odd length and all paths connecting vertices in the same part are of even length. By the
definition of "Q each edge of "Ohas one end in wand one ned in & From that, we can
conclude that every cycle of "Ois of even length.

# Now, suppose that “Ois a connected graph without odd cycles. We will need Theorem
1.2 and Proposition 1.3 to complete the proof.

From Theorem 1.2 we can immediately conclude that "Ohas a spanning tree “Ybecause
it is connected. Now let wbe a vertex in “Y Because of Proposition 1.3, we know that any
vertex U of "Yis connected to wby a unique path in "Y Let & denote the set of vertices for
which this path is of even length, and set ®D @, & Then &hW is a bipartition of "Y'It is
left to prove that this is also a bipartition of "O

Let us consideranedge Q 6 Wf OO, O"Yandletd D 6 "Ybe the unique 6 U- path
in“YThe cycle 0  Qis even, so 0 mustbe odd. Therefore, the ends of 0, and hence the
ends of ‘Q belong to distinct parts. From here we can conclude that @ is a bipartition
of "0 I

1.4 Tree-search algorithms

The two most important and most used algorithms on graphs are BFS 1 Breadth-first
search and DFS i Depth-first search.

By graph traversal, it is meant visiting every vertex exactly once in a well-defined order.

1.4.1 BFS

Bondy and Murty dealt with and researched these algorithms in detail in their book [9].

BFS is a traversing algorithm that followst he rul e o6first com first s
starting from the root/source (arbitrary vertex) it takes into account all of its neighbors first

t hen moves along with visiting nei ghborséo ne
algorithm, vertices are kept in a queue. A queue is a list U that is updated when two

situations occur. The first update can be adding a new element always at the end (the tail

of the queue) and the second one is removing an element from the top (the head of the

gueue). Below you can find Algorithm 1.1 [9] together with a short illustration of how the

algorithm works on the graph with 8 vertices that are connected in a way on Figure 1.5.



Analysis of fast winning strategies in Avoider-En f o rNorelri fiar t i t e fi

// })

/
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HGUREL.5BFEXAMPLE

INPUT: A connected graph G
OUTPUT: Anr-tree T in G with predecessor function p, a level function 1
such that I(v) = de(r,v) forall v € V, and a time function t

1
2
3
4:
5
6
7
8

9.

:seti:=0andQ:= 0
:increment i by 1
: colour r black

setl(r):= 0and t(r) := i

:appendrto Q
: while Q is nonempty do

consider the head x of Q
if x has an uncoloured neighbour y then

1b:
11:
12:

13:

else

14:

15:
16: end while

end if

increment i by 1
colour y black

setp(y) := x I(y) :=1(x) + Land t(y) := i
append y to Q

remove x from Q

17: return (p, L t)

ALGORITHML.1BFSALGORITHM9]

g a me
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1.4.2 DFS

DFS is also a traversing algorithm but it follows another kind of rules than BFS. It can be
explained in the following way: it starts from the source/root vertex and goes as far as
possible through the branch before backtracking. It is a recursive algorithm because it
uses backtracking. We search for vertices by going ahead, if possible, else by
backtracking. This algorithm can be implemented by using a stack. A stack is a list "Yand
it may be updated in two ways 1 by adding a new element at the top or by removing an
element from its top. You can read more about this algorithm defined through steps [9].
In Figure 1.6 there is a simple example of how this algorithm works on a tree with 5
vertices.

/\ /"-\
@ > @

/’\' /\

\3» 14 \‘3» 14

HGUREL.6DFEXAMPLE
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INPUT: A connected graph G
OUTPUT: A rooted spanning tree of G with predecessor function p, and
two time functions f and |

:seti:=0andS:= 0

: choose any vertex r (as root)
:increment i by

: colour r black

csetf(r) =1

:addrtoS

: while S is nhonempty do

consider the top vertex x of S
increment i by 1

10: if x has an uncoloured neighbour y then
11: colour y black

12: setp(y) := x, f(y) =1
13: addytothetopof S
14: else

15: setl(x) :=i

16: remove x from S

17: end if

18: end while

19: return (p,£.1)

NP A WN =

ALGORITHML.2DFSALGORITHM9]

1.4.3 Bipartite graph and BFS algorithm

An interesting thing is that we can use the BFS algorithm to find out whether a graph is
bipartite or not. We already talked about checking if a graph contains an odd cycle, but
this is a different approach. By following these steps, we can determine the wanted
property. Two colors are needed, we will use red and blue for simplicity.

1) Assign a blue color to the source vertex.
2) Color all of its neighbors with red color.
3y Col or all nei ghborés neighbor with blue co
4) By repeating this process, assign a color to all the vertices in the graph.
5) While assigning, if we find neighbors that are of the same color, then the graph is
not bipartite, otherwise, it is.

The following Theorem 1.5 can also be useful to understand why we can use this
approach explained above.

Theorem 1.5: [16] Let "Obe a graph. Then G is 2-colorable if and only if "Ois bipartite.
Proof:

Proof of this theorem is pretty straightforward.
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t Let "Obe a 2-colorable graph. That simply means that we can color every vertex either
red or blue, and no edge will have both endpoints colored the same color. Let & denote
the subset of red vertices, and let &y denote the subset of blue vertices. Since all vertices
of are red, and all vertices of Wware blue, we can conclude that every edge has one
endpoint in @ and the other in & So, "Ois bipartite.

#h Now suppose that "Ois a bipartite graph. That means that we can partition the vertices
into two subsets ®and win a way that every edge has one end in &®and another in @ If
we color all the edges from @ in red and all the edges from & in blue, we will get a proper
coloring. Because two colors are used, we can say that "Ols 2-colorable. I

10
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2. Positional games, preliminaries
The term Opositional gamesd can be wrongly unct

Theory. Classical Game Theory is mostly based on the notions of uncertainty and lack of
perfect information. On the other hand, positional games are perfect information games
and because of that, they can be solved completely by an all-powerful computer.
Positional games are closer to the so-c al | ed A Combi natori al
games are based on algebraic arguments and various notions of decomposition [2].

Positional games are games that can be described as an alternate occupation of the
elements of a given set wthat is called the board of the game [2,19]. We assume that &
Is finite. Winning sets are the focus of each player, and they can be described as a family
O O gl Pc¢ offinite subsets of &, this family is sometimes called the hypergraph
of the game. [14] The outcomes of the game are i the first player wins / the second player
loses, the second player wins / the first player loses, or a draw. Each game scenario has
exactly one of the outcomes. There is no randomness involved in these games. The
outcome of each positional game is determined and speaking of the outcomes, combining
with the strategies, these are the only possible ones [2]:

1. the first player has a winning strategy,
2. the second player has a winning strategy,
3. both players have drawing strategies.

Knowing that a game is determined and finding its actual outcome are two very different
things. In principle, every game can be described by a tree of all possible plays, called
the game tree. There is a vertex for every sequence of allowed moves of both players,
including the empty sequence for the root of the game tree. Each sequence of moves is
connected by an edge to a sequence one move shorter. Leaves are the final positions of
the games. [2,12]

The most famous positional game is Tic-Tac-Toe in two dimensions. As we know, this
game is played by two players, alternately claiming one unoccupied cell from a 3-by-3
board. A player who completes a winning line first wins. We have eight winning lines,
three vertical lines, three horizontal lines, and two diagonals. If none of these lines are
claimed by neither one of the players, in that case, we have a draw.

2.1 Maker i Breaker games

Generally speaking, in every positional game both players are trying to do two things
simultaneously: try to occupy a complete winning set and prevent the other player from
occupying one for themselves. For many reasons, analyzing this approach is impractical
and very complex. Because of that, we focus on games where the second player (SP) is
not interested in occupying a winning set but achieving a draw, or basically, his strategy
is focused on preventing the first player (FP) to win. Additionally, FP can concentrate on
offense and completely forget about playing defense. By changing the strategies for both
players, we are simplifying the game.

11
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Definition 2.1: Let ®be afinite setand P ¢ a family of subsets. In a Maker-Breaker
game over the hypergraph &h
{ the set ®is called the board and the elements of P ¢ are the winning sets;
1 the players are called Maker and Breaker;
1 during a particular play, the players alternately occupy elements of &; as a default,
we set Maker to start (unless stated otherwise);

1 the winner is:
o0 Maker, if he occupies a winning set completely by the end of the game,
0 Breaker, if he occupies an element in every winning set.

2.2 Biased games

In many different Maker-Breaker games, Maker wins easily, so Chvéatal and Erdos [23]
were first to suggest that Breaker claims more than one edge per move in order to
increase his chance of winning.

Definition 2.2: Let f) and 1] be positive integers, let & be a finite set, and let P ¢ bea
family of subsets of @. The biased nd) Maker-Breaker game &I is the same as the
Maker-Breaker game I , except that Maker claims r) free board elements per move
and Breaker claims 1} free board elements per move. The integers 1 and r are referred
to as the bias of Maker and Breaker, respectively. In the last move of the game, if there
are fewer free board elements than his bias, a player claims every free board element.

2.3 Avoider 1T Enforcer games

Avoider i Enforcer games are in a way the opposite of Makeri Breaker games and that
Is why they are sometimes called Antimaker 1 Antibreaker games. As their name says,
we have two players, the first one is trying to avoid a graph property and the second one
IS trying to force him to claim the edges that he wants to avoid. The general setup is pretty
much the same as in other positional games that are already described, we have the
board & and the collection of winning sets, but in these games, we refer to that collection
as the collection of losing sets . Avoider is starting the game unless it is specified
differently. [2,5]

Let ) and 1} be positive integers and let  be any hypergraph. In a (fih ) biased Avoideri
Enforcer game two players take turns selecting previously unclaimed vertices of

Avoider selects exactly r) vertices per move and Enforcer selects exactly fj vertices per
move. If the number of unclaimed vertices is strictly less than ) (or ) before a move of
Avoider (or Enforcer, respectively), then he must claim all of the remaining free vertices
[3]. The game ends when all the elements of the board are claimed either by Avoider or
Enforcer. The goal of Avoider is defined through a negation, that is, he wins if he does
not occupy any member of the hypergraphi losing set [5]. Enforcer wins if Avoider claims
a whole set from the collection of losing sets. We can have a biased and unbiased version

of this game. A biased game is more gener al a
chances to win. An unbiased version is one where 1) and 1] are equal to 1. [2,3,5]

12
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The most popular game of this type isthe so-c al | ed &6Si mbé. The game i
complete graph with 6 vertices. In every move, each player is coloring an edge in one

color, for simplicity, we can say that Avoider is coloring in red, and Enforcer in blue. Losing

sets are all triangles. If Avoider had created a red triangle by coloring edges, he had lost,

otherwise, he is a winner.

2.4 Fast winning strategies

Both Maker-Breaker and Avoider-Enforcer games can be analyzed in order to create
strategies that will take one or the other player towards the win. Another interesting
guestion that we can ask is how long will it take for a player to win rather than who is
going to win. [13]

2.4.1 Fast winning in Maker-Breaker games

Our focus here is on the unbiased games played by two players that are taking turns in
selecting edges of a complete graph. For quite a few Makeri Breaker games, it is rather
easy to determine the identity of the winner [11]. For example, Maker wins very easily in
the connectivity game [6]. In that particular game, his goal is to claim a connected and
spanning subgraph. Another good example is the Non-planarity game [4,15] with&€ p p
where his goal is to create a non-planar graph. The maker will definitely manage to claim
such edges that will create a non-planar graph irregardless of his strategy because it is
known that every graph with more than o€ @ edges on ¢ vertices is non-planar. In
these and similar games, the most significant

2.4.2 Fast winning in Avoider-Enforcer games

Fast winning strategies for Avoider-Enforcer games will be the main part of this paper,
particularly for the Non-bipartite game. Several well-studied positional games are an easy
win for Enforcer. The previously mentioned non-planarity game can also be a good
example of this. These strategies for the fast win in the non-planarity game are described
in detail in [1] and later in this paper, we will be dealing with strategies for the Non-bipartite
game. It is known that Enforcer will eventually win, but the interesting part is how long will
Avoider manage to avoid losing.

13
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3. Fast winning strategies Iin Avoider-
Enforcer games

As it was mentioned previously, one player has a strategy for winning. In case we know
the winner we are moving to the question of how fast that player can win. We will assume
that we have a complete graph 0 , the game is played on its edges O 0 and that the
game is unbiased unless it is said otherwise.

For a hypergraph , T is said to be the smallest integer osuch that Enforcer has a
strategy to win the game on  within dmoves. If Avoider wins, we say that 1 H. We
are interested in determining the value t . Let us assume that the set of hyperedges
of is a monotone increasing family. If the assumption is not correct, we can always
extend it to an increasing family by adding all the supersets of its elements. [1]

Definition 3.1: The extremal number of the hypergraph is defined by the following
equation:

Qe GoO@sbd P e O
Theorem 3.2: [1] Giving a monotone increasing family of hyperedges, we have
-Qw p T Qw p.
Proof:

We have two bounds for T , the upper and the lower one. First, let us prove the lower
bound. Let Avoider fix an arbitrary 6 P @  before the game starts in a way that ¢ is an
edge of and s ‘Qw 8During the game, Avoider claims only the elements of 6 as
long as possible. By doing that, he will be able to claim at least half of the elements of 6
without losing.

Enforcer will surely win after Q @ p rounds, no matter what his strategy is. At that
point, Avoider has claimed Q w p vertices and a set with that many vertices must be
an edge of , because of the way that Q@ was defined. That is how we got the upper
bound. I

3.1 Non-bipartite game

We now take a closer look at the Non-bipartite game. As it was mentioned, this game is
played on a complete graph where players alternately claim an edge following its strategy.
Avoider loses the game as soon as his graph becomes non-bipartite. As its nhame says,
Enforcer is trying to enforce the Avoider to claim an edge that is going to make his
subgraph non-bipartite. Enforcer will eventually win the game, but the interesting question
is T how many moves will be necessary for Enforcer to achieve his goals.

14
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Theorem 1.4 can be very helpful. That theorem equates this game with the game in which
Enforcer aims to make sure that Avoider creates an odd cycle by claiming the edges in
every round and Avoider is trying not to claim it. From Theorem 1.4, we know that if a
graph contains an odd cycle it cannot be bipartite.

Now, let us denote by 0 6 the hypergraph whose hyperedges are the edge-sets of all
non-bipartite graphs on € vertices.

From Theorem 3.2 and Theorem 1.1 we can conclude the following:
-— p 1T 06 — P

It turns out that both upper and lower bounds can be improved.
Theorem 3.3: [9]

t ooes  — —& .

As it was already proven byHe f et z Kr i vel, and Szaltd in [1]Sweaanaydt o v i |
more accurate boundaries than one stated in Theorem 3.3. Let us denote by T the number

of rounds needed f or Enf or coe-biparste gamer This meahshttet afier

exactly 1 rounds, Avoider will claim an edge that will create an odd cycle together with his
previously claimed edges.

Theorem 3.4:

Proof:
Upper bound - forcing an odd cycle fast

Enforcerdés strategy is based on claiming the
Avoider to choose are going to make Avoi der 0 s -bigartte.eph non

His strategy should force Avoider to claim the edges of an odd cycle, and by doing that

to lose the game, during the first — - p moves. Each connected component of

Avoi der s graph in every stage of tdase,thgrame i s
the whole graph would not be bipartite and Avoider would have already lost.

I n every move, Enforceroés primary goal i's to
sides of the bipartition of one of the connec
not possible and no such edge i s OHeedgeetidat t hen |
has been chosen arbitrarily is marked as O6pos:s

Avoider cannot play inside any of his connected components, because by doing that he

15
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would create an odd cycle. So, he is forced to merge two of his components. We know
that the game starts with T connected components (each vertex is one component
because no edge has been claimed), this situation of merging two components can occur
at moste z p times.

Therefore, when it comesto the move where Avoider is not able to claim any edge without
creating an odd cycle, his graph is of course
compatible with that bi partition of Avoideros

6possibly bado. chimededgesttoathis paintisndh mast—o f¢ p. The

total number of the claimed edges is obtained based on Theorem 1.1 which says that if a
graph on ¢ vertices does not contain a triangle, which is an odd cycle of length 3, then it

contains at most — edges, together with the knowledge of how many times merging of
connected components can happen which is ¢ p. So because of that the total number
of moves Avoider has played in the entire game is at most— - p.

Lower bound - avoiding odd cycles for long

The strategy that will be explained below is a strategy for Avoider to keep his graph

bipartite for at least — —— rounds. For technical reasons let us assume that ¢ is even.

The idea is for Avoider to maintain a family of ordered pairs whw , where @, P V(0 ),
@, ®="and s WS The ordered pair that satisfies the condltlons stated above is
called a bi-bunch. Two bi-bunches @who and @ hd are disjoint if @ ° © W'
(%) n8A vertex is called untouched if it does not belong to any bi-bunch and all the
edges incident with it are unclaimed. These terms have been introduced because, during
the game, we will maintain a partition of the vertex set w 0 into several pairwise disjoint
bi-bunches, and a set of untouched vertices.

Before the game starts, we have 1 untouched vertices and no bi-bunc hes . Avoi de
strategy is defined in the following way:

The primary goal is to claim an edge across some existing bi-bunch, in other words, an
edge ofw where ®N @ and N  for some bi-bunch (®,®). If no such edge is
available, then he will try to claim an edge &fw where @and U are untouched vertices. In
that case, a new bi-bunch must be created, so we will have & h & . If neither of that
is possible, he will claim an edge connecting two existing bi-bunches, that is, ¢ such
that there exist whd and who with @Y @ and WM ®. In this step, he needs to
replace two existing bi-bunches with a single new one @ whw * .

Some changes must be done on bi-bunches, depending on the edge that has been
claimed by Enforcer. When claimed edge ahw is suchthat neither x nor y belongs to any

bi-bunch, a new bi-bunch is introduced cdahwhoh , where 6 and U are arbitrary
untouched vertices. If there are no two untouched vertices (that can happen only once in
the game) then the new bi-bunch is wh w . If Enforcer claims an edge (ahw) such that

16
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N  for some bi-bunch @hod and Uis untouched, then we need to update the bi-
bunch or, in other words, replace the existing one with & * @ho © 6 , where Ois
an arbitrary untouched vertex. The next option is that the edge fw claimed by the
Enforcer is such that there are bi-bunches & ,®) and @y with ®N @, ON @. Then,
these two bi-bunches are replaced with a single new one ®* who * @ . Notice that
Avoi der 6s gr aph vdgelwith botlo éndpaints nirt tleei same aide ofea bi-
bunch if we follow everything described above. Also note that if Enforcer claims an edge
alw , such that before that move one of the vertices was untouched, then that edge will
be contained in the same side of some bi-bunch.

Assume that Avoider claims an edge o such that before that move wwas untouched.

Then Umust also be untouched and there are no unclaimed edges across a bi-bunch at

that point because of the Avoiderds strategy.
to claim an edge across a bi-bunch and because of all that, the edge he will claim will

have both endpoints in the same side of some bi-bunch. We can conclude that after every

round in which one or both players claim an edge that is incident with an untouched vertex

(that is not the next to last untouched vertex), the edge claimed by the Enforcer will be

contained in the same side of some bi-bunch.

By the bi-bunch maintenance rules explained throughout the proof, during every round
the number of untouched vertices is decreased by at most 6. Therefore, by the time all

but two vertices are not untouched atleast — E n f or ¢ e r Wilsbe eodtajnedson the

same side of a bi-bunch. Consequently, when Avoider must claim an edge that will create
an odd cycle, both players have claimed together all the edges of a balanced bipartite

graph that complies with the bi-bunch bipartition, and at least another — edges. Putting

all of this together we get a total of at least -t- — edges claimed so at least — —

rounds were played.

Now, let us go through one example of how this game can be played according to the
above described strategies of Avoider and Enforcer. We will take a complete graph on 6
vertices.| n Figure 2.1 Avoidero6és edg®aretl®eredonéshe bl ue
In his first move, Avoider claimsthe edge plt and we marked it as blue. We immediately
create a bi-bunch p h¢ . Enforcer claims oft and we marked it as red. After that
move, a new bi-bunch is created oft hmiv , and the first round is finished. In the next
one, Avoider claims and that move does not require any changes on any element
of the list of bi-bunches. Enforcer claims pfo and after that move, we are merging the
bi-bunches and now we have one bi-bunch ploft h ¢ltv . Further, Avoider chooses
. In every move, his primary goal is to claim an edge that connects two opposite
sides of a bi-bunch. Enforcer claims pft . The following move of Avoider is claiming
and of Enforcer the claimed edge is miw . Then, by following their strategies, Avoider
chooses and Enf or c e rmd sTherehvere mo ehamges on the bi-bunch list

17
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after these three moves. Avoider now claims plv and Enforcer follows with claiming

olv . These moves also do not require any changes on bi-bunches. And after all these

rounds the only edge possible for Avoider to choose is 7it and Enforcer follows with

clv . Now, let us take a look at the bottom right graph in Figure 2.1. Only three edges

are not <c¢laimed at this point. |t i's Avoidero
blue subgraph will stop being bipartite or in other words, he will create a cycle of odd

length. By doing that, he loses the game. So, in this particular example, Avoider manages

to keep his graph bipartite for 6 rounds, and in the 7t round, he will claim an edge that is

going to end the game. If we calculate the upper and lower bound we will get 4.83 for the

lower one and 8.5 for the upper one and obtained result, in this case, was 6.

FHGURE3.1 NON-BIPARTITE GAME ONETEOMPLETE GRAPHMGNVERTICES

32l mproving Enforcero6s strategy

Based on the description of the strategies of both players, it can be concluded that
Avoi der 6s strategy i S completely determinist
strategy, there is an arbitrary part that leaves room for potential improvement.

A

Enfor cer 6s st r at eowynd daes netaantain nmaoy stems| His primary goal

i's to claim an edge that connects two opposit
Every connected ¢ ompapmie adeparaté bipArtitioni @he codlesfor g

that part is explained in Algorithm 4.2. If he is unable to do that, he simply chooses an

arbitrary edge. The main idea was to replace the arbitrary step with well-defined steps

that will potentially improve his strategy and give him a faster win.

After a thorough analysis of potent i a | changes in Enforcerds wa:
to compare two different approaches to defining his strategy. The first one is named
60Random strategy®é and the second O6Twin strate
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only two possible choices. If it is possible, he will claim an edge that connects two opposite

sides of the bipartition of one of the Avoid
explained in the proof of Theorem 3.4. If that kind of edge does not exist, he is going to

claim a randomly chosen edge. Because of this random part, every time the game is

simulated it is possible to get a different result. The second strategy called the Twin

strategy consists of three parts. First is always the same, soit has been already explained.

The second and the third options are making a o0
Enforcer to claim the edges that Avoider has an intention to claim in his future moves. So,

the second option for him is to claim an edge that is consisted of two untouched vertices.

But, following his strategy for creating or altering bi-bunch, we need two more edges that

are also untouched to put in a bi-bunch created at that point. If this move is not possible

also, he will try to find an edge that connects two bi-bunches. By doing so, alterations

must be done on bi-bunches i they should be merged oppositely of merging when

Avoider claims that kind of edge. If neither of these options is possible, he again claims

an edge by random choice.

After comparing these two types of strategies, one more idea came to life. We wanted to
remove the random part completely, so after the first possible choice for Enforcer, which
is already explained many times, the second option was to claim an edge whose vertex
degrees give the smallest value when added together. Degree refers to a subgraph of
claimed edges by that point. We call ed this strategy O0The s mal
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4. Implementation of strategies

4.1 PlayersoOstrategies

After a thorough analysis of game setting and strategies for each player, the next step
was to implement them. The focus was on the question of how fast a player can win.
Enforcer has a sure victory, but how fast he can achieve it? We were interested in seeing
how the number of rounds will change within the proven boundaries. As it was described
and explained in the proof of Theorem 3.4, each player has predefined ways of choosing
an edge in every round. Strategy for Avoider is completely deterministic, but for Enforcer,
it is not as in some parts we have more than one option for the following move. Later, we
will see how and does the results can be improved if we try to upgrade his strategy.

The strategy of each player consists of different possible moves defined by priority.
Therefore, i n t he itbatoh isasfokowsdé s case, the s

He will try to claim an edge which will connect two opposite sides of the bipartition of
one of the Avoiderd6s connected compone
Sometimes he will be unable to do that. In those cases he will claim an arbitrary edge.

For Avoider, the situation is a little different. He has three possible moves defined by
priorities and in every round, he will claim an edge by following one of these rules. When
the moment comes that none of these moves are possible, at that time he is forced to
choose the edge for which he will lose the game. His strategy can be explained in the
following way:

His first choice, if possible, is to claim an edge across some existing bi-bunch. If that
kind of edge is not free (all edges of that type are already claimed) or does not exist
(e.g. in the first move it will not) then he will try to claim an edge whose vertices are
untouched by that point. If neither of that is possible, he will claim an edge connecting
two existing bi-bunches.
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4.2 Python

The whole code was done in Python. Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. It has a simple syntax and his programs
are clear and easy to read. It supports both procedural and object-oriented programming.
Python supports modules and packages, which can be very helpful if you need reuse.
[8,21]

Packages that were used the most in the programming process were described in the
following paragraphs:

1. Numpy

NumPy stands for Numerical Python. It is the fundamental package for scientific
computing and it is mostly used for working with arrays. Lists are slaw to process so
NumPy gives as an array object that is up to 50 times faster than lists in Python. Many
other packages are also built on top of this one.

2. Matplotlib

Matplotlib is a library used for visualization in Python. It is used for creating plots,
histograms, bar charts, scatterplots, etc.

3. NetworkX

NetworkX is a library that is used the mostin the programming of the game that we talked
about earlier. It is a library for studying graphs and networks. NetworkX is a Python
package for the creation, manipulation, and study of complex networks.

We want to use data as effectively as possible, so that is why is important to store it
properly. Data structures can be classified in several ways and you can see this
classification in Figure 4.1.

Using classes when coding was very useful because they are a way to define new sorts
of stuff not previously used and implemented by other users.
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4.2.1 Gamesimulation code

For the beginning, let us briefly recallthegameand pl ay er sthatars suppasede gi e s

to be implemented. The game is played on a complete graph on nvertices. Many different

values of n were used. We have two opposing sides i Avoider and Enforcer. The game

is played until Avoider claims an edge that is going to make his graph non-bipartite. Each

player has its strategy. Avoider is trying to play as long as possible without compromising

the bipartite property of his graph. On the other hand, Enforcer is trying to force the

Avoider to claim exactly that kind of edge that is going to make his graph non-bipartite.

The focus of our experiment was to see how fast Enforcer can win. The main question is

how many rounds are going to passuntiwe get to the point where Av
from all the remained edges is going to make his graph non-bipartite.

As we explained earlier in the paper, three different strategies for Enforcer have been
implemented and analyzed. In accordance with these changes, it was necessary to adjust
and change the code itself. However, some pieces of the code remained the same in
each of the strategies and the way the data is stored has not changed.

For graph representation, NetworkX was used. The Non-bipartite game is always played
on a complete graph. In addition to constructing graphs node by node or edge by edge,
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they can also be generated using a constructive generator. In our case, we use generator
AT I BDICOGD E where 1 represents the number of vertices. Every edge was
represented as a tuple with two elements. Throughout the whole game, it is necessary to
follow unclaimed i.e. free edges as well as those previously claimed by each player. All
of these were stored in different lists. We also developed a new class that we needed to
store and manipulate objects called bi-bunches. The class consists of two lists that have
no common elements and also have the same number of elements from the beginning
until the end of the game. After creating this class, we also needed a list of all the bi-
bunches created during the game.

To begin with, we needed a function that i's going to tell grmagh
is bipartite or not. More details can be found in [10]. We proved earlier that this is
equivalent to whether a graph contains no odd cycles. For the purpose of implementation,
things written in [20] were very helpful. A round starts if the condition is satisfied, if it is
not satisfied the game ends at that point. Pseudocode for the function that checks if a
graph is bipartite follows under Algorithm 4.1.

INPUT: Graph G

OUTPEUT: Boclean walue - True if the given graph is bipartite, False
ctherwise
1. v = {} -» dicticnary where key is node index and walue iz in which

step the ncode was visited
2. Blgo = []
3. FOR node in the list of nodes=:

4., IF node not in V:

9. put in &lgo (node, 0)

B. WHILE ({there are elements in RAlgc):

7. remove the first item from the list Rlgo

8. r = removed item

g. IF r[0] im V:

10. IF (r[l] - V[r]) % 2 == 1 -» if this is trus than a node
has been revisited and we
have a cycle

11. EETUEN False

12. ELSE:

13. V[c[0]] = r[l]

14. FOR mode in lizt of nodes connected with removed neode:

15. put in Algc (node, x[1]+1)

1&. RETUEN True

ALGORITHML. 1 FUNCTION THAT ANSWERSE QUESTION OF WHER A GRAPH IS BRTNE OR NOT
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Avoi der6s strategy is always the same. -He wan
bunch. So, the first thing is to check whether a list with all the bi-bunches is empty or

contains some elements. If it is not empty, we create all possible edges from existing bi-

bunches and find one that is not claimed previously i if such edge exists. To create these

edges, we wrote a function that is combining the elements from the two sets of a particular

bi-bunch. Otherwise, if there is no matching edge or the list with bi-bunches is empty, the

next step is to find two untouched vertices and to claim an edge incident with them. A

vertex is untouched if it does not belong to any bi-bunch and all the edges incident with it

are unclaimed. For checking whether a vertex is untouched, we also created a function

that returns a Boolean value. If none of these two options were available, then we were

checking if there are at least two bi-bunches and also whether there is at least one

unclaimed edge that can connect two different bi-bunches. This pretty much summarizes

the whole of Avoiderds strategy. 't is I mport:
it was necessary to make some changes to the existing bi-bunches or to create a new

one. For that purpose, we created a few functions that merge the bi-bunches in a way

defined in the proof of Theorem 3.4.

Let us now move on to Enf or c e rrdiegiessépreaentedgi e s . I
his primary goal is the same. To recall, he needs to find an edge that connects two
opposite sides of the bipartition of Wene of
created the function that returns a Boolean value that answers the question of whether

such edges exist together with a list of all the edges that satisfy the condition. In Algorithm

4.2 we created pseudocode for the solution of this step in the strategy.

In Random strategy, if he was unable to claim such edge described in the previous

paragraph, he will randomly choose one. For that, we used the choice() method that

returns a randomly selected element from the specified sequence. That sequence in our

case was a list of all unclaimed edges by that point. Changes on the bi-bunches had to

be made depending on which edge was chosen. If the chosen edge is such that neither

of its vertices belongs to any bi-bunch, a new bi-bunch was created and in that case, we

also needed two untouched vertices to put in that bunch. To check these two things, we

have defined functions. The first one that is answering the question of whether the chosen

edge does not belong toany bi-bunch s called o6freeb. And t h
stands for exist 2 untouched. Next, if Enforcer claims an edge such that one of its vertices

belongs tosomebi-bunch and the other one is untouched,
In that case, some alterations are done on the existing bi-bunch from which the mentioned

vertex is. And the last case is that both vertices of the edge belong to some bi-bunch.

That edge we named 6éoccupiedd.

In the Twin strategy, we used similar functio
And for The smallest strategy, instead of the A E | Ermebhod, we introduce a function
t hat we named O6ésmallestd that i's returning t

smallest value when added together. This degree refers to a subgraph of claimed edges.
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INPUT: Graph G
QUTPUT: Boolean value - True if there exists at least one edge that
satisfies the condition (False otherwise)

D =] & N W b

e e e el e
(SRR N NS U SRS

19.
20.
21.

22.
23.
24,
25.
Ze.
27.

together with a list of all the edges that satisfy the condition
colors_of nodes = {}
colors = [‘red’,'blue’]
DEF coloring (node, color):
FOR. neighbor IN the list of neighbors of G:
color of neighbor = colors of nodes.get(neighbor, None)
IF color of neighbor == color:
REUTURN False
RETUERN True
DEF get_color for node (node) :
FOR color IN colors:
IF coloring(node, color) :
REUTEN color
FCOR node IN list of nodes in a DFS pre-ordering starting at source:

colors of nodes[node] = get color for node (node)
result = False
good edges = []
con_Eom = connected components of G
FOR i IN range (len(con_com) ) :

component = con coml[i]

FOR Jj in range(i+l, len (component)):
IF (colors_of_nodes[component[i] =="'red' AND
colors_of_nodes[component[j]]=='blue'

AND compconent[i], component[]j] NOT in list of edges of
G (or the opposite case of colors):
result = Trus
in list good edges put (component[i],component[]j])
IF (result):
RETURN (result,good sdges)
ELSE:
RETURN (result, 'edges don't exist')

ALGORITHM}. 2 FUNCTION THAT ANSWERSE QUESTION OF WHER THE PRIMARYFSTE ENBRCE® STRATEGY

CAN BE DONE
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5. Results

We have dealt with the analysis of this Non-bipartite game and within this chapter, we will
talk about the results obtained in many different experiments. We are opposing strategies
used to obtain these two theoretical limitations defined and proven in Theorem 3.4. We
observe the duration of the game. The duration of the game is presented as the number
of rounds required for Enforcer to win. The number of rounds if we follow the strategies

explained before, should be at least — — and not morethan — - p where 1 is the
number of vertices. Avoi der 6s strategy 1is wunique and unc
the other hand, trying to enhance Enforcer és i

After implementing these strategies and running many experiments, obtained results are
presented in the following chapters.

5.6 Random strategyé6

The first strategy that we are going to analyze is the Random strategy. The first few
experiments were done by following the steps defined below. Numbering indicates the
priority in selecting an edge. The players will always try to make the first move defined in
their strategies. If they are not able to do that, they will move to the next option and so
on.

AVOl DERGS STRATEGY:

1. Claim an edge across an existing bi-bunch.
2. Claim an edge that will join two untouched vertices.
3. Clam an edge that will connect two bi-bunches.

ENFORCEROS STRATEGY:

1. Claim an edge that connects two opposite sides of the bipartition of one of the
Avoi derds connected components.
2. Randomly choose and claim an edge.

5.1.1 Experiments

These experiments were done on the complete graphs starting from the graph with 6
vertices and ending with the graph that contains 50 vertices, but only on the even ones.
For every number of vertices, the experiment was run 20 times. The mostimportant thing
was to calculate the upper and lower bound for each number of vertices and to follow the
number of rounds for every played game and how it is changed within the boundaries. In
other words, the idea was to see what result the opposing strategies of these two players
give.

Some general observations can be done on the obtained data. Firstly, we can tell that all
the obtained numbers are between boundaries and that is something that was expected.
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Secondly, it can be seen that for the smaller graphs number of rounds are almost the
same in every experiment. For example, for the graph with 6 vertices, the number of
rounds was always 7. As the graph was getting larger, the number of rounds started to
change more drastically.

Some statistical measures were needed. Mean, mode and, median were calculated.

1 Mean refers to the arithmetic mean i the sum of numbers divided by how many
numbers are being summed.

1 Mode od modus gives us the most frequently occurring or repetitive value in a
range of given data.

1 Median represents the value that separates the set and divides it into lover and
higher half. It is a number in the middle of the ordered set of values.

For better visualization of the statistical measures and how they are different one from
another, look at Figure 5.1.

50% | 50%

| |
mode median mean

HGURES. 1 STATISTICAL MEASURES]

Now, let us take a look at Figure 5.2 to see our results. As it was already mentioned, for
every graph size 20 games were played on it. We took the mode values to represent them

on the plot. In Figure 5.2 in both the upper and lower bound and results we subtracted —

in order to emphasize differences between the values in the second-order term. Later in
the paper, this way of presenting the results was always used for a clearer picture of the
differences in results for different strategies.
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Random strategy

- lower bound
=== obtained values
= upper bound
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VALUE OF

What can be concluded is that for the smaller T, the number of rounds was somewhere
near the middle i between the upper and lower bound. As T was getting larger we can
see that number of rounds was leaning towards the upper bound. That means that
Avoider played the game better than Enforcer.

It seemed like Enforcer was at its best in the games played on the graphs from ¢ ¢ 1to
¢ o Tbecause the curve is lowest there. Somewhere after ¢ ¢ 7tall obtained values
are closer to the upper bound in comparison to the lower one. That leaves us with a
guestion of whether and how we cosetheseheaulisge Enf c

In Figure 5.2 mode values were represented, but we also calculated mean and median.
In Table 5.1 you can find precise values for the upper and lower bounds.
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Lower 483 | 850 | 13.17 @ 1883 | 2550 | 33.17 @ 41.83 | 5150 | 62.17 | 73.83 @ 865
bound
Upper 85 | 13 | 185 25 32,5 41 50.5 61 72,5 85 98.5
bound
Mean 7 11 16 | 2195 | 286 @ 3665 456 | 5565 66.25 @ 7848 & 91.1
Mode 7 11 16 22 29 37 46 56 66 78 91
Median 7 11 16 22 29 37 46 56 66 78 91

100.17 | 114.83 | 130.5 | 147.17 @ 164.83 183.5 | 203.17 @ 223.83 | 245.5 268.17 | 291.83 | 316.5
113 1285 145 162.5 181 200.5 221 242.5 265 288.5 313 338.5
105.15 120.1 | 135.85 | 156.4 174.9 194.85 | 216.05 @ 238.3 | 260.55 282.5 306.85 | 331.4
105 120 135 156 176 193 215 240 265 283 307 328

105 120 136 156.5 175 195 215.5 238.5 260 283 307 330.5

TABLES.1 STATISTICAL MEASURES

From the given data, we can conclude that mean, modus, and median are not very
different from each other. In fact, in numerous cases, they are the same.

At the end of this case, let us take a look at the plots in the following pages that are
showing obtained results from done experiments foré p 7€ ofandé v T
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One more thing that would also be interesting to see and can be helpful later when
comparing the strategies is how far the average number of rounds was from lower and
how far from the upper bound. We wanted to get a percentage of the interval in which the

obtained value is located. We have done that by calculating the value of this formula

where 0 "®tands for the length of the game presented as the number of rounds, O &for
the lower bound, and "Y¢&for the upper bound.

Number The percentage ofthe Number The percentage ofthe

of interval in which the of interval in which the
vertices obtained valueis located vertices obtained value is located

6 59.09% 28 38.83%

8 55.56% 30 38.54%

10 53.13% 32 36.90%

12 50.54% 34 60.22%

14 44.29% 36 62.27%

16 44 .47% 38 66.76%

18 43.46% 40 72.24%

20 43.68% 42 77.50%

22 39.52% 44 77.18%

24 41.34% 46 70.49%

26 38.33% 48 70.94%

50 67.73%

TABLES.2 WHERE IN THE INTERVARE OBTAIED RESULTS

We can draw some conclusions by looking at the percentages in the table. The lower the
percentage, the faster the Enforcer managed to win within the proven boundaries. The
lowest percentage is o @v 11 Fobtained for the graph with 32 vertices. Observing these 23
values for different graphsizes, f or-no thée &8 @ B a&fpréer achievea theHastest

g a me

victory and played thebestt The highest percentagedwéds golapai

with the value of x ® 1 kand that is the best result in favor of Avoider. The average
number of rounds is located at v 8 ( lf the interval. The number of rounds was never
too close to the | ower bound. We want ed

Later in the paper, we will see if that was possible by comparing in detail obtained results.

5.1.2 Experiments on larger graphs

We saw how the number of rounds changed within the boundaries and how for the smaller
graphs we got pretty similar values for every game that has been played, and for larger
ones how these results differ one from another. The next idea was to make sure that
these strategies work for the bigger graphs also i the ones with a larger number of
vertices. Previously it has also been seen that for larger graphs, the number of rounds
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was closer to the upper bounds, but the largest graph had 50 vertices. So, we thought it
might be interesting to see how these numbers will behave for even larger graphs. Games
were simulated for every even graph from 50 vertices to 100 vertices. In Figure 5.6 we

cansee the results. Thé& subtractoa bydthe value &f 6—torgetsa u s e d
better visualization of the data.

Random strategy

- lower bound
50 { === obtained values
= upper bound

40 4

w
o
L

Number of played rounds

N
o
L

10 A

50 60 70 80 90 100
Number of vertices

FGURES.6 RESULTS FORAWDOM STRATEGYGRAPHS FROME80TO N=100SUBTRACTED BY THIEWROF—

Firstly, we can see the curve is very close to the upper bound for almost every size of a

graph starting from ¢ v mand ending withe¢ pmm Thi s is telling us
strategy opposed to his opponent's strategy gives much better results. He was able to

prolong the game almost to the maximum number of rounds in some cases.
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To confirm what can be seen in Figure 5.6 just by looking at it, we created Table 5.3 which
will tell us where in the interval obtained values are located. We used the same formula
as before and obtained the following figures.

Number The percentage of the Number The percentage of the

of interval in which the of interval in which the
vertices obtained value is located vertices obtained valueis located

50 61.36% 76 100%

52 82.48% 78 68.81%

54 59.86% 80 73.91%

56 87.76% 82 90.09%

58 70.39% 84 77.88%

60 61.78% 86 66.22%

62 72.22% 88 52.42%

64 82.04% 90 80.60%

66 73.84% 92 77.22%

68 62.71% 94 59.09%

70 45.60% 96 78.14%

72 80.75% 98 53.57%

74 67.19% 100 60.31%

TABLES.3 WHERE IN THE INTERVARE OBTAINED VALUES

From Table 5.3 we can see that almost all of the values are in the upper part of the interval
(percentages greater than 50). The lowest is for the graph with 70 vertices with the value
of T @ 1 PANd the greatest one is for the graph with 76 vertices where it is equated with
the upper bound giving the result of p 1t 1. Phe average position of the game length is at
X @t p Bf the interval.

5, 1.3 Conclusions for ORandom strategyéo

By observing the results for graphs starting with ¢ @and ending with € v mTand 20

launches for each value of ¢, we canseet hat Avoi der 6s ®btomawagsgy was
t han E n fbecausee withirs the interval in which the game had to end, Avoider

managed to prolong the game for a long time. The average number of rounds was at

L 8 Y f the interval which is somewhere in the middle, a bit closer to the upper bound.

And if we move our attention to graphs with ¢ v ™o € p 1T we can see that the

average number of rounds was at X @t p Fof the interval. We can conclude that for the

larger graphs the curve is moving more and more to the upper bound which means that

Enforcer was slower and slower in achieving the win. This is not an unexpected result,
because i f we recall the strategies, etaled can s
and not one move was based on an arbitrary choice of an edge. On the other side,

Enforc er 6s strat egy c o ndefinadtstepd Hedollowexd romlyyonesute@andw e | |
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if that was not possible, he would randomly choose an edge. These edges were marked

as possible bad ones because they were probably going to ruin the strategy. This is a

part of the game that seemed |ike it needs an
defined in a more deterministic way in order to get better results. We were hoping that

these improvements would shift the curve down. And so the next strategy called Twin

was born.

5.2 Ofwin strategyo

The first | ogical i mpr ovement anddrioritize Hisonovese r 6 s s 1
i n a way that wil/ O0spoil & the Avoiderdés stra

Thisimproveme nt was based on 0 Inferesting toA\gider. Retal hada mov e s
Enforcer has the same primary goal in choosing an edge in each of these simulations.

The other movesint hi s particul ar strategy that we nair
moves. By following these steps when choosing an edge, he might be able to finish the

game earlier than before. New strategy for Enforcer follows:

1. Claim an edge that connects two opposite sides of the bipartition of one of the
Avoi derds connected components

2. Claim an edge that connects two untouched vertices. (Just a reminder, he will need
two more untouched vertices to put in a bi-bunch based on the rules for creating
and manipulating with bi-bunches)

3. Claim an edge that will connect two bi-bunches.

4. If none of these options is possible, choose randomly.

Now, looking at the two strategies, they are pretty similar. It seems like this could help
Enforcer to win the game faster. Let us see the results of experiments done in the same
wayasfor6 Random sard tryad cengpsiré them. The main question is: Was Avoider
forced by Enforcer to claim an edge that will end the game sooner than before?

5.2.1 Experiments

After the done c hanges on Enfwerwoudrlikesto seet whetheretigege,
numbers of rounds are closer to the lower bounds. That would be a good indicator that
we are on a right track. In Figure 5.7 we can see what we got by applying an improved
strategy for Enforcer. The mode values were used, the same as for the Random strategy.
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HGURES. 7 RESULTS FORWIN STRATEGY, 20 LAUNCHES ON GRAFHROM 6 TO N°50SUBTRACTED BY THE WA

OF—

By looking at Figure 5.7 we can see that the black curve that represents mode values for
done experiments is somewhere in the middle of the interval. Even more, it is leaning
towards the lower bound. If we compare it with Figure 5.2 we can definitely see that some
improvements for Enforcer have been made.

Based on this figure we can say that the curve, which represents mode values from our
experiments, is shifted downward. And if we briefly recall the plots for Random strategy
and the cases for 1 values around 45 when the mode was almost equal to the upper
bound and compare it to this case, we can conclude that it is drastically lower and much
closer to the lower bound, which goes in favor of Enforcer, than before.

It would be convenient to have a table with statistical measures for these experiments
also to compare it with the first one.
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- 483 850 13.17 1883 2550 33.17 4183 5150 62.17 73.83 86.5
- 8.5 13 18.5 25 325 41 50.5 61 72.5 85 98.5
- 7.05 11 16.1 2185 28.75 36.8 4535 55.45 66.3 78.3 91.15
- 7 11 16 22 29 37 45 55 66 78 91
_ 7 11 16 22 29 37 45 55 66 78 91

- 11483 130.5 147.17 164.83 183.5 203.17 223.83 2455 268.17  291.83 316.5
- 128.5 145 162.5 181 200.5 221 2425 265 288.5 SLE) 338.5
- 119.55 134.45 154.9 172.8 192.6 213.65 234.65 256.6 278.85 304.7 328
- 119 136 157 172 189 210 232 255 275 299 825
- 119.5 1855 155 172 192.5 213 2585 255 278 303 328

TABLES.4 STATISTICAL MEASURESR TWIN STRATEGY

We can make some conclusions about these experiments, not comparing them with the
previous ones. For smaller graphs, it can be concluded that the number of rounds for
every played game is almost the same. On the other hand, for the bigger graphs, we can
see that numbers are changing. Also, as for the previous strategy, mean, mode, and
median are very similar, in a lot of cases they are equivalent. In the pages that follow you
can find plots to get a better understanding of where these numbers are and how they
are changing.
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As we talked about it earlier, by calculating where within the interval obtained values are
located and comparing them with the same results for other strategies, we can see the
differences and how each change moves the number of rounds whether up or down the
interval. In Table 5.5 we calculated the percentage of the interval in which the obtained
values for every graph size are located.

Number The percentage of the Number The percentage of the
of interval in which the of interval in which the
vertices obtained value is located vertices obtained valueis located
6 60.45% 28 38.05%
8 55.56% 30 34.51%
10 55.00% 32 34.14%
12 48.92% 34 50.43%
14 46.43% 36 49.28%
16 46.38% 38 53.53%
18 40.58% 40 58.79%
20 41.58% 42 57.95%
22 40.00% 44 56.92%
24 40.00% 46 52.54%
26 38.75% 48 60.79%
50 52.27%

TABLES.5 WHERE IN THE INTERVARE OBTAINED RES®ILT

Some conclusions can be drawn from these results. Firstly, we can find the smallest value

within this interval. That value is 0 ® 1 Fand it is obtained for the graphs of size 32. It is

interesting to notice that for the Random strategy, the lower percentage was also obtained

for the graphs of size 32. The hi gloadsetd peragpeén
and that value was @ & w PThe highest value for the Random strategy was x ® 1 PThis

can be an indicator that we are on the right track because we are moving the curve to the

lower bound of the interval and that is what we wanted to achieve by introducing these
improvements inEnf or cer 6s strategy. The aver a@gepbnumber
on the interval. That is also an improvement, comparing it with the v 8 ( Bbtained for

the Random strategy.

5.2.2 Experiments on larger graphs

Based on the conclusion that more differences have been seen in the larger graphs after
the changes on Enforcer 6s st raveeety aregoi@tower e ¢
be more visible for even larger graphs. Let us start with Figure 5.11 to visualize the

obtained figures.
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From Figure 5.11 we can notice that in some parts, we can see that the curve is leaning

towards the lower bound and that was not the case in the Random strategy. Somewhere

around ¢ x mthecurveisal most 6gl ued6 taodndimmovamen €wouldbound
be expected there, but for the values of T close to 60 and also 90, it seems that some
improvements were achieved. The best result was obtained for¢é v gand € v yand

after that ¢  x T Pretty good results are also visible for ¢ wmnE wa@ndé Tt The

whole curve is shifted towards the lower bound, for some values of n more, for some less,

but in general, it is lower.

The same as for the Random case, to confirm what can be seen in Figures 5.11 we
created Table 5.6 which will tell us exactly where within the interval these obtained lengths
of the games are located.
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Number The percentage of the Number The percentage of the

of interval in which the of interval in which the
vertices  obtained valueis located vertices obtained valueis located

50 84.09% 76 87.82%

52 64.96% 78 59.90%

54 59.86% 80 62.12%

56 34.69% 82 58.96%

58 34.87% 84 53.00%

60 57.96% 86 47.30%

62 50.00% 88 55.07%

64 46.11% 90 34.05%

66 63.37% 92 41.77%

68 83.05% 94 36.78%

70 85.16% 96 63.56%

72 93.58% 98 51.19%

74 35.94% 100 41.63%

TABLES.6 WHERE INHE INTERVAL ARE ®BED RESULTS

In Table 5.6 we can see that there is a lot more than one value located in the lower part
of the interval as was the case with the Random strategy. The lowest percentage is
obtained -hoded hgr @apPB wirdstit ofto 8ev bdustdaozcompaye, for
the graph of the same dimension in the Random strategy, the length of the game was at
Y & 1t Pf the interval. This is a great improvement. The average position of the game
length is at v 8 ¢ bof the interval.

523Conclusions for O0Twin strategyo

After various analyzes regarding the Twin strategy, it can be concluded that it gives quite

good results. By applying this strategy, Enforcer ma
strategy, which we know gives great results for him. Compared with the Random strategy,

it gives much better results for Enforcer in the form of shortening the game i.e. the speed

of his victory. Specific figures speak in favor of this and we see that in the case of 20 runs

for graphs upto € v tthe average position of the length of the game within the interval

iIs at T @ Y Bin the case of graphs larger than 50 up to those with 100 vertices, this

number is v @ ¢ bwhich is a significant improvement in comparison with x @t p b

obtained for the Random strategy.

5.3 6The small est 6

For The smallest strategy we chose to do the following changesi n Enf or cer 6s str

1. He tries to find and claim an edge that connects two opposite sides of the

bi partition of one of the Avoiderds connec
2. He claims an edge whose vertex degrees give the smallest value when added

together.
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This strategy is different from the others because this second option is always possible
to achieve and also there is almost no random part as in the previous two. The only case
where we have arandom part is if there are several edges with the same sum after adding
the degrees of their vertices.

Firstly, we run 20 experiments for every value of I, starting from 6 and ending with 50.
We have chosen this approach because it would be easy to compare it with the previous
two strategies. Figure 5.12 is showing the results of this strategy.

HGUREDL.12 RESULTS FORHE SMALLESBTRATEGY, 20LAUNCHES ON GRARHEOM 6 TO N=50SUBTRACTED

BY THE VALUE &F

Simply by looking at Figure 5.12 we can say that the black curve, which shows the modes
of obtained values, is somewhere in between those boundaries. For ndés small er
the result is stable somewhere in the middle of the interval. After that, it starts to move in
the wanted direction but not for long. It seems like it starts to move more to the upper part
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