

University of Novi Sad

Faculty of Sciences

Department of Mathematics and Informatics

Analysis of fast winning strategies

in Avoider-Enforcer ñNon-bipartiteñ

game
- Master Thesis -

Student: Aleksandra Hajder

Mentor: Prof. Miloġ Stojakoviĺ

Novi Sad, 2021.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

iii

Acknowledgments

Firstly, I would like to thank and express my gratitude to my supervisor Dr. Miloġ
Stojakoviĺ for his support and guidance throughout the whole project. It was

such an honor to have a mentor like him.

Secondly, I wish to show a great appreciation towards my colleagues who were
major support in every aspect. Without them, this journey of studying would be

much harder. Special thanks to Bogdan Stankovski who was a great study
partner and beyond that the best friend I could wish for. Also, I would like to
thank Klaudia Beliĺ who was my partner in the numerous projects, it was
always a pleasure working with her.

And last but not least, I would like to extend my thanks to my family and friends
for their emotional support both throughout the studies and the thesis. You
always believed in me, even when I did not believe in myself.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

v

Abstract

Positional games are often played on different types of graphs. They involve

two players whose goals oppose. The most popular game of this type is Tic-

Tac-Toe and its higher-dimensional generalizations. The game that is the focus

of this paper is called the Non-bipartite game, played on the complete graph.

Players are called Avoider and Enforcer. Their names say a lot about their

goals. Avoider is trying to avoid creating a non-bipartite subgraph while

Enforcer is trying to enforce Avoider to do exactly that. Our goal is to verify that

the game is going to be played within the proven boundaries and to see where

exactly is the duration of the game when both players stick to their optimal

strategies. Avoiderôs strategy was laid out in detail, but for Enforcer, we have

tried to make some improvements. In the future, it would be interesting to see

how the duration of the game fluctuates when we change the priorities of the

moves for each player. There is a lot of space for future investigation of this

particular game, but also in general of positional games.

 Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

vii

Contents
Acknowledgments..iii

Abstract..v

Introduction ... 1

1. Graph theory, preliminaries ... 2

1.1 Definition and representation of a graph .. 2

1.2 Subgraphs and special families of graphs ... 3

1.3 Trees ... 5

1.4 Tree-search algorithms .. 6

1.4.1 BFS ... 6

1.4.2 DFS ... 8

1.4.3 Bipartite graph and BFS algorithm .. 9

2. Positional games, preliminaries... 11

2.1 Maker ï Breaker games ... 11

2.2 Biased games .. 12

2.3 Avoider ï Enforcer games ... 12

2.4 Fast winning strategies.. 13

2.4.1 Fast winning in Maker-Breaker games.. 13

2.4.2 Fast winning in Avoider-Enforcer games .. 13

3. Fast winning strategies in Avoider-Enforcer games .. 14

3.1 Non-bipartite game ... 14

3.2 Improving Enforcerôs strategy .. 18

4. Implementation of strategies .. 20

4.1 Playersô strategies .. 20

4.2 Python... 21

4.2.1 Game simulation code ... 22

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

viii

5. Results... 26

5.1 óRandom strategyô... 26

5.1.1 Experiments .. 26

5.1.2 Experiments on larger graphs.. 31

5.1.3 Conclusions for óRandom strategyô.. 33

5.2 óTwin strategyô ... 34

5.2.1 Experiments .. 34

5.2.2 Experiments on larger graphs.. 38

5.2.3 Conclusions for óTwin strategyô .. 40

5.3 óThe smallestô... 40

5.4 Comparison of strategies .. 44

6. Conclusion and future work... 47

6.1 Summary and conclusion.. 47

6.2 Future work .. 47

Bibliography .. 48

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

1

Introduction

Positional games are a type of combinatorial games, researching a variety of two-player

games to purely abstract games played on graphs and hypergraphs [5]. They can be

described as an alternate occupation of the previously unclaimed elements of a given set

ὢ that is called the board of the game. The focus of each player is a family Ὂ

ὃȟȣȟὃ Ṗς of finite subsets of ὢ and we call them winning sets. This family is

sometimes called a hypergraph of the game. There are three possible outcomes of each

positional game: the first player has a winning strategy, the second one has it and both

players have drawing strategies. The focus of this thesis is the Avoider-Enforcer games.

In games of that type, we have two players. The first one is trying to avoid a graph property

whilst the second one is trying to force him to claim the edges that he wants to avoid. The

goal of Avoider is defined through a negation ï he wins if he does not occupy any member

of the hypergraph-losing set [5]. Sometimes the victory of Enforcer is inevitable. In that

case, a new and more interesting question arises, in how many moves will he manage to

win? We measure the speed of victory in the number of moves (or sometimes rounds)

needed for that victory to happen. Fast winning strategies for Avoider-Enforcer Non-

bipartite game will be the main part of this paper. This game is played on a complete

graph where players alternately claim an edge following some strategies. Avoider loses

the game as soon as a graph made up of his previously claimed edges becomes non-

bipartite. On the other hand, Enforcer is trying to enforce Avoider to claim an edge that is

going to make his graph non-bipartite as early as possible during the game.

The main contribution of this work is the implementation of different strategies and

analysis of a different number of rounds required for Enforcer to win. It was known to us

from before the size of the interval within which the game must end. But in this thesis, it

is analyzed for the first time exactly where within it the values are and how we can maybe

move them closer to the desired part of the interval.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

2

1. Graph theory, preliminaries
1.1 Definition and representation of a graph

In the everyday world, we can find many relationships, structures, connections, etc. that

can be represented using some mathematical objects. If a structure consists of a set of

points that are usually named or marked in a way and if those points can be related

somehow with some sort of lines, we can use graphs to represent the wanted structure

and after that to do an interesting analysis on it.

For better understanding, let us start with an example. We can take a group of people

and represent each person as a point. The relationship between them can be represented

with a line. We have a line that connects two points if two persons know each other

otherwise there are no connections between them.

Introducing the graph theoretic notation and well-known statements, we follow [9]. A

graph Ὃ is usually defined as ordered pair ὠὋȟὉὋ consisting of a set ὠὋ that is a

set of vertices also called nodes, and ὉὋ that is a set of edges that are unordered pair

of vertices ὉὋ Ṗ ὼȟώ ȿ ὼȟώ ‭ ὠὋ ὥὲὨ ὼ ώ together with an incidence function ‪

which associates with each edge of Ὃ an unordered pair of vertices of Ὃ.

Two main parameters that can easily be calculated are the order and size of a graph.

Order is the number of vertices and usually is denoted by ὺὋ and size is the number of

edges usually denoted by ὩὋ.

Graphs can easily be represented graphically and that is why they are named like that.

Sometimes, it can be important to do the representation in a nice, clean way, because it

can be easier to notice some of the properties the graph has. Furthermore, the same

graph can be drawn in many different ways and you can find one example in Figure 1.1.

FIGURE 1.1 DIFFERENT DRAWINGS OF THE SAME GRAPH

Terms incident and adjacent are often used. The edge is said to be incident with its end

vertices and the other way also holds. We use the term adjacent when we have two

vertices that are incident with a common edge and also when having two edges that are

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

3

incident with a common vertex. Vertices are called neighbors if they are distinct and

adjacent. The neighborhood of a vertex ὺ in graph Ὃ is a set of vertices that contains all

vertices adjacent to ὺ.

An edge that starts and ends in the same vertex is called a loop and an edge with distinct

ends is called a link. If there are two links with the same pair of ends, then we have parallel

edges. A graph is simple if it has no loops or parallel edges.

1.2 Subgraphs and special families of graphs

Starting from graph Ὃ, two common ways can be used to derive smaller graphs from Ὃ.

As one can assume, we can delete an edge or a vertex in some ways. Two operations

that can be helpful are edge deletion and vertex deletion. Ὃ ͵ Ὡ is a graph obtained from

Ὃ by deleting the edge Ὡ. Similarly, Ὃ ɀ ὺ is a graph obtained by deleting vertex ὺ

together with all the edges incident with it. Using these operations, we can create

subgraphs.

Speaking in a more general way, a graph Ὂ is called a subgraph of a graph Ὃ if ὠὊ Ṗ
ὠὋȟὉὊ ṖὉὋ, and ‪ is the restriction of ‪ to ὉὊȢ

FIGURE 1.2 GRAPH ╖ (ON THE LEFT), SUBGRAPH ╕ OF THE GRAPH ╖ (ON THE RIGHT)

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

4

A spanning subgraph of graph Ὃ is a subgraph obtained by edge deletions only. Another

way to define it is to say that a spanning subgraph is a subgraph whose vertex set is the

entire vertex set of Ὃ. If we define Ὓ to be the set of deleted edges, then this subgraph of

Ὃ is denoted by Ὃ ͵ Ὓ.

A complete graph is a simple graph in which any two vertices are adjacent. A regular

graph is a graph where each vertex has the same number of neighbors. A degree of a

vertex of a graph is the number of edges incident with that vertex. The complete graph
on ὲ vertices I usually denoted by ὑ . It has ὲὲ ρȾς edges. It is a regular graph and

has a degree ὲ ρ. [7,9]

FIGURE 1.3 EXAMPLES OF COMPLETE GRAPHS WITH DIFFERENT NUMBER OF VERTICES

A graph is called bipartite if its vertex set can be partitioned into two subsets ὢ and ὣ so

that every edge has one end in ὢ and one end in ὣ. That kind of partition ὢȟὣ is called

a bipartition of the graph.

A cycle is a simple graph whose vertices can be arranged in a cyclic sequence in a way

that two vertices are adjacent if they are consecutive in the sequence. A cycle is consisted

of at least three vertices. The length of a cycle is the number of its edges, and we can

have odd and even cycles depending on their length.

A path is a simple graph whose vertices can be arranged in a linear sequence in such a

way that two vertices are adjacent if they are consecutive in the sequence, and are

nonadjacent otherwise.

In graph theory, Turán's theorem bounds the number of edges that can be included in

an undirected graph that does not have a complete subgraph of a given size [22]. The

special case of Turán's theorem is Mantelôs theorem that will be helpful later in the paper.

ὑ ὑ ὑ

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

5

Theorem 1.1 (Mantelôs): [17] If a graph Ὃ on ὲ vertices contains no triangle then it

contains at most edges.

1.3 Trees

A tree is a connected acyclic graph and an acyclic graph is one that contains no cycles.

Each component of an acyclic graph is a tree, these acyclic graphs are called forests. A

connected graph must contain at least one path between any two vertices. So, trees are

always connected, but we have exactly one path between any two vertices.

Any graph in which all degrees are at least two contains a cycle. From that, it can be

concluded that every tree contains a vertex of degree at most one and if the tree is

nontrivial, it must contain that one vertex, and it is called a leaf of the tree. In Figure 1.4

you can find a few examples of trees on six vertices.

FIGURE 1.4 THE TREES ON SIX VERTICES

A subtree of a graph is a subgraph which is a tree [9]. If this tree is a spanning subgraph,

we call it a spanning tree.

Theorem 1.2: A graph is connected if and only if it has a spanning tree.

Proposition 1.3: In a tree, any two vertices are connected by exactly one path.

Theorem 1.4: A graph is bipartite if and only if it contains no odd cycle.

Proof:

Firstly, we can easily see that a graph is bipartite if and only if each of its components is

bipartite. Also, a graph contains an odd cycle if and only if one of its components contains

an odd cycle. This is what we will need in further proving.

ᵼ Let Ὃὢȟὣ be a connected bipartite graph. Then the vertices of any path in Ὃ belong

alternately to ὢ and to ὣ. All paths that are connecting vertices in different parts are of

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

6

odd length and all paths connecting vertices in the same part are of even length. By the

definition of Ὃ, each edge of Ὃ has one end in ὢ and one ned in ὣ. From that, we can

conclude that every cycle of Ὃ is of even length.

ᵺ Now, suppose that Ὃ is a connected graph without odd cycles. We will need Theorem

1.2 and Proposition 1.3 to complete the proof.

From Theorem 1.2 we can immediately conclude that Ὃ has a spanning tree Ὕ because

it is connected. Now let ὼ be a vertex in Ὕ. Because of Proposition 1.3, we know that any

vertex ὺ of Ὕ is connected to ὼ by a unique path in Ὕ. Let ὢ denote the set of vertices for

which this path is of even length, and set ὣḊ ὠ ͵ ὢ. Then ὢȟὣ is a bipartition of Ὕ. It is

left to prove that this is also a bipartition of Ὃ.

Let us consider an edge Ὡ όὺ of ὉὋ ͵ ὉὝ and let ὖḊ όὝὺ be the unique όὺ - path

in Ὕ. The cycle ὖ Ὡ is even, so ὖ must be odd. Therefore, the ends of ὖ, and hence the

ends of Ὡ, belong to distinct parts. From here we can conclude that ὢȟὣ is a bipartition

of Ὃ. Ǐ

1.4 Tree-search algorithms

The two most important and most used algorithms on graphs are BFS ï Breadth-first

search and DFS ï Depth-first search.

By graph traversal, it is meant visiting every vertex exactly once in a well-defined order.

1.4.1 BFS

Bondy and Murty dealt with and researched these algorithms in detail in their book [9].

BFS is a traversing algorithm that follows the rule ófirst com first servedô. That means that

starting from the root/source (arbitrary vertex) it takes into account all of its neighbors first

then moves along with visiting neighborsô neighbors. For the implementation of this

algorithm, vertices are kept in a queue. A queue is a list ὗ that is updated when two

situations occur. The first update can be adding a new element always at the end (the tail

of the queue) and the second one is removing an element from the top (the head of the

queue). Below you can find Algorithm 1.1 [9] together with a short illustration of how the

algorithm works on the graph with 8 vertices that are connected in a way on Figure 1.5.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

7

FIGURE 1.5 BFS EXAMPLE

ALGORITHM 1.1 BFS ALGORITHM [9]

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

8

1.4.2 DFS

DFS is also a traversing algorithm but it follows another kind of rules than BFS. It can be

explained in the following way: it starts from the source/root vertex and goes as far as

possible through the branch before backtracking. It is a recursive algorithm because it

uses backtracking. We search for vertices by going ahead, if possible, else by

backtracking. This algorithm can be implemented by using a stack. A stack is a list Ὓ and

it may be updated in two ways ï by adding a new element at the top or by removing an

element from its top. You can read more about this algorithm defined through steps [9].

In Figure 1.6 there is a simple example of how this algorithm works on a tree with 5

vertices.

FIGURE 1.6 DFS EXAMPLE

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

9

ALGORITHM 1.2 DFS ALGORITHM [9]

1.4.3 Bipartite graph and BFS algorithm

An interesting thing is that we can use the BFS algorithm to find out whether a graph is

bipartite or not. We already talked about checking if a graph contains an odd cycle, but

this is a different approach. By following these steps, we can determine the wanted

property. Two colors are needed, we will use red and blue for simplicity.

1) Assign a blue color to the source vertex.

2) Color all of its neighbors with red color.

3) Color all neighborôs neighbor with blue color.

4) By repeating this process, assign a color to all the vertices in the graph.

5) While assigning, if we find neighbors that are of the same color, then the graph is

not bipartite, otherwise, it is.

The following Theorem 1.5 can also be useful to understand why we can use this

approach explained above.

Theorem 1.5: [16] Let Ὃ be a graph. Then G is 2-colorable if and only if Ὃ is bipartite.

Proof:

Proof of this theorem is pretty straightforward.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

10

ᵼ Let Ὃ be a 2-colorable graph. That simply means that we can color every vertex either

red or blue, and no edge will have both endpoints colored the same color. Let ὢ denote

the subset of red vertices, and let ὣ denote the subset of blue vertices. Since all vertices

of ὢ are red, and all vertices of ὣ are blue, we can conclude that every edge has one

endpoint in ὢ and the other in ὣ. So, Ὃ is bipartite.

ᵺ Now suppose that Ὃ is a bipartite graph. That means that we can partition the vertices

into two subsets ὢ and ὣ in a way that every edge has one end in ὢ and another in ὣ. If

we color all the edges from ὢ in red and all the edges from ὣ in blue, we will get a proper

coloring. Because two colors are used, we can say that Ὃ Is 2-colorable. Ǐ

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

11

2. Positional games, preliminaries
The term ópositional gamesô can be wrongly understood as being a part of classical Game

Theory. Classical Game Theory is mostly based on the notions of uncertainty and lack of

perfect information. On the other hand, positional games are perfect information games

and because of that, they can be solved completely by an all-powerful computer.

Positional games are closer to the so-called ñCombinatorial Game Theoryò in which

games are based on algebraic arguments and various notions of decomposition [2].

Positional games are games that can be described as an alternate occupation of the

elements of a given set ὢ that is called the board of the game [2,19]. We assume that ὢ

is finite. Winning sets are the focus of each player, and they can be described as a family

Ὂ ὃȟȣȟὃ Ṗς of finite subsets of ὢ, this family is sometimes called the hypergraph

of the game. [14] The outcomes of the game are ï the first player wins / the second player

loses, the second player wins / the first player loses, or a draw. Each game scenario has

exactly one of the outcomes. There is no randomness involved in these games. The

outcome of each positional game is determined and speaking of the outcomes, combining

with the strategies, these are the only possible ones [2]:

1. the first player has a winning strategy,

2. the second player has a winning strategy,

3. both players have drawing strategies.

Knowing that a game is determined and finding its actual outcome are two very different

things. In principle, every game can be described by a tree of all possible plays, called

the game tree. There is a vertex for every sequence of allowed moves of both players,

including the empty sequence for the root of the game tree. Each sequence of moves is

connected by an edge to a sequence one move shorter. Leaves are the final positions of

the games. [2,12]

The most famous positional game is Tic-Tac-Toe in two dimensions. As we know, this

game is played by two players, alternately claiming one unoccupied cell from a 3-by-3

board. A player who completes a winning line first wins. We have eight winning lines,

three vertical lines, three horizontal lines, and two diagonals. If none of these lines are

claimed by neither one of the players, in that case, we have a draw.

2.1 Maker ï Breaker games

Generally speaking, in every positional game both players are trying to do two things

simultaneously: try to occupy a complete winning set and prevent the other player from

occupying one for themselves. For many reasons, analyzing this approach is impractical

and very complex. Because of that, we focus on games where the second player (SP) is

not interested in occupying a winning set but achieving a draw, or basically, his strategy

is focused on preventing the first player (FP) to win. Additionally, FP can concentrate on

offense and completely forget about playing defense. By changing the strategies for both

players, we are simplifying the game.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

12

Definition 2.1: Let ὢ be a finite set and Ṗ ς a family of subsets. In a Maker-Breaker

game over the hypergraph ὢȟ :

¶ the set ὢ is called the board and the elements of Ṗ ς are the winning sets;

¶ the players are called Maker and Breaker;

¶ during a particular play, the players alternately occupy elements of ὢ; as a default,
we set Maker to start (unless stated otherwise);

¶ the winner is:
o Maker, if he occupies a winning set completely by the end of the game,
o Breaker, if he occupies an element in every winning set.

2.2 Biased games

In many different Maker-Breaker games, Maker wins easily, so Chvátal and Erdös [23]

were first to suggest that Breaker claims more than one edge per move in order to

increase his chance of winning.

Definition 2.2: Let ὴ and ή be positive integers, let ὢ be a finite set, and let Ṗ ς be a

family of subsets of ὢ. The biased ὴȡή Maker-Breaker game ὢȠ is the same as the

Maker-Breaker game ὢȠ , except that Maker claims ὴ free board elements per move

and Breaker claims ή free board elements per move. The integers ὴ and ή are referred

to as the bias of Maker and Breaker, respectively. In the last move of the game, if there

are fewer free board elements than his bias, a player claims every free board element.

2.3 Avoider ï Enforcer games

Avoider ï Enforcer games are in a way the opposite of MakerïBreaker games and that

is why they are sometimes called Antimaker ï Antibreaker games. As their name says,

we have two players, the first one is trying to avoid a graph property and the second one

is trying to force him to claim the edges that he wants to avoid. The general setup is pretty

much the same as in other positional games that are already described, we have the

board ὢ and the collection of winning sets, but in these games, we refer to that collection

as the collection of losing sets . Avoider is starting the game unless it is specified

differently. [2,5]

Let ὴ and ή be positive integers and let be any hypergraph. In a (ὴȟήȟ) biased Avoiderï

Enforcer game two players take turns selecting previously unclaimed vertices of .
Avoider selects exactly ὴ vertices per move and Enforcer selects exactly ή vertices per
move. If the number of unclaimed vertices is strictly less than ὴ (or ή) before a move of

Avoider (or Enforcer, respectively), then he must claim all of the remaining free vertices
[3]. The game ends when all the elements of the board are claimed either by Avoider or
Enforcer. The goal of Avoider is defined through a negation, that is, he wins if he does

not occupy any member of the hypergraphïlosing set [5]. Enforcer wins if Avoider claims
a whole set from the collection of losing sets. We can have a biased and unbiased version
of this game. A biased game is more general and it is introduced to increase the playersô
chances to win. An unbiased version is one where ὴ and ή are equal to 1. [2,3,5]

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

13

The most popular game of this type is the so-called óSimô. The game is played on the

complete graph with 6 vertices. In every move, each player is coloring an edge in one

color, for simplicity, we can say that Avoider is coloring in red, and Enforcer in blue. Losing

sets are all triangles. If Avoider had created a red triangle by coloring edges, he had lost,

otherwise, he is a winner.

2.4 Fast winning strategies

Both Maker-Breaker and Avoider-Enforcer games can be analyzed in order to create

strategies that will take one or the other player towards the win. Another interesting

question that we can ask is how long will it take for a player to win rather than who is

going to win. [13]

2.4.1 Fast winning in Maker-Breaker games

Our focus here is on the unbiased games played by two players that are taking turns in

selecting edges of a complete graph. For quite a few MakerïBreaker games, it is rather

easy to determine the identity of the winner [11]. For example, Maker wins very easily in

the connectivity game [6]. In that particular game, his goal is to claim a connected and

spanning subgraph. Another good example is the Non-planarity game [4,15] with ὲ ρρ,

where his goal is to create a non-planar graph. The maker will definitely manage to claim

such edges that will create a non-planar graph irregardless of his strategy because it is

known that every graph with more than σὲ φ edges on ὲ vertices is non-planar. In

these and similar games, the most significant part is óhow fast one can win?ô

2.4.2 Fast winning in Avoider-Enforcer games

Fast winning strategies for Avoider-Enforcer games will be the main part of this paper,

particularly for the Non-bipartite game. Several well-studied positional games are an easy

win for Enforcer. The previously mentioned non-planarity game can also be a good

example of this. These strategies for the fast win in the non-planarity game are described

in detail in [1] and later in this paper, we will be dealing with strategies for the Non-bipartite

game. It is known that Enforcer will eventually win, but the interesting part is how long will

Avoider manage to avoid losing.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

14

3. Fast winning strategies in Avoider-
Enforcer games
As it was mentioned previously, one player has a strategy for winning. In case we know

the winner we are moving to the question of how fast that player can win. We will assume

that we have a complete graph ὑ , the game is played on its edges Ὁὑ and that the

game is unbiased unless it is said otherwise.

For a hypergraph , † is said to be the smallest integer ὸ such that Enforcer has a

strategy to win the game on within ὸ moves. If Avoider wins, we say that † Њ. We

are interested in determining the value † . Let us assume that the set of hyperedges

of is a monotone increasing family. If the assumption is not correct, we can always

extend it to an increasing family by adding all the supersets of its elements. [1]

Definition 3.1: The extremal number of the hypergraph is defined by the following

equation:

Ὡὼ άὥὼ ȿὃȿḊὃ Ṗὠ ȟὃᶱὉ .

Theorem 3.2: [1] Giving a monotone increasing family of hyperedges, we have

Ὡὼ ρ † Ὡὼ ρ.

Proof:

We have two bounds for † , the upper and the lower one. First, let us prove the lower

bound. Let Avoider fix an arbitrary ὃ Ṗὠ before the game starts in a way that ὃ is an

edge of and ȿὃȿ Ὡὼ Ȣ During the game, Avoider claims only the elements of ὃ as

long as possible. By doing that, he will be able to claim at least half of the elements of ὃ

without losing.

Enforcer will surely win after Ὡὼ ρ rounds, no matter what his strategy is. At that

point, Avoider has claimed Ὡὼ ρ vertices and a set with that many vertices must be

an edge of , because of the way that Ὡὼ was defined. That is how we got the upper

bound. Ǐ

3.1 Non-bipartite game

We now take a closer look at the Non-bipartite game. As it was mentioned, this game is

played on a complete graph where players alternately claim an edge following its strategy.

Avoider loses the game as soon as his graph becomes non-bipartite. As its name says,

Enforcer is trying to enforce the Avoider to claim an edge that is going to make his

subgraph non-bipartite. Enforcer will eventually win the game, but the interesting question

is ï how many moves will be necessary for Enforcer to achieve his goals.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

15

Theorem 1.4 can be very helpful. That theorem equates this game with the game in which

Enforcer aims to make sure that Avoider creates an odd cycle by claiming the edges in

every round and Avoider is trying not to claim it. From Theorem 1.4, we know that if a

graph contains an odd cycle it cannot be bipartite.

Now, let us denote by ὔὅ the hypergraph whose hyperedges are the edge-sets of all

non-bipartite graphs on ὲ vertices.

From Theorem 3.2 and Theorem 1.1 we can conclude the following:

ρ † ὔὅ ρ.

It turns out that both upper and lower bounds can be improved.

Theorem 3.3: [9]

† ὔὅὲ
ς —ὲ.

As it was already proven by Hefetz, Krivelevich, Stojakoviĺ, and Szabó in [1], we can get

more accurate boundaries than one stated in Theorem 3.3. Let us denote by † the number

of rounds needed for Enforcerôs win in the Non-bipartite game. This means that after

exactly † rounds, Avoider will claim an edge that will create an odd cycle together with his

previously claimed edges.

Theorem 3.4:

 † ρ.

Proof:

Upper bound - forcing an odd cycle fast

Enforcerôs strategy is based on claiming the edges in a way that all the edges left for

Avoider to choose are going to make Avoiderôs graph non-bipartite.

His strategy should force Avoider to claim the edges of an odd cycle, and by doing that

to lose the game, during the first ρ moves. Each connected component of

Avoiderôs graph in every stage of the game is bipartite. If that would not be the case, then

the whole graph would not be bipartite and Avoider would have already lost.

In every move, Enforcerôs primary goal is to claim an edge that connects two opposite

sides of the bipartition of one of the connected components of Avoiderôs graph. If that is

not possible and no such edge is ófreeô then he will claim an arbitrary edge. The edge that

has been chosen arbitrarily is marked as ópossibly badô. It is obvious that in the next move

Avoider cannot play inside any of his connected components, because by doing that he

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

16

would create an odd cycle. So, he is forced to merge two of his components. We know

that the game starts with Î connected components (each vertex is one component

because no edge has been claimed), this situation of merging two components can occur

at most ὲ ɀ ρ times.

Therefore, when it comes to the move where Avoider is not able to claim any edge without

creating an odd cycle, his graph is of course still bipartite and all of Enforcerôs edges are

compatible with that bipartition of Avoiderôs graph, except the ones that we marked as

ópossibly badô. The total number of claimed edges to this point is at most ὲ ρ. The

total number of the claimed edges is obtained based on Theorem 1.1 which says that if a

graph on ὲ vertices does not contain a triangle, which is an odd cycle of length 3, then it

contains at most edges, together with the knowledge of how many times merging of

connected components can happen which is ὲ ρ. So because of that the total number

of moves Avoider has played in the entire game is at most ρ.

Lower bound - avoiding odd cycles for long

The strategy that will be explained below is a strategy for Avoider to keep his graph

bipartite for at least rounds. For technical reasons let us assume that ὲ is even.

The idea is for Avoider to maintain a family of ordered pairs ὠȟὠ , where ὠ,ὠ Ṗ V(ὑ),

ὠ ᷊ὠ = ɲand ȿὠȿ ȿὠȿ. The ordered pair that satisfies the conditions stated above is

called a bi-bunch. Two bi-bunches ὠȟὠ and ὠȟὠ are disjoint if ὠ ᷾ ὠ ᷊ ὠ᷾

 ὠ ɲȢ A vertex is called untouched if it does not belong to any bi-bunch and all the

edges incident with it are unclaimed. These terms have been introduced because, during

the game, we will maintain a partition of the vertex set ὠὑ into several pairwise disjoint

bi-bunches, and a set of untouched vertices.

Before the game starts, we have Î untouched vertices and no bi-bunches. Avoiderôs

strategy is defined in the following way:

The primary goal is to claim an edge across some existing bi-bunch, in other words, an

edge ὼȟώ where ὼ ɴ ὠ and ώ ɴ ὠ for some bi-bunch (ὠ,ὠ). If no such edge is

available, then he will try to claim an edge ὼȟώ where Ø and Ù are untouched vertices. In

that case, a new bi-bunch must be created, so we will have ὼ ȟ ώ . If neither of that

is possible, he will claim an edge connecting two existing bi-bunches, that is, ὼȟώ such

that there exist ὠȟὠ and ὠȟὠ with ὼɴ ὠ and ώ ɴ ὠ. In this step, he needs to

replace two existing bi-bunches with a single new one ὠ ᷾ὠȟὠ ᷾ὠ .

Some changes must be done on bi-bunches, depending on the edge that has been
claimed by Enforcer. When claimed edge ὼȟώ is such that neither x nor y belongs to any

bi-bunch, a new bi-bunch is introduced ὼȟώȟόȟὺ , where ό and ὺ are arbitrary

untouched vertices. If there are no two untouched vertices (that can happen only once in

the game) then the new bi-bunch is ὼȟ ώ . If Enforcer claims an edge (ὼȟώ) such that

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

17

ὼ ɴὠ for some bi-bunch ὠȟὠ and Ù is untouched, then we need to update the bi-

bunch or, in other words, replace the existing one with ὠ ᷾ ώȟὠ ᷾ ό , where Õ is

an arbitrary untouched vertex. The next option is that the edge ὼȟώ claimed by the

Enforcer is such that there are bi-bunches ὠ,ὠ) and ὠȟὠ with ὼ ɴὠ, ώ ɴὠ. Then,

these two bi-bunches are replaced with a single new one ὠ ᷾ὠȟὠ ᷾ὠ . Notice that

Avoiderôs graph will not contain an edge with both endpoints in the same side of a bi-

bunch if we follow everything described above. Also note that if Enforcer claims an edge
ὼȟώ, such that before that move one of the vertices was untouched, then that edge will

be contained in the same side of some bi-bunch.

Assume that Avoider claims an edge ὼȟώ such that before that move ὼ was untouched.

Then Ù must also be untouched and there are no unclaimed edges across a bi-bunch at

that point because of the Avoiderôs strategy. In Enforcerôs next move he will not be able

to claim an edge across a bi-bunch and because of all that, the edge he will claim will

have both endpoints in the same side of some bi-bunch. We can conclude that after every

round in which one or both players claim an edge that is incident with an untouched vertex

(that is not the next to last untouched vertex), the edge claimed by the Enforcer will be

contained in the same side of some bi-bunch.

By the bi-bunch maintenance rules explained throughout the proof, during every round

the number of untouched vertices is decreased by at most 6. Therefore, by the time all

but two vertices are not untouched at least Enforcerôs edges will be contained on the

same side of a bi-bunch. Consequently, when Avoider must claim an edge that will create

an odd cycle, both players have claimed together all the edges of a balanced bipartite

graph that complies with the bi-bunch bipartition, and at least another edges. Putting

all of this together we get a total of at least ẗ edges claimed so at least

rounds were played. Ǐ

Now, let us go through one example of how this game can be played according to the

above described strategies of Avoider and Enforcer. We will take a complete graph on 6

vertices. In Figure 2.1 Avoiderôs edges are the blue ones and Enforcerôs are the red ones.

In his first move, Avoider claims the edge ρȟς and we marked it as blue. We immediately

create a bi-bunch ρȟς . Enforcer claims σȟτ and we marked it as red. After that

move, a new bi-bunch is created σȟτȟπȟυ , and the first round is finished. In the next

one, Avoider claims τȟυ and that move does not require any changes on any element

of the list of bi-bunches. Enforcer claims ρȟσ and after that move, we are merging the

bi-bunches and now we have one bi-bunch ρȟσȟτȟςȟπȟυ . Further, Avoider chooses

πȟρ. In every move, his primary goal is to claim an edge that connects two opposite

sides of a bi-bunch. Enforcer claims ρȟτ. The following move of Avoider is claiming ςȟσ

and of Enforcer the claimed edge is πȟσ. Then, by following their strategies, Avoider

chooses ςȟτ and Enforcerôs choice is πȟτ. There were no changes on the bi-bunch list

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

18

after these three moves. Avoider now claims ρȟυ and Enforcer follows with claiming

σȟυ. These moves also do not require any changes on bi-bunches. And after all these

rounds the only edge possible for Avoider to choose is πȟς and Enforcer follows with

ςȟυ. Now, let us take a look at the bottom right graph in Figure 2.1. Only three edges

are not claimed at this point. It is Avoiderôs turn to play. Whatever edge he chooses, the

blue subgraph will stop being bipartite or in other words, he will create a cycle of odd

length. By doing that, he loses the game. So, in this particular example, Avoider manages

to keep his graph bipartite for 6 rounds, and in the 7th round, he will claim an edge that is

going to end the game. If we calculate the upper and lower bound we will get 4.83 for the

lower one and 8.5 for the upper one and obtained result, in this case, was 6.

FIGURE 3.1 NON-BIPARTITE GAME ON THE COMPLETE GRAPH WITH 6 VERTICES

3.2 Improving Enforcerôs strategy

Based on the description of the strategies of both players, it can be concluded that

Avoiderôs strategy is completely deterministic. On the other hand, within Enforcerôs

strategy, there is an arbitrary part that leaves room for potential improvement.

Enforcerôs strategy is easy to follow and does not contain many steps. His primary goal

is to claim an edge that connects two opposite sides of the bipartition of Avoiderôs graph.

Every connected component of Avoiderôs graph is a separate bipartition. The code for

that part is explained in Algorithm 4.2. If he is unable to do that, he simply chooses an

arbitrary edge. The main idea was to replace the arbitrary step with well-defined steps

that will potentially improve his strategy and give him a faster win.

After a thorough analysis of potential changes in Enforcerôs way of playing, we decided

to compare two different approaches to defining his strategy. The first one is named

óRandom strategyô and the second óTwin strategyô. In the Random strategy, Enforcer has

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

19

only two possible choices. If it is possible, he will claim an edge that connects two opposite

sides of the bipartition of one of the Avoiderôs connected components. This step was

explained in the proof of Theorem 3.4. If that kind of edge does not exist, he is going to

claim a randomly chosen edge. Because of this random part, every time the game is

simulated it is possible to get a different result. The second strategy called the Twin

strategy consists of three parts. First is always the same, so it has been already explained.

The second and the third options are making a ótwinô to Avoiderôs strategy. We want

Enforcer to claim the edges that Avoider has an intention to claim in his future moves. So,

the second option for him is to claim an edge that is consisted of two untouched vertices.

But, following his strategy for creating or altering bi-bunch, we need two more edges that

are also untouched to put in a bi-bunch created at that point. If this move is not possible

also, he will try to find an edge that connects two bi-bunches. By doing so, alterations

must be done on bi-bunches ï they should be merged oppositely of merging when

Avoider claims that kind of edge. If neither of these options is possible, he again claims

an edge by random choice.

After comparing these two types of strategies, one more idea came to life. We wanted to

remove the random part completely, so after the first possible choice for Enforcer, which

is already explained many times, the second option was to claim an edge whose vertex

degrees give the smallest value when added together. Degree refers to a subgraph of

claimed edges by that point. We called this strategy óThe smallestô.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

20

4. Implementation of strategies
4.1 Playersô strategies

After a thorough analysis of game setting and strategies for each player, the next step

was to implement them. The focus was on the question of how fast a player can win.

Enforcer has a sure victory, but how fast he can achieve it? We were interested in seeing

how the number of rounds will change within the proven boundaries. As it was described

and explained in the proof of Theorem 3.4, each player has predefined ways of choosing

an edge in every round. Strategy for Avoider is completely deterministic, but for Enforcer,

it is not as in some parts we have more than one option for the following move. Later, we

will see how and does the results can be improved if we try to upgrade his strategy.

The strategy of each player consists of different possible moves defined by priority.

Therefore, in the Enforcerôs case, the situation is as follows:

For Avoider, the situation is a little different. He has three possible moves defined by

priorities and in every round, he will claim an edge by following one of these rules. When

the moment comes that none of these moves are possible, at that time he is forced to

choose the edge for which he will lose the game. His strategy can be explained in the

following way:

He will try to claim an edge which will connect two opposite sides of the bipartition of

one of the Avoiderôs connected component. In every move that is his primary goal.

Sometimes he will be unable to do that. In those cases he will claim an arbitrary edge.

His first choice, if possible, is to claim an edge across some existing bi-bunch. If that

kind of edge is not free (all edges of that type are already claimed) or does not exist

(e.g. in the first move it will not) then he will try to claim an edge whose vertices are

untouched by that point. If neither of that is possible, he will claim an edge connecting

two existing bi-bunches.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

21

4.2 Python

The whole code was done in Python. Python is an interpreted, object-oriented, high-level

programming language with dynamic semantics. It has a simple syntax and his programs

are clear and easy to read. It supports both procedural and object-oriented programming.

Python supports modules and packages, which can be very helpful if you need reuse.

[8,21]

Packages that were used the most in the programming process were described in the

following paragraphs:

1. Numpy

NumPy stands for Numerical Python. It is the fundamental package for scientific

computing and it is mostly used for working with arrays. Lists are slaw to process so

NumPy gives as an array object that is up to 50 times faster than lists in Python. Many

other packages are also built on top of this one.

2. Matplotlib

Matplotlib is a library used for visualization in Python. It is used for creating plots,

histograms, bar charts, scatterplots, etc.

3. NetworkX

NetworkX is a library that is used the most in the programming of the game that we talked
about earlier. It is a library for studying graphs and networks. NetworkX is a Python

package for the creation, manipulation, and study of complex networks.

We want to use data as effectively as possible, so that is why is important to store it

properly. Data structures can be classified in several ways and you can see this

classification in Figure 4.1.

Using classes when coding was very useful because they are a way to define new sorts

of stuff not previously used and implemented by other users.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

22

FIGURE 4.1 CLASSIFICATION OF DATA STRUCTURES

4.2.1 Game simulation code

For the beginning, let us briefly recall the game and playersô strategies that are supposed

to be implemented. The game is played on a complete graph on n vertices. Many different

values of n were used. We have two opposing sides ï Avoider and Enforcer. The game

is played until Avoider claims an edge that is going to make his graph non-bipartite. Each

player has its strategy. Avoider is trying to play as long as possible without compromising

the bipartite property of his graph. On the other hand, Enforcer is trying to force the

Avoider to claim exactly that kind of edge that is going to make his graph non-bipartite.

The focus of our experiment was to see how fast Enforcer can win. The main question is

how many rounds are going to pass until we get to the point where Avoiderôs every choice

from all the remained edges is going to make his graph non-bipartite.

As we explained earlier in the paper, three different strategies for Enforcer have been

implemented and analyzed. In accordance with these changes, it was necessary to adjust

and change the code itself. However, some pieces of the code remained the same in

each of the strategies and the way the data is stored has not changed.

For graph representation, NetworkX was used. The Non-bipartite game is always played

on a complete graph. In addition to constructing graphs node by node or edge by edge,

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

23

they can also be generated using a constructive generator. In our case, we use generator

ÃÏÍÐÌÅÔÅÇͅÒÁÐÈÎ , where Î represents the number of vertices. Every edge was

represented as a tuple with two elements. Throughout the whole game, it is necessary to

follow unclaimed i.e. free edges as well as those previously claimed by each player. All

of these were stored in different lists. We also developed a new class that we needed to

store and manipulate objects called bi-bunches. The class consists of two lists that have

no common elements and also have the same number of elements from the beginning

until the end of the game. After creating this class, we also needed a list of all the bi-

bunches created during the game.

To begin with, we needed a function that is going to tell us whether the Avoiderôs graph

is bipartite or not. More details can be found in [10]. We proved earlier that this is

equivalent to whether a graph contains no odd cycles. For the purpose of implementation,

things written in [20] were very helpful. A round starts if the condition is satisfied, if it is

not satisfied the game ends at that point. Pseudocode for the function that checks if a

graph is bipartite follows under Algorithm 4.1.

ALGORITHM 4.1 FUNCTION THAT ANSWERS THE QUESTION OF WHETHER A GRAPH IS BIPARTITE OR NOT

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

24

Avoiderôs strategy is always the same. He wants to claim an edge across an existing bi-

bunch. So, the first thing is to check whether a list with all the bi-bunches is empty or

contains some elements. If it is not empty, we create all possible edges from existing bi-

bunches and find one that is not claimed previously ï if such edge exists. To create these

edges, we wrote a function that is combining the elements from the two sets of a particular

bi-bunch. Otherwise, if there is no matching edge or the list with bi-bunches is empty, the

next step is to find two untouched vertices and to claim an edge incident with them. A

vertex is untouched if it does not belong to any bi-bunch and all the edges incident with it

are unclaimed. For checking whether a vertex is untouched, we also created a function

that returns a Boolean value. If none of these two options were available, then we were

checking if there are at least two bi-bunches and also whether there is at least one

unclaimed edge that can connect two different bi-bunches. This pretty much summarizes

the whole of Avoiderôs strategy. It is important to emphasize that after almost every move,

it was necessary to make some changes to the existing bi-bunches or to create a new

one. For that purpose, we created a few functions that merge the bi-bunches in a way

defined in the proof of Theorem 3.4.

Let us now move on to Enforcerôs strategies. In each of the three strategies we presented,

his primary goal is the same. To recall, he needs to find an edge that connects two

opposite sides of the bipartition of one of the Avoiderôs connected components. We

created the function that returns a Boolean value that answers the question of whether

such edges exist together with a list of all the edges that satisfy the condition. In Algorithm

4.2 we created pseudocode for the solution of this step in the strategy.

In Random strategy, if he was unable to claim such edge described in the previous

paragraph, he will randomly choose one. For that, we used the choice() method that

returns a randomly selected element from the specified sequence. That sequence in our

case was a list of all unclaimed edges by that point. Changes on the bi-bunches had to

be made depending on which edge was chosen. If the chosen edge is such that neither

of its vertices belongs to any bi-bunch, a new bi-bunch was created and in that case, we

also needed two untouched vertices to put in that bunch. To check these two things, we

have defined functions. The first one that is answering the question of whether the chosen

edge does not belong to any bi-bunch is called ófreeô. And the other is called óe2uô that

stands for exist 2 untouched. Next, if Enforcer claims an edge such that one of its vertices

belongs to some bi-bunch and the other one is untouched, that edge is named ósemi freeô.

In that case, some alterations are done on the existing bi-bunch from which the mentioned

vertex is. And the last case is that both vertices of the edge belong to some bi-bunch.

That edge we named óoccupiedô.

In the Twin strategy, we used similar functions and approaches as in Avoiderôs strategy.

And for The smallest strategy, instead of the ÃÈÏÉÃÅ method, we introduce a function

that we named ósmallestô that is returning the edge whose vertex degrees give the

smallest value when added together. This degree refers to a subgraph of claimed edges.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

25

ALGORITHM 4.2 FUNCTION THAT ANSWERS THE QUESTION OF WHETHER THE PRIMARY STEP IN ENFORCERΩS STRATEGY

CAN BE DONE

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

26

5. Results
We have dealt with the analysis of this Non-bipartite game and within this chapter, we will

talk about the results obtained in many different experiments. We are opposing strategies

used to obtain these two theoretical limitations defined and proven in Theorem 3.4. We

observe the duration of the game. The duration of the game is presented as the number

of rounds required for Enforcer to win. The number of rounds if we follow the strategies

explained before, should be at least and not more than ρ where Î is the

number of vertices. Avoiderôs strategy is unique and unchanged in all experiments. On

the other hand, trying to enhance Enforcerôs play, we introduced three different strategies.

After implementing these strategies and running many experiments, obtained results are

presented in the following chapters.

5.1 óRandom strategyô

The first strategy that we are going to analyze is the Random strategy. The first few

experiments were done by following the steps defined below. Numbering indicates the

priority in selecting an edge. The players will always try to make the first move defined in

their strategies. If they are not able to do that, they will move to the next option and so

on.

AVOIDERôS STRATEGY:

1. Claim an edge across an existing bi-bunch.

2. Claim an edge that will join two untouched vertices.

3. Clam an edge that will connect two bi-bunches.

ENFORCERôS STRATEGY:

1. Claim an edge that connects two opposite sides of the bipartition of one of the

Avoiderôs connected components.

2. Randomly choose and claim an edge.

5.1.1 Experiments

These experiments were done on the complete graphs starting from the graph with 6

vertices and ending with the graph that contains 50 vertices, but only on the even ones.

For every number of vertices, the experiment was run 20 times. The most important thing

was to calculate the upper and lower bound for each number of vertices and to follow the

number of rounds for every played game and how it is changed within the boundaries. In

other words, the idea was to see what result the opposing strategies of these two players

give.

Some general observations can be done on the obtained data. Firstly, we can tell that all

the obtained numbers are between boundaries and that is something that was expected.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

27

Secondly, it can be seen that for the smaller graphs number of rounds are almost the

same in every experiment. For example, for the graph with 6 vertices, the number of

rounds was always 7. As the graph was getting larger, the number of rounds started to

change more drastically.

Some statistical measures were needed. Mean, mode and, median were calculated.

¶ Mean refers to the arithmetic mean ï the sum of numbers divided by how many

numbers are being summed.

¶ Mode od modus gives us the most frequently occurring or repetitive value in a

range of given data.

¶ Median represents the value that separates the set and divides it into lover and

higher half. It is a number in the middle of the ordered set of values.

For better visualization of the statistical measures and how they are different one from

another, look at Figure 5.1.

FIGURE 5.1 STATISTICAL MEASURES [18]

Now, let us take a look at Figure 5.2 to see our results. As it was already mentioned, for

every graph size 20 games were played on it. We took the mode values to represent them

on the plot. In Figure 5.2 in both the upper and lower bound and results we subtracted

in order to emphasize differences between the values in the second-order term. Later in

the paper, this way of presenting the results was always used for a clearer picture of the

differences in results for different strategies.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

28

FIGURE 5.2 RESULTS FOR 'RANDOM STRATEGY' ς 20 LAUNCHES ON GRAPHS FROM N=6 TO N=50 SUBTRACTED BY THE

VALUE OF
ἶ

What can be concluded is that for the smaller Î, the number of rounds was somewhere

near the middle ï between the upper and lower bound. As Î was getting larger we can

see that number of rounds was leaning towards the upper bound. That means that

Avoider played the game better than Enforcer.

It seemed like Enforcer was at its best in the games played on the graphs from ὲ ςπ to

ὲ σπ because the curve is lowest there. Somewhere after ὲ σπ, all obtained values

are closer to the upper bound in comparison to the lower one. That leaves us with a

question of whether and how we can change Enforcerôs strategy to improve these results.

In Figure 5.2 mode values were represented, but we also calculated mean and median.

In Table 5.1 you can find precise values for the upper and lower bounds.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

29

Number of
vertices

6 8 10 12 14 16 18 20 22 24 26

Lower

bound
4.83 8.50 13.17 18.83 25.50 33.17 41.83 51.50 62.17 73.83 86.5

Upper

bound
8.5 13 18.5 25 32.5 41 50.5 61 72.5 85 98.5

Mean 7 11 16 21.95 28.6 36.65 45.6 55.65 66.25 78.48 91.1

Mode 7 11 16 22 29 37 46 56 66 78 91

Median 7 11 16 22 29 37 46 56 66 78 91

28 30 32 34 36 38 40 42 44 46 48 50

100.17 114.83 130.5 147.17 164.83 183.5 203.17 223.83 245.5 268.17 291.83 316.5

113 128.5 145 162.5 181 200.5 221 242.5 265 288.5 313 338.5

105.15 120.1 135.85 156.4 174.9 194.85 216.05 238.3 260.55 282.5 306.85 331.4

105 120 135 156 176 193 215 240 265 283 307 328

105 120 136 156.5 175 195 215.5 238.5 260 283 307 330.5

TABLE 5.1 STATISTICAL MEASURES

From the given data, we can conclude that mean, modus, and median are not very

different from each other. In fact, in numerous cases, they are the same.

At the end of this case, let us take a look at the plots in the following pages that are

showing obtained results from done experiments for ὲ ρπ, ὲ σπ, and ὲ υπ.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

30

FIGURE 5.3 OBTAINED RESULTS APPLYING THE RANDOM STRATEGY FOR N = 10

FIGURE 5.4 OBTAINED RESULTS APPLYING THE RANDOM STRATEGY FOR N = 30

FIGURE 5.5 OBTAINED RESULTS APPLYING THE RANDOM STRATEGY FOR N = 50

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

31

One more thing that would also be interesting to see and can be helpful later when

comparing the strategies is how far the average number of rounds was from lower and

how far from the upper bound. We wanted to get a percentage of the interval in which the

obtained value is located. We have done that by calculating the value of this formula

where ὒὋ stands for the length of the game presented as the number of rounds, ὒὄ for

the lower bound, and Ὗὄ for the upper bound.

Number
of

vertices

The percentage of the
interval in which the

obtained value is located
28 38.83%
30 38.54%

32 36.90%
34 60.22%

36 62.27%
38 66.76%

40 72.24%
42 77.50%
44 77.18%

46 70.49%
48 70.94%

50 67.73%

TABLE 5.2 WHERE IN THE INTERVAL ARE OBTAINED RESULTS

We can draw some conclusions by looking at the percentages in the table. The lower the

percentage, the faster the Enforcer managed to win within the proven boundaries. The

lowest percentage is σφȢωπϷ obtained for the graph with 32 vertices. Observing these 23

values for different graph sizes, for this ó32-nodeô graph, the Enforcer achieved the fastest

victory and played the best. The highest percentage was obtained for the ó42-nodeô graph

with the value of χχȢυπϷ and that is the best result in favor of Avoider. The average

number of rounds is located at υτȢτψϷ of the interval. The number of rounds was never

too close to the lower bound. We wanted to change that by improving Enforcerôs strategy.

Later in the paper, we will see if that was possible by comparing in detail obtained results.

5.1.2 Experiments on larger graphs

We saw how the number of rounds changed within the boundaries and how for the smaller

graphs we got pretty similar values for every game that has been played, and for larger

ones how these results differ one from another. The next idea was to make sure that

these strategies work for the bigger graphs also ï the ones with a larger number of

vertices. Previously it has also been seen that for larger graphs, the number of rounds

Number
of

vertices

The percentage of the
interval in which the

obtained value is located
6 59.09%
8 55.56%

10 53.13%
12 50.54%

14 44.29%
16 44.47%

18 43.46%
20 43.68%

22 39.52%
24 41.34%
26 38.33%

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

32

was closer to the upper bounds, but the largest graph had 50 vertices. So, we thought it

might be interesting to see how these numbers will behave for even larger graphs. Games

were simulated for every even graph from 50 vertices to 100 vertices. In Figure 5.6 we

can see the results. The same ótrickô was used ï subtraction by the value of to get a

better visualization of the data.

FIGURE 5.6 RESULTS FOR ΨwANDOM STRATEGYΩ - GRAPHS FROM N=50 TO N=100 SUBTRACTED BY THE VALUE OF
ἶ

Firstly, we can see the curve is very close to the upper bound for almost every size of a

graph starting from ὲ υπ and ending with ὲ ρππ. This is telling us that Avoiderôs

strategy opposed to his opponent's strategy gives much better results. He was able to

prolong the game almost to the maximum number of rounds in some cases.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

33

To confirm what can be seen in Figure 5.6 just by looking at it, we created Table 5.3 which

will tell us where in the interval obtained values are located. We used the same formula

as before and obtained the following figures.

Number
of

vertices

The percentage of the
interval in which the

obtained value is located

76 100%

78 68.81%

80 73.91%

82 90.09%

84 77.88%

86 66.22%

88 52.42%

90 80.60%
92 77.22%

94 59.09%

96 78.14%

98 53.57%

100 60.31%

TABLE 5.3 WHERE IN THE INTERVAL ARE OBTAINED VALUES

From Table 5.3 we can see that almost all of the values are in the upper part of the interval

(percentages greater than 50). The lowest is for the graph with 70 vertices with the value

of τυȢφπϷ. And the greatest one is for the graph with 76 vertices where it is equated with

the upper bound giving the result of ρππϷ. The average position of the game length is at

χρȢπρϷ of the interval.

5.1.3 Conclusions for óRandom strategyô

By observing the results for graphs starting with ὲ φ and ending with ὲ υπ and 20

launches for each value of ὲ, we can see that Avoiderôs strategy was better in some ways

than Enforcerôs because, within the interval in which the game had to end, Avoider

managed to prolong the game for a long time. The average number of rounds was at

υτȢτψϷ of the interval which is somewhere in the middle, a bit closer to the upper bound.

And if we move our attention to graphs with ὲ υπ to ὲ ρππ we can see that the

average number of rounds was at χρȢπρϷ of the interval. We can conclude that for the

larger graphs the curve is moving more and more to the upper bound which means that

Enforcer was slower and slower in achieving the win. This is not an unexpected result,

because if we recall the strategies, we can see that Avoiderôs strategy was more detailed

and not one move was based on an arbitrary choice of an edge. On the other side,

Enforcerôs strategy consisted of only one well-defined step. He followed only one rule and

Number
of

vertices

The percentage of the
interval in which the

obtained value is located
50 61.36%

52 82.48%

54 59.86%

56 87.76%

58 70.39%

60 61.78%

62 72.22%

64 82.04%

66 73.84%

68 62.71%

70 45.60%

72 80.75%

74 67.19%

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

34

if that was not possible, he would randomly choose an edge. These edges were marked

as possible bad ones because they were probably going to ruin the strategy. This is a

part of the game that seemed like it needs an improvement. Enforcerôs strategy must be

defined in a more deterministic way in order to get better results. We were hoping that

these improvements would shift the curve down. And so the next strategy called Twin

was born.

5.2 óTwin strategyô

The first logical improvement of Enforcerôs strategy was to define and prioritize his moves

in a way that will óspoilô the Avoiderôs strategy.

This improvement was based on óblockingô those moves interesting to Avoider. Recall that

Enforcer has the same primary goal in choosing an edge in each of these simulations.

The other moves in this particular strategy that we named Twin are similar to Avoiderôs

moves. By following these steps when choosing an edge, he might be able to finish the

game earlier than before. New strategy for Enforcer follows:

1. Claim an edge that connects two opposite sides of the bipartition of one of the

Avoiderôs connected components.

2. Claim an edge that connects two untouched vertices. (Just a reminder, he will need

two more untouched vertices to put in a bi-bunch based on the rules for creating

and manipulating with bi-bunches)

3. Claim an edge that will connect two bi-bunches.

4. If none of these options is possible, choose randomly.

Now, looking at the two strategies, they are pretty similar. It seems like this could help

Enforcer to win the game faster. Let us see the results of experiments done in the same

way as for óRandom strategyô and try to compare them. The main question is: Was Avoider

forced by Enforcer to claim an edge that will end the game sooner than before?

5.2.1 Experiments

After the done changes on Enforcerôs strategy, we would like to see whether these

numbers of rounds are closer to the lower bounds. That would be a good indicator that

we are on a right track. In Figure 5.7 we can see what we got by applying an improved

strategy for Enforcer. The mode values were used, the same as for the Random strategy.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

35

FIGURE 5.7 RESULTS FOR 'TWIN STRATEGY' ς 20 LAUNCHES ON GRAPHS FROM N=6 TO N=50 SUBTRACTED BY THE VALUE

OF
ἶ

By looking at Figure 5.7 we can see that the black curve that represents mode values for

done experiments is somewhere in the middle of the interval. Even more, it is leaning

towards the lower bound. If we compare it with Figure 5.2 we can definitely see that some

improvements for Enforcer have been made.

Based on this figure we can say that the curve, which represents mode values from our

experiments, is shifted downward. And if we briefly recall the plots for Random strategy

and the cases for Î values around 45 when the mode was almost equal to the upper

bound and compare it to this case, we can conclude that it is drastically lower and much

closer to the lower bound, which goes in favor of Enforcer, than before.

It would be convenient to have a table with statistical measures for these experiments

also to compare it with the first one.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

36

Number of
vertices

6 8 10 12 14 16 18 20 22 24 26

Lower
bound

4.83 8.50 13.17 18.83 25.50 33.17 41.83 51.50 62.17 73.83 86.5

Upper
bound

8.5 13 18.5 25 32.5 41 50.5 61 72.5 85 98.5

Mean 7.05 11 16.1 21.85 28.75 36.8 45.35 55.45 66.3 78.3 91.15

Mode 7 11 16 22 29 37 45 55 66 78 91

Median 7 11 16 22 29 37 45 55 66 78 91

28 30 32 34 36 38 40 42 44 46 48 50

100.17 114.83 130.5 147.17 164.83 183.5 203.17 223.83 245.5 268.17 291.83 316.5

113 128.5 145 162.5 181 200.5 221 242.5 265 288.5 313 338.5

105.05 119.55 134.45 154.9 172.8 192.6 213.65 234.65 256.6 278.85 304.7 328

105 119 136 157 172 189 210 232 255 275 299 325

105 119.5 135.5 155 172 192.5 213 233.5 255 278 303 328

TABLE 5.4 STATISTICAL MEASURES FOR TWIN STRATEGY

We can make some conclusions about these experiments, not comparing them with the

previous ones. For smaller graphs, it can be concluded that the number of rounds for

every played game is almost the same. On the other hand, for the bigger graphs, we can

see that numbers are changing. Also, as for the previous strategy, mean, mode, and

median are very similar, in a lot of cases they are equivalent. In the pages that follow you

can find plots to get a better understanding of where these numbers are and how they

are changing.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

37

FIGURE 5.8 OBTAINED RESULTS APPLYING THE TWIN STRATEGY FOR N = 10

FIGURE 5.9 OBTAINED RESULTS APPLYING THE TWIN STRATEGY FOR N = 30

FIGURE 5.10 OBTAINED RESULTS APPLYING THE TWIN STRATEGY FOR N = 50

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

38

As we talked about it earlier, by calculating where within the interval obtained values are

located and comparing them with the same results for other strategies, we can see the

differences and how each change moves the number of rounds whether up or down the

interval. In Table 5.5 we calculated the percentage of the interval in which the obtained

values for every graph size are located.

Number

of
vertices

The percentage of the

interval in which the
obtained value is located

28 38.05%
30 34.51%

32 34.14%
34 50.43%

36 49.28%
38 53.53%

40 58.79%
42 57.95%

44 56.92%

46 52.54%
48 60.79%

50 52.27%

TABLE 5.5 WHERE IN THE INTERVAL ARE OBTAINED RESULTS

Some conclusions can be drawn from these results. Firstly, we can find the smallest value

within this interval. That value is στȢρτϷ and it is obtained for the graphs of size 32. It is

interesting to notice that for the Random strategy, the lower percentage was also obtained

for the graphs of size 32. The highest percentage was obtained for the ô48-nodeô graph

and that value was φπȢχωϷ. The highest value for the Random strategy was χχȢυπϷ. This

can be an indicator that we are on the right track because we are moving the curve to the

lower bound of the interval and that is what we wanted to achieve by introducing these

improvements in Enforcerôs strategy. The average number of rounds is located at τψȢσψϷ

on the interval. That is also an improvement, comparing it with the υτȢτψϷ obtained for

the Random strategy.

5.2.2 Experiments on larger graphs

Based on the conclusion that more differences have been seen in the larger graphs after

the changes on Enforcerôs strategy, we were curious to see if improvements are going to

be more visible for even larger graphs. Let us start with Figure 5.11 to visualize the

obtained figures.

Number
of

vertices

The percentage of the
interval in which the

obtained value is located
6 60.45%

8 55.56%
10 55.00%

12 48.92%
14 46.43%
16 46.38%

18 40.58%
20 41.58%

22 40.00%
24 40.00%

26 38.75%

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

39

FIGURE 5.11 RESULTS FOR Ψ¢WIN STRATEGYΩ - GRAPHS FROM N=50 TO N=100 SUBTRACTED BY THE VALUE OF
ἶ

From Figure 5.11 we can notice that in some parts, we can see that the curve is leaning

towards the lower bound and that was not the case in the Random strategy. Somewhere

around ὲ χπ the curve is almost ógluedô to the upper bound and no improvement should

be expected there, but for the values of Î close to 60 and also 90, it seems that some

improvements were achieved. The best result was obtained for ὲ υφ and ὲ υψ and

after that ὲ χτ. Pretty good results are also visible for ὲ ωπ, ὲ ως and ὲ ωτ. The

whole curve is shifted towards the lower bound, for some values of n more, for some less,

but in general, it is lower.

The same as for the Random case, to confirm what can be seen in Figures 5.11 we

created Table 5.6 which will tell us exactly where within the interval these obtained lengths

of the games are located.

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

40

Number
of

vertices

The percentage of the
interval in which the

obtained value is located

76 87.82%

78 59.90%

80 62.12%

82 58.96%
84 53.00%

86 47.30%

88 55.07%

90 34.05%

92 41.77%

94 36.78%

96 63.56%

98 51.19%
100 41.63%

 TABLE 5.6 WHERE IN THE INTERVAL ARE OBTAINED RESULTS

In Table 5.6 we can see that there is a lot more than one value located in the lower part

of the interval as was the case with the Random strategy. The lowest percentage is

obtained for the ô90-nodeô graph with the amazing result of στȢπυϷ. Just to compare, for

the graph of the same dimension in the Random strategy, the length of the game was at

ψπȢφπϷ of the interval. This is a great improvement. The average position of the game

length is at υχȢτςϷ of the interval.

5.2.3 Conclusions for óTwin strategyô

After various analyzes regarding the Twin strategy, it can be concluded that it gives quite

good results. By applying this strategy, Enforcer managed to match Avoiderôs brilliant

strategy, which we know gives great results for him. Compared with the Random strategy,

it gives much better results for Enforcer in the form of shortening the game i.e. the speed

of his victory. Specific figures speak in favor of this and we see that in the case of 20 runs

for graphs up to ὲ υπ the average position of the length of the game within the interval

is at τψȢσψϷȢ In the case of graphs larger than 50 up to those with 100 vertices, this

number is υχȢτςϷ which is a significant improvement in comparison with χρȢπρϷ

obtained for the Random strategy.

5.3 óThe smallestô

For The smallest strategy we chose to do the following changes in Enforcerôs strategy:

1. He tries to find and claim an edge that connects two opposite sides of the

bipartition of one of the Avoiderôs connected components.

2. He claims an edge whose vertex degrees give the smallest value when added

together.

Number
of

vertices

The percentage of the
interval in which the

obtained value is located

50 84.09%

52 64.96%

54 59.86%

56 34.69%

58 34.87%
60 57.96%

62 50.00%

64 46.11%

66 63.37%

68 83.05%

70 85.16%

72 93.58%

74 35.94%

Analysis of fast winning strategies in Avoider-Enforcer ñNon-bipartiteñ game

41

This strategy is different from the others because this second option is always possible

to achieve and also there is almost no random part as in the previous two. The only case

where we have a random part is if there are several edges with the same sum after adding

the degrees of their vertices.

Firstly, we run 20 experiments for every value of Î, starting from 6 and ending with 50.

We have chosen this approach because it would be easy to compare it with the previous

two strategies. Figure 5.12 is showing the results of this strategy.

FIGURE 5.12 RESULTS FOR 'THE SMALLEST' STRATEGY ς 20 LAUNCHES ON GRAPHS FROM N=6 TO N=50 SUBTRACTED

BY THE VALUE OF
ἶ

Simply by looking at Figure 5.12 we can say that the black curve, which shows the modes

of obtained values, is somewhere in between those boundaries. For nôs smaller than 30

the result is stable somewhere in the middle of the interval. After that, it starts to move in

the wanted direction but not for long. It seems like it starts to move more to the upper part

