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Abstract

In the past few decades, the medical imaging techniques have made significant con-
tribution to the revealing of internal body structures as well as the diagnosis and treat-
ment of disease. Specifically, in ophthalmology, one of the popular non–invasive means
of ocular tissue imaging is the Optical Coherence Tomography (OCT).

In this thesis we deal with the modelling of the corneal tissue whose opacity is subject
of interest among scientists still today. Our goal is to generate a virtual OCT scan using
an appropriate mathematical model which could further locate conditions that lead to
clouding of the human cornea.

Since eye’s structures, in physical sense, represent anisotropic materials, the model
requires the study of such materials. Although the numerical analysis, present in the
literature, is restricted to isotropic materials, we well modify the computational tool to
the anisotropic case.

Comprehension of optical eye’s properties is certainly necessary to establish a math-
ematical model. For the purpose of numerical simulations and analysis of the numerical
algorithm, different types of boundary conditions encountered in electromagnetism are
considered.

Numerical simulations are performed by applying so–called Runge–Kutta discon-
tinuous Galerkin method on Maxwell’s equations previously adapted to the model. A
detailed analysis of obtained results is presented.

A large part of thesis is occupied by the proposition of discontinuous Galerkin (DG)
method, a procedure that belongs to the family of finite element methods. The DG
method is applied on spatial discretization, while an explicit Runge–Kutta method is
employed for temporal integration. In this way we get a full discretization of initial
equations. In addition, convergence and stability of these methods are well studied and
numerically tested on various schemes defined on different meshes.





Izvod

U proteklih nekoliko decenija, tehnike medicinskog snimanja značajno su doprinele
otkrivanju unutrašnjih telesnih struktura, kao i dijagnozi i lečenju bolesti. Konkretno,
u oftalmologiji, jedan popularan neinvazivan vid snimanja očnih tkiva je optička koher-
entna tomografija (engl. Optical Coherence Tomography – OCT).

U ovoj tezi bavimo se modeliranjem tkiva rožnjače, čija neprozirnost i dan danas
predstavlja predmet naučnog interesovanja. Naš cilj je generisati virtuelni OCT snimak,
uz pomoć odgovarajućeg matematičkog modela, koji bi dalje mogao locirati uslove koji
dovode do zamućenja ljudske rožnjače.

Kako očna tkiva predstavljaju, fizički gledano, anizotropne materijale, model zahteva
izučavanje istih. Iako je numerička analiza, prisutna u literaturi, ograničena na izotropne
materijale, uspeli smo modifikovati numerički alat anizotropnom slučaju.

Mehanička svojstva oka smo upotpunili uvođenjem optičkih karakteristika anizotrop-
nih materijala, što je neophodno za razumevanje matematičkog modela u celosti. U
svrhu numeričkih simulacija i analize numeričkog algoritma, razmatraju se različite vrste
graničnih uslova koji se susreću u elektromagnetizmu.

Numeričke simulacije se izvode primenom tzv. Runge–Kuta prekidnog Galerkinovog
metoda na Maksvelove jednačine prethodno prilagođenim modelu. Predstavljena je
detaljna analiza dobijenih rezultata.

Veliki deo rada čini izučavanje materije prekidnog Galerkinovog metoda (engl. dis-
continuous Galerkin – DG), procedure koja pripada metodima konačnih elemenata. DG
metod se primenjuje na prostornoj diskretizaciji, dok vremenskoj promenljivoj pris-
tupamo koristeći eksplicitni Runge–Kuta metod. Na ovaj način dobijamo potpunu
diskretizaciju početnih jednačina. Konvergencija i stabilnost ovih metoda su dobro
ispitani i numerički testirani na različitim šemama definisanim na različitim mrežama
diskretizacije.





Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

Nomenclature xi

Preface xiii

1 Human Eye 1
1.1 Eye’s structure and corneal transparency . . . . . . . . . . . . . . . . . . 1
1.2 Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations of Electromagnetism 7
2.1 Electromagnetic phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Maxwell’s curl–equations as a Conservation Law . . . . . . . . . 10
2.2.2 Wave equation in terms of electric field . . . . . . . . . . . . . . 11

2.3 Initial, boundary and interface conditions . . . . . . . . . . . . . . . . . 12
2.3.1 Continuity condition at interface . . . . . . . . . . . . . . . . . . 13
2.3.2 Perfect electric conductor boundary condition . . . . . . . . . . . 14
2.3.3 Perfect magnetic conductor boundary condition . . . . . . . . . . 14
2.3.4 Silver–Müller absorbing boundary condition . . . . . . . . . . . . 14

2.4 Wave propagation in anisotropic medium . . . . . . . . . . . . . . . . . 15
2.4.1 Dielectric permittivity tensor . . . . . . . . . . . . . . . . . . . . 15

3 Mathematical Model 17
3.1 Three–dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Soft sources scattered field formulation . . . . . . . . . . . . . . . 18
3.2 Reduction to two dimensions . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Discontinuous Galerkin Finite Element Method 21
4.1 Briefly on meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Discontinuous Galerkin formulation . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Local approximation . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Numerical flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Explicit Runge–Kutta method . . . . . . . . . . . . . . . . . . . 28

4.3 Theoretical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Discrete Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



5 Numerical Results 39
5.1 DG Formulation for Maxwell’s equations . . . . . . . . . . . . . . . . . . 39
5.2 Numerical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Modelling scattered electromagnetic wave’s propagation in 2D . . . . . . 47

6 Conclusion 55

References 57

Curriculum Vitae 61



List of Figures

1.1 The scheme of the eye. Source: https://www.toppr.com/ask/question/
draw-a-diagram-of-vertical-section-of-human-eye-and/. . . . . . 1

1.2 A cross–section scheme of the human cornea [3]. . . . . . . . . . . . . . 2
1.3 The scheme of the stroma organization [3]. . . . . . . . . . . . . . . . . 2
1.4 The basic principle of OCT instrument [30]. . . . . . . . . . . . . . . . 4
1.5 Example of A–scan, B–scan and 3D–OCT scan [11]. . . . . . . . . . . . 4
1.6 AS–OCT scan of cornea [16]. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Propagation of the electric and magnetic fields associated with an elec-
tromagnetic wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Structured versus unstructured mesh. . . . . . . . . . . . . . . . . . . . 22
4.2 Illustration of the first six Legendre polynomials. . . . . . . . . . . . . . 25
4.3 The illustration of the idea of numerical flux on the common edge (red)

formed by two adjacent elements Tk and T`. If we consider the local
element Tk and Eq.(4.5), the term int refers to superscript ‘�’, while ext
denotes ‘�’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Stability regions of fourth–order Runge–Kutta methods: ERK4, LSERKp5, 4q
and LSERKp14, 4q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Spectrum of operator Lh for K � 4 and N � 1, 2, 3, 4. . . . . . . . . . . 36
4.6 Spectrum of operator Lh for K � 29 and N � 1, 2, 3, 4. . . . . . . . . . 36
4.7 Spectrum of operator Lh for K � 4 and N � 5, 9, 16, 25. . . . . . . . . 36
4.8 Spectrum of operator Lh for K � 29 and N � 5, 9, 16, 25. See text for

discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Example of meshes used in numerical experiments for K � 32 and K �
3200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Spectrum of DG operator for TE–mode of Maxwell’s equations. . . . . . 43
5.3 Spectrum of DG operator in stability regions of ERK methods. . . . . . 44
5.4 L2–error for field Ex versus h. . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 L2–error for field Ex versus ∆t. . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Stromal collagen fibrils arrangement. See text for further discussion. . . 48
5.7 Meshes used in simulations for setup given in Fig. 5.6. The mesh above

contains K � 5072 triangles and corresponds to the left arrangement in
Fig. 5.6, while the mesh below matches with the right fibrils arrangement
and counts K � 4972 elements. . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Time evolution of scattered electric field intensity Isc. Left hand side
corresponds to healthy cornea, whereas right hand side states for case of
corneal illness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Horizontal cut of field Isc from Fig. 5.8 at y � 0. . . . . . . . . . . . . 52
5.10 Horizontal cut of field Isc from Fig. 5.8 at y � 0.1. . . . . . . . . . . . 53

https://www.toppr.com/ask/question/draw-a-diagram-of-vertical-section-of-human-eye-and/
https://www.toppr.com/ask/question/draw-a-diagram-of-vertical-section-of-human-eye-and/


vi



List of Tables

4.1 The Butcher tableau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Coefficients for the LSERKp5, 4q [7]. . . . . . . . . . . . . . . . . . . . . 29
4.3 Coefficients for the LSERKp14, 4q method [27]. . . . . . . . . . . . . . 29

5.1 Description of meshes used for computations of error. . . . . . . . . . . 41
5.2 L2–error and spatial order of convergence. . . . . . . . . . . . . . . . . 45
5.3 L2–error and temporal order of convergence. . . . . . . . . . . . . . . . 46



viii



List of Abbreviations

ABC Absorbing Boundary Condition

AS–OCT Anterior Segment–Optical Coherence Tomography

BC Boundary Conditions

CFL Courant–Friedrichs–Lewy

CPU Central Processing Unit

DG Discontinuous Galerkin

DGTD Discontinuous Galerkin Time–Domain

EMC Extracellular Matrix Components

ERK Explicit Runge–Kutta

FD–OCT Fourier Domain–Optical Coherence Tomography

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

LGL Legendre–Gauss–Lobatto

LSERK Low–Storage Explicit Runge–Kutta

OCT Optical Coherece Tomography

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PEC Perfect Electric Conductor

PMC Perfect Magnetic Conductor

PML Perfectly Matched Layer

RKDG Runge–Kutta Discontinuous Galerkin

SM–ABC Silver–Müller Absorbing Boundary Condition

TD–OCT Time Domain–Optical Coherence Tomography

TE Transverse Electric



TM Transverse Magnetic

1D One Dimension

2D Two Dimensions

3D Three Dimensions

x



Nomenclature

x scalar
x vector
Ax component x of vector A
n̂ outward–pointing normal vector whose dimension is determined by given

context
τ tangential component of the given vector
Q matrix
A
� tensor of second order in Euclidean space
Axy xy component of matrix A/tensor A

�

0,0,0
� zero, zero vector/matrix, zero tensor

diagpx1, ..., xnq diagonal matrix with entries x1, ..., xn
I identity matrix

λpAq eigenvalue of matrix A
u|S the restriction of function u to the set S

Rpzq real part of complex number z
Ipzq imaginary part of complex number z
z� complex conjugate of a complex number z
|z| modulus of complex number z

} � } norm
x�, �y inner productà

direct sum
� equivalence
� approximately or equal

d

dx
,1 differential operator with respect to variable x

B
Bx, Bx partial differential operator with respect to variable x
J Jacobian matrix



∇X gradient of scalar field X
∇2X Laplacian of vector field X
∇ �X divergence of vector field X
∇�X circulation of vector field X

»
V
p�qdV integral over volume V

¿
S

p�qdS integral over surface S
¾
C

p�qd` integral over contour C

xii



Preface

Vision is by far the most used of the five senses and is one of the primary means that
we use to gather information from our surroundings. The main purpose of the eye is
converting light from the outside world into electrical nerve impulses. The problem
usually arises when the light finds additional difficulties on its way through eye. These
obstacles cause an augmented light scatter and therefore a loss of information from
environment. In other words, the eye is affected by a disease. Unfortunately, many of
eye diseases have no early symptoms and we may see no change in our vision until the
disease has become quite advanced. To avoid such a scenario, the medicine continuously
tends to develop a suitable diagnostic technique which will be capable to detect changes
in highly complex eye’s structure at the early stadium of progress. A popular tool widely
used in ophthalmological abnormalities detection is OCT scanning (see also [11,16]).

If the first layer of an eye is blurred, a message from environment will be certainly
damaged. This is the main reason why corneal transparency has been studied through
history by ophthalmologists. Many theories were established, while a chronological
order of some important discoveries in corneal clarity is: [21], [14], [4] and [23]. Exact
conditions that led to corneal opacity are not yet fully determined. Logically reasoning
says: the more opaque cornea is, the more difficulties the OCT signal finds while passes
through it, and consequently an amount of the focused light is reflected back. In the
very beginning of the work (Chapter 1), this question is discussed and exact terminology
is provided.

The ultimate goal of this thesis is formulating and solving a computational model
that treats the corneal transparency problem by measuring the backscattered light in
form of electromagnetic radiation during an OCT scan. The formulation of model,
which is based on medical, optical and dielectric properties of considered tissues, is
proposed in Chapter 3. In fact, the model consists of a set of partial differential equations
(PDEs) that govern an electromagnetic field, the famous Maxwell’s equations. Thus,
the main concepts about electromagnetism are provided in Chapter 2, as well as the
optical properties of an anisotropic material such eye’s tissues. Conditions on domain
boundary are also studied. Particularly, the conditions that enable a perfect conductivity
and ones that create an artificial absorption are demonstrated. At this place we remark
that Maxwell’s equations are recognized as PDEs of hyperbolic type. Further, the model
equations are approximately solved using a numerical method.

In general, the exact solution of a PDEs that arise in real applications is either too
complicated to determine in closed form or is not known to exist. The first appearance of
an approximate approach to solving PDEs originates in paper [9] by Courant, Friedrichs
& Lewy, published in 1928. In the following couple of decades there were developed a
numerous approximate techniques for specific PDEs and the most standard and well–
established of them are finite difference method (FDM), finite element method (FEM)
and finite volume method (FVM).

In FDM the local solution is calculated using appropriate finite difference approxi-
mations of derivatives involved in PDE, whereas in the FVM the local solution is ap-



proximate by a constant – a cell average. From the other side, the FEM gives the global
solution using piecewise continuous polynomials. Nevertheless, all of these methods have
their own advantages and disadvantages. FDM is the simplest method with a quite
straightforward implementation on structured meshes (see Chapter 4). Unfortunately,
the implementation complexity increases if geometric flexibility is needed. Additionally,
FDM is less suitable for problems with discontinuities. On the other hand, the high–
order accuracy can be combined with complex geometries using FEM, but it is generally
more adjusted for elliptic problems. Although FVM is well–suited for hyperbolic equa-
tions and supports resolution of complex geometries, it is unable to obtain high–order
accuracy in a straightforward way on general grids. An intelligent combination of all
these features leads to the discontinuous Galerkin (DG) method [15].

In 1973, Reed & Hill applied a first form of DG method to the neutron transport
equation in [28]. Since then it has undergone a fast development and finds numerous
applications to e.g. the Euler equations of gas dynamics, the shallow water equations,
the equations of magneto–hydrodynamics, the compressible Navier–Stokes equation,
Maxwell’s equations, etc. For more details about DG development we refer to [8].

The DG method is a high order accuracy method. Also, DG method is a local
method, which allows a high flexibility with meshes that can handle complicated ge-
ometries. Due to its locality, discontinuous solutions can be treated as well. A main
ingredient of any DG scheme is the so–called numerical flux, whose primary role is to
connect adjacent elements in order to construct the global approximation. The idea of
the numerical flux is taken from FVMs, where the numerical flux has the same purpose,
i.e., to transport the information from one local element to another.

In Chapter 4, DG method for spatial discretization is illustrated on most common
type of hyperbolic PDE, a conservation law. The discretization leads to a system of
ordinary differential equations (ODEs) that after need to be solved with respect to
time. For that purpose, we employ a Runge–Kutta method. The rest of chapter is
devoted to theoretical verification of both methods, whereas in first part of Chapter 5 the
numerical experiments on Maxwell’s equations are performed. In particular, the stability
and convergence are investigated using different order of polynomial approximation and
various meshes. The second half of the final chapter is dedicated to the simulation of a
part of corneal tissue. Theoretical and experimental results are compared.

xiv



Chapter 1

Human Eye

Motivated by a real problem partly exposed in Preface, in this chapter we first present a
brief description of eye’s anatomy with main focus on corneal tissues. A deeper corneal
transparency problem overview and the new understandings in ophthalmology are also
presented in Section 1.1. In Section 1.2, OCT scan methodology is explained.

1.1 Eye’s structure and corneal transparency

Figure 1.1: The scheme of the eye. Source: https://www.toppr.com/ask/question/draw-
a-diagram-of-vertical-section-of-human-eye-and/.

The eye is a slightly asymmetrical globe composed of various tissues (see Fig. 1.1),
about an inch in diameter, which possess a quite complex and sensitive mechanism. The
light firstly passes the cornea, the clear, dome–shaped surface that covers the front of
the eye and via iris and pupil goes to lens, which help focus light on the back of eye.
Most of the eye is filled with a clear gel called the vitreous. The inside lining of the eye
is covered by special light–sensing cells collectively called the retina. It converts light
into electrical impulses. Behind the eye, the optic nerve carries these impulses to the
brain. By virtue of a vital role in vision, the retina is subject of scientific research (see

https://www.toppr.com/ask/question/draw-a-diagram-of-vertical-section-of-human-eye-and/
https://www.toppr.com/ask/question/draw-a-diagram-of-vertical-section-of-human-eye-and/


e.g. [29]). However, in this work we are dealing with modelling corneal interaction with
light, so let us describe its complexity.

The cornea is the transparent, clear layer at the front and center of the eye. Its
transparency is a result of the homogeneity of the refractive index1 of all its constituent
cells. It does not contain blood vessels, unlike most of the tissues in the human body.
Blood vessels may cloud the cornea, which may prevent it from refracting light properly
and may adversely affect vision.

Figure 1.2: A cross–section scheme of the human cornea [3].

The cornea is comprised of five layers: the epithelium, Bowman’s layer, the stroma,
Descemet’s membrane, and the endothelium (see Fig. 1.2). In normal corneas these
layers are so thin that the light scattering is minimal. Many corneal pathologies are
caused by changes at least in one of these layers which could lead to increased light
scattering and consequent loss of corneal transparency. Clearly, the stroma is the layer
that gives the eye essential strength and constitutes 90% of the cornea’s thickness [3,23].

Figure 1.3: The scheme of the stroma organization [3].

1In optics, the refractive index of a material is a dimensionless number that describes how fast light
travels through the material. It is defined as n � c{v, where c is the speed of light in vacuum and v is
the phase velocity of light in the medium.
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The corneal stroma consists of collagens, keratocytes and other extracellular matrix
components (EMC). The collagen molecules are organized into fibrils2 with uniform
diameters between 25nm and 35nm which are further gathered into collagen lamellae.
There are from 200 to 300 lamellae of various thickness in the stroma lying parallel and
interwoven together (see Fig. 1.3). Lamellae are quite interwoven in anterior region,
whereas parts near Descemet’s membrane seems to be less interwoven and thus the
cornea there can swell easier. Getting closer to the sclera, the collagen lamellae get
disorganized and therefore less transparent [23].

Since the corneal collagen fibrils cover main part of the stroma, it can be found
natural that they inherit a principal role in whole cornea. Namely, collagen fibrils
have to resist the tensile forces due to the intraocular pressure and protect the inner
ocular tissues from external trauma while at the same time remaining narrow to allow
transparency of the tissue.

The corneal transparency can be considered as a function of collagen fibrils’ diameter
[14]. From the other side, an another key factor in corneal transparency is arrangement
of collagen fibrils. Many different ideas are given on this topic [14,21,22,23]. However,
to ensure corneal transparency it is sufficient that the distance between adjacent fibrils
be constrained.

We have to remark that the presence of the other stromal cells is ignored, e.g., in [21]
is given the justification that the keratocytes are sparsely distributed and are thin in
the direction of the passing light.

From previous short review of corneal structure we can conclude that corneal trans-
parency problem is reduced on transparency of corneal stroma. Since the colagen fibrils
constitute the main body of stroma, we will try to construct a mathematical model that
explains the corneal transparency using the uniformity of the diameters of the collagen
fibrils and the range of distances between adjacent collagen fibrils.

1.2 Optical Coherence Tomography

Optical coherence tomography (OCT) is a non–invasive technique for cross–sectional
tissue imaging with high and ultra–high resolution.

OCT imaging is analogous to ultrasound imaging except that it uses light instead
of sound [11]. The key idea of OCT instrument lays in measuring the magnitude and
echo time delay of backreflected or backscattered light from internal microstructures in
tissue caused by discontinuities in its refractive index (see Fig. 1.4). Measurements of
backreflection or backscattering versus depth are known as axial scans (A–scans). Cross–
sectional images are generated by scanning the OCT beam in a transverse direction to
acquire a series of axial scans. This generates a two–dimensional data set (B–scan) which
can be displayed as a gray scale or false color image [11]. Three–dimensional volumetric
data sets (3D–OCT) can be acquired by combining a series of two–dimensional data sets
(B–scans). Examples of these scans are illustrated in Fig. 1.5.

OCT technology was initially introduced to the ophthalmic field for imaging of the
posterior segment such as the retina and the optic nerve head. However, advancements
to the technology made it possible to obtain also using OCT scan the cross–sectional
images of the anterior segment of the eye (the tear film, conjunctiva, cornea, sclera, angle
and lenticular structures). These techniques are collectively named by Anterior Segment
Optical Coherent Tomography (AS–OCT). Images obtained by AS–OCT scan provide
in vivo, cross–sectional views that elucidate the structural details of many conjunctival
and corneal pathologies.

2In ophthalmology, some authors use expression fiber instead of fibril, as e.g. in [3].
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Figure 1.4: The basic principle of OCT instrument [30].

Figure 1.5: Example of A–scan, B–scan and 3D–OCT scan [11].

A study of corneal thickness mapping done by one of AS–OCT scan prototypes is de-
picted in Fig. 1.6. When the light enters in the eye, it changes its propagation direction
at the interface between air and cornea due to refraction and causes significant distor-
tion in OCT images. Image distortions due to refraction may also occur at other tissue
index transition surfaces such as the cornea–aqueous interface [16]. This is indicated by
red arrows in Fig. 1.6 (right).

It is worth mentioning that there are two basic types of OCT instrument: time–
domain and Fourier–domain. In particular, the original OCT technology is now classified
as time–domain OCT (TD–OCT), in which the reference mirror is moved through a
range of delay, and the resulting inference patterns between the sample and reference
beams are processed into an axial scan. From the other side, in Fourier–domain OCT
(FD–OCT), the reference mirror is fixed while the interference signals from all layers of
the sample are collected simultaneously using a spectral detector. Afterwards, a Fourier
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Figure 1.6: AS–OCT scan of cornea [16].

transform is applied to generate the A–scans [3]. Today there are many commercially
available AS–OCT machines in both domains (see [16]).

Although FD–OCT usually has better performance than TD–OCT [16], we will
restrict ourselves rather to time–domain and therefor develop a model based on time–
domain Maxwell’s equations. Thus, the electromagnetic fields need to be propagated
through the optical system. Given preamble in this chapter justifies the need to study
electromagnetic theory exposed in the next chapter.
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Chapter 2

Foundations of Electromagnetism

In order to understand the propagation of electromagnetic waves, we need to study the
equations that govern electromagnetic phenomena – Maxwell’s equations. Rather than
dive straight in by writing the equations down, we begin by giving sufficient background
material in this chapter.

In Section 2.1, we introduce some notion of electromagnetism. Afterwards, we
present the main equations (Section 2.2) and close the system with proper conditions
(Section 2.3). In Subsection 2.2.2 we find the relation with wave equation that explains
a wave–like nature of main system solution, whereas in Subsection 2.2.1 we present a
form of system that will be significant to us in the following chapters. Finally, in Section
2.4 we explain dielectric properties in a medium that corresponds to eye’s tissues.

2.1 Electromagnetic phenomena

Electromagnetism is the force that causes the interaction between electrically charged
particles. The areas where it takes place are called electromagnetic fields. Electric
fields and magnetic fields are simply different aspects of electromagnetism, and hence
are intrinsically related. Moreover, a changing electric field generates a magnetic field
and vice versa. This effect is called electromagnetic induction.

The classic theory mainly involves the following four time– and space–dependent
vector fields:

• the electric field intensity denoted by E rV {ms,
• the magnetic field intensity H rA{ms,
• the electric displacement field (electric flux) D rAs{m2s,
• the magnetic induction field (magnetic flux) B rV s{m2s.

The sources of electromagnetic fields are electric charges and currents described by

• the charge density ρ rAs{m3s,
• the current density function J rA{m2s,

where the SI units denotes meter rms, seconds rss, Ampere rAs, Volt rV s [17,31].
Electric charge q rAms1 is the fundamental quantity of electricity. It can be positive

or negative. It can also be zero, in which case the particle is unaffected by the force of
electromagnetism. The most important property of electric charge is that it is conserved.

1The SI unit of electric charge, Am, is also known as the coulomb rCs.



In other words, the charge density can change in time only if there is a compensating
current flowing into or out of that region. We express this in the continuity equation,

Bρ
Bt �∇ � J � 0. (2.1)

In Eq.(2.1) we used the divergence operator ∇� which is defined on the vector field
u � upu1, ...unq, ui � uipx1, ..., xnq, i � 1, ..., n by

∇ � u �
ņ

i�1

Bui
Bxi .

Further, if u is a scalar field and u is a vector field, we define the gradient, and the
Laplacian, respectively, by

∇u �
� Bu
Bx1

, ...,
Bu
Bxn



,

∇2u �
ņ

i�1

B2ui
Bx2

i

.

Specially, in the Euclidean space R3 we define the curl operator by

∇� u �

∣∣∣∣∣∣∣
ı̂ ̂ k̂
B
Bx

B
By

B
Bz

ux uy uz

∣∣∣∣∣∣∣ .
where ı̂, ̂, and k̂ are the unit vectors for the x–, y–, and z–axes, respectively.

Before we introduce main equations we state in sequel some selected fundamental
calculus theorems and vector (calculus) identities that can be found e.g. in [17].

Theorem 2.1.1 (Gauss’ theorem) Let V � R3 be an arbitrary volume with a piecewise
smooth boundary BV and F P C1pV q. Then»

V
p∇ � F qdV �

¿
BV
F � dS. (2.2)

Theorem 2.1.2 (Stokes’ theorem) Let Γ be an arbitrary piecewise smooth closed
curve and S a surface bounded by Γ. If F P C1pSq, then¾

Γ

F � d` �
¿
S

�
∇� F � � dS. (2.3)

For sufficiently smooth scalar fields ψ, φ, and vector field u is satisfied

∇ � p∇� uq � 0, (2.4)

p∇uqψ � ∇puψq � u �∇ψ, (2.5)

∇�∇� u � ∇p∇ � uq �∇2u, (2.6)

∇pψφq � ψ∇φ� φ∇ψ, (2.7)

∇ � pψuq � ψ∇ � u� p∇ψq � u. (2.8)
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2.2 Maxwell’s equations

In 1873, James Clerk Maxwell founded the modern theory of electromagnetism with pub-
lication of his ‘Treatise on Electricity and Magnetism’ [25], in which he formulated four
equations intending to describe the behavior of electric and magnetic field. These equa-
tions consist of two pairs of coupled partial differential equations known as Maxwell’s
equations.

Let S be an arbitrary open surface and V an arbitrary volume. The Maxwell’s
equations in the integral form are given as [17]

¿
BV
D � dS �

»
V
ρdV, (2.9a)

¿
BV
B � dS � 0, (2.9b)

¾
BS
E � d` � �

¿
S

BB
Bt � dS, (2.9c)

¾
BS
H � d` �

¿
S

�BD
Bt � J



� dS. (2.9d)

Eqs.(2.9a) and (2.9b) are Gauss’ law for electric and magnetic field, respectively.
The first equation gives the effect of the charge density on the electric displacement,
whereas the second one expresses the fact that magnetic charges do not exist. The
Eq.(2.9d) is Ampere’s law, modified by Maxwell, which relates the integrated magnetic
field around a closed loop to the electric current passing through the loop. The Eq.(2.9c)
is known as Faraday’s law and describes the effect of a changing magnetic field on the
electric field.

Note that the integral form of the Maxwell’s equations is valid almost everywhere
due to nature of integral operator. In order to derive a differential form of Maxwell’s
equations we consider a continuous media in Eqs.(2.9). This allow us to apply Stokes’
theorem, Eq.(2.3), and Gauss’ theorem, Eq.(2.2). We arrive to

∇ �D � ρ, (2.10a)
∇ �B � 0, (2.10b)

∇�E � �BBBt , (2.10c)

∇�H � BD
Bt � J . (2.10d)

Taking the divergence of Eq.(2.10d) in combination with Eq.(2.10a) and identity
Eq.(2.4) yields us to the continuity equation (2.1). Note that the Eqs.(2.10) are not
independent for time–varying fields [17].

It turns out that these equations are not sufficient to uniquely determine the elec-
tromagnetic field and additional equations are needed to model the way fields interact
with the matter. First, we assume the constitutive relations

D � εE, B � µH, J � σE,
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where ε, µ and σ are material’s permittivity, permeability and conductivity2, respec-
tively. This three parameters fully characterize the electromagnetic properties of a
medium. Considering different aspects as a criterion we give the following classifications
of the media [17].

• Classification Based on the Field Dependence. If any value of ε, µ or σ
depends on the field intensities |E|2 and |H|2, the medium is called non–linear.
Otherwise, it is called linear.

• Classification Based on the Spatial Dependence. If any of ε, µ or σ is a
space–dependent function, the medium is called inhomogeneous or heterogeneous.
Otherwise, it is called a homogeneous medium.

• Classification Based on the Time Dependence. If any of ε, µ or σ is a
time–dependent function, the medium is called non–stationary. Otherwise, it is
called stationary.

• Classification Based on the Directions of D and B. If the directions of D
and E are parallel to each other as well as the directions of B andH, the medium
is called isotropic. Otherwise, it is called an anisotropic medium.

We will henceforth consider σ � 0 and ρ � 0, which is an usual assumption in
many optical researches. Taking this into account as well as the constitute relations,
Eqs.(2.10c) and (2.10d) in a stationary medium become

∇�E � �µBHBt , (2.11a)

∇�H � ε
BE
Bt . (2.11b)

The system of Eqs.(2.11) represents the Maxwell’s curl–equations. These equations will
be the equations of interest in the remaining of this thesis.

2.2.1 Maxwell’s curl–equations as a Conservation Law

At the beginning of this subsection we give the most common definition of conservation
law [12], so let us begin with the following system of PDEs

Q
Bu
Bt �

m̧

j�1

BF jpuq
Bxj � 0, (2.12)

where u � pu1, ..., unqT with u : Ω � R�0 ÝÑ Σ, where Ω � Rm is domain of function
u while Σ � Rn is the codomain, ui � uipx1, ..., xm, tq, and Q P Rn�n. The vector u is
called the state vector, and Σ is called the set of states; F j : Σ ÝÑ Rn, j � 1, ...,m, is
called the flux function, where is F j � pF1j , ..., FnjqT , and Fij are smooth. We define
the flux vector F :� pF1, ..., Fmq, which is a n�m–matrix, i.e.,�

��
F11 ... F1m
... . . . ...
Fn1 ... Fnm

�
�. (2.13)

2In general, these characteristics are tensors or, mathematically speaking, 3�3–matrices. In the rest
of manuscript when needed, it will be emphasized by underlined symbol � that the certain parameter
represents a tensor.
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Definition 2.2.1 The divergence ∇ � F : Rn ÝÑ Rn of a matrix field F in Eq.(2.13) is
defined as

∇ � F �
� m̧

j�1

Fij
Bxj


n
i�1

Now we can rewrite Eq.(2.12) as

QBtu�∇ � F puq � 0. (2.14)

The system (2.14) is said to be in conservative form and it is called a conservation law.

Definition 2.2.2 The Jacobian matrix Ajpuq P Rn�n of the flux vector components F j

is defined as
Ajpuq �

�BFijpuq
Buk

	
1¤i,k¤n

, j � 1, ...,m.

Definition 2.2.3 The system of Eqs.(2.14) is hyperbolic if for all α1, ..., αm P R the
matrix A :� α1A1 � � � � � αmAm has only real eigenvalues and is diagonalizable.

Let us come back on the Maxwell’s curl–equations

∇�E � �µ
�

BH
Bt

∇�H � ε
�

BE
Bt .

Inspired by previous definitions we define the state vector u � pE,HqT P R6 and the
flux vector F puq � pF x,F y,F zqT P R6�3, where F i � p�ê � E, ê �HqT P R6 for
i � x, y, z, as well as the material matrix

Q �
�
ε
�

0
�

0
�
µ
�



.

Here we denoted by ε
�
, µ
�

and 0
�
the tensor of permittivity, tensor of permeability (see

Subsection 2.4.1) and zero tensor, respectively. We assume that Q is invertable constant
matrix, but generally, it can vary in space. Finally, we can represent Eqs.(2.11) in a
conservation form as

QBtu�∇ � F puq � 0. (2.15)

Moreover, it can be straightforward shown that this is a hyperbolic system with the
eigenvalues λ1 � 0 and λ2,3 � � 1?

εµ (see Subsection 2.2.2) where each eigenvalue has
algebraic multiplicity 2.

In the end, we have to emphasize that the possibility to reformulate the Maxwell’s
curl–equations in conservation form is essential to us in this work. Namely, almost entire
further theoretical consideration shall be strongly leaned on it.

2.2.2 Wave equation in terms of electric field

In this subsection we derive a wave equation only for the electric field. Using similar
arguments, a same thing can be obtained in magnetic terms.

For the sake of brevity, we assume that the electromagnetic field is excited by a
linear stationary homogeneous medium. Let us begin by taking the curl on both sides
of Eq.(2.11a) and exploiting homogeneity of the medium

� µ �∇� BH
Bt � ∇�∇�E. (2.16)
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Figure 2.1: Propagation of the electric and magnetic fields associated with an electromagnetic
wave.

An independence of differential operators Bt and ∇� (i.e., time and space) give us per-
mission to interchange the order of differentiation in Eq.(2.16). Further, using Eq.(2.11a)
and the stationarity of the medium we obtain

�εµ � B
2E

Bt2 � ∇�∇�E.

Finally, exploiting the identity Eq.(2.6) and Eq.(2.10a) we get

∇2E � 1
c2
B2E

Bt2 � 0. (2.17)

Eq.(2.17) is the wave equation in three spatial dimensions where the quantity

c �
c

1
εµ

is a speed of the light or a speed of the wave propagation. The solutions of Eq.(2.17) are
plane waves3. Note that each component of the electric field independently satisfies the
wave equation.

The identification of light with an electromagnetic wave (with the velocity related
to the electric permittivity and magnetic permeability) was one of the greatest achieve-
ments of 19th century physics. In 1887 Heinrich Hertz showed experimentally that
electromagnetic waves consist of oscillating electric and magnetic fields in a constant
phase relation perpendicular to each other and perpendicular to the direction of prop-
agation (see Fig. 2.1), as well as that they exhibit: interference, scattering, diffraction,
polarization, refraction, etc. Some of these waves properties will be discussed in the rest
of work. First of all, let us close the system of Eqs.(2.10) with initial, boundary and
interface conditions.

2.3 Initial, boundary and interface conditions

Although the number of equations now coincides with the number of unknowns, the
system of differential Eqs.(2.10) is not yet complete. We have to impose initial and
boundary conditions as well as interface conditions between different materials where
the material parameters jump.

3This can be checked, for instance, using method of separation of variables.
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In computational electromagnetism the most known conditions on boundary are
reflecting, absorbing and periodic boundary conditions. In the sequel we present perfect
electric conductor and perfect magnetic conductor as reflective boundary conditions,
and Silver–Müller absorbing boundary conditions as absorbing ones. First of all, we
introduce the interface conditions which arises from integral form of Maxwell’s equations,
Eqs.(2.9).

2.3.1 Continuity condition at interface

Assume a partition of the domain V � R3 into two disjoint domains V1, V2 such that
V � V1 Y V2. By Γ :� V1 X V2 we denote the common interface, and by n̂Γ we refer to
the unit normal vector pointing from V2 to V1. In the following we derive the continuity
requirements at interfaces by Gauss’ theorem, Eq.(2.2), and Stokes’ theorem, Eq.(2.3),
assuming that the involved functions, domains and surfaces are sufficiently smooth.
Followed by Eq.(2.9b) we obtain

0 � �
¿
BV
B � n̂dS �

¿
BV1

B1 � n̂dS �
¿
BV2

B2 � n̂dS

�
¿

BV1XΓ

B1 � n̂�Γ dS �
¿

BV2XΓ

B2 � n̂�Γ dS

�
¿
Γ

rrB � n̂ΓssdS,

where B1 :� B|V1 , B2 :� B|V2 , and rrB � n̂Γss � B1 � n̂�Γ �B1 � n̂�Γ denotes the jump
over the interface Γ. Since the above formula is valid for arbitrary subsets of V , we
obtain that the normal component of the induction field has to be continuous over the
interface, which reads as

rrB � n̂Γss � 0. (2.18)
A similar argument works for the electric flux density D, so from Eq.(2.9a) and ρ � 0
we have

rrD � n̂Γss � 0. (2.19)
Next we derive interface conditions for the electric field E. Let the interface Γ be as
above and S denote an arbitrary plane surface intersecting the interface Γ along a line
L :� S X Γ. Let S1 :� S X V1, S2 :� S X V2 be the two disjoint parts of S such that
S1 Y S2 � S and S1 X S2 � L. Led by Eq.(2.11a) we derive

0 � �
¾
BS
E � τds�

¾
BS1

E1 � τ 1ds�
¾
BS2

E2 � τ 2ds

�
»
S1XΓ

E1 � τ 1ds�
»
S2XΓ

E2 � τ 2ds

�
»
L
rrE � τLssds,

with E1 :� E|S1 and E2 :� E|S2 and τL � τ 1 � �τ 2. Since S was arbitrary, we
conclude that the tangential components of the electric field have to be continuous over
the interface Γ, which is equivalent to

rrE � n̂Γss � 0. (2.20)

In the same way we get
rrH � n̂Γss � 0. (2.21)
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The Eqs.(2.18)–(2.21) depict interface conditions. Notice when the first two are satisfied,
the latter two are satisfied as well [17].

2.3.2 Perfect electric conductor boundary condition

In a perfect electric conductor (PEC), electric charges are free to move without any
resistance to their motion. For the electric field this means that its tangential component
have to be zero. From the other side, the magnetic flux must be constant in time which
can be mathematically written as

B � n̂ � 0,
E � n̂ � 0.

The PEC–wall is in particular suitable for modelling adjacent metallic domains [17].

2.3.3 Perfect magnetic conductor boundary condition

Perfect magnetic conductors (PMC) model materials with very high permeability, where
one can assume a vanishing magnetic field [17]. In fact, PMC at its boundary can only
have normal magnetic field components and tangential electric field components. This
property is expressed as

D � n̂ � 0,
H � n̂ � 0.

2.3.4 Silver–Müller absorbing boundary condition

Solving the time–dependent Maxwell’s equations in an unbounded domain requires the
introduction of artificial absorbing boundary conditions (ABCs) to close the computa-
tional domain. Typical approaches to achieving this in FEM methods include the use of
a mathematical boundary condition and the use of fictitious absorbing material layers.

The main difference between PEC–wall and ABC–wall is that the ABC assumes
that a plane wave solution is incident on boundary and estimates fields strictly outside
boundary by using fields only inside the boundary. ABCs are thus in general approxi-
mations, and reflect some of waves back into computational domain. The accuracy of
the approximation depends on the features of the ABC and on many other parameters.

Silver–Müller absorbing boundary conditions (SM–ABC) are the first–order ABC
[31] and they have a form

n̂�E �
c
µ

ε
n̂� pn̂�Hq � 0,

n̂�H �
c
ε

µ
n̂� pn̂�Eq � 0.

In this context, a term ‘first–order’ is related to ABCs whose estimated value of
fields outside boundary are obtained by looking back one step in time and one grid cell
in space. Higher order ABCs may look back over more steps in time and more grid cells
in space.

There are also and alternative approaches to realizing ABCs, such as perfectly
matched layer (PML). For more about this topic, we refer to [17,31].
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2.4 Wave propagation in anisotropic medium

Since we are interested in analyzing of light’s behavior in an anisotropic medium, we
need to study fundamentals of crystal optics. The crystals, one of typical anisotropic
materials, we can interpret as a highly ordered microscopic structure usually arranged in
a perfect lattice. In fact, we will try to explain basic properties of their subtype, liquid
crystals. Liquid crystals combine properties of liquids and solid crystals; a liquid crystal
may flow like a liquid, but its molecules may be oriented in a crystal–like way [32].

Optical properties of liquid crystals depend on the direction of propagation and the
polarization of the light. In most simple words, the role of polarization is to describe the
orientation of wave’s oscillations. The typical approach to analyze polarization is to track
the orientation of the electric field vector during electromagnetic wave’s propagation.
From the other side, the direction in which light travels through an anisotropic medium
is fully depicted by the dielectric permittivity tensor ε

�
.

2.4.1 Dielectric permittivity tensor

In an anisotropic dielectric medium the vector of electric flux density D is expressed
as a linear combination of columns of the dielectric permittivity tensor (matrix) whose
coefficients are components of the electric field E vector. The dielectric tensor is Her-
mitian, that is εij � ε�ji, i, j � x, y, z. Specially, in a magnetically isotropic materials
(i.e., when B � µH where µ is a scalar function), such as our medium of interest, all
elements of ε

�
are real, and thus dielectric tensor is symmetric and can be described by

6 (instead of 9) elements,

D � ε
�
E,�

�Dx

Dy

Dz

�
�

�
�εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

�

�
�ExEy
Ez

�
.

Since every symmetric matrix is, up to choice of an orthonormal basis, a diagonal matrix,
there is an orthonormal basis and diagonal matrix, diagpεx, εy, εzq whose nonzero entries
are eigenvalues of ε

�
. The choice of coordinate axes that results in a diagonal permittivity

matrix is called the principal axes of the material.
If two of the diagonal entries of the permittivity matrix are the same and one is

different, such medium is called uniaxial media, whereas if all entries are different the
material is called biaxial. From the other side, if all diagonal entries are equal, the
medium becomes isotropic.

When light is propagating in an anisotropic medium, it is clear that the direction
of the electric field will vary in space. Specially, eigenmodes are directions invariant in
space. In the eigenmode, the electric field has direction of eigenvector. The associated
eigenvalues are εi � n2

i , i � x, y, z, where the indices ni are the principal indices of
refraction [32].

In our particular case, the lamella arrangement within the cornea causes an optical
phenomenon called birefringence. Birefringence represents the difference between two
refractive indices usually arising in cylindrical anyisotropic structures. However, this
property plays no significant role in corneal transparency [23].
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Chapter 3

Mathematical Model

Main purpose of this chapter is to describe a setup of our mathematical simulation.
Starting from Maxwell’s equations in three dimensions, over different electromagnetic
transverse modes, we reach to soft sources scattered field formulation in 2D.

Eye’s tissues represent a linear, heterogeneous, stationary, anisotropic and non–
magnetic medium. As we stated above, all these characteristics are contained in dielec-
tric permittivity and permeability tensors. In the sequel we are focused on mathematical
interpretation of these terms.

3.1 Three–dimensional model

Let us recall on Eqs.(2.11)

ε
�

BE
Bt � ∇�H, in Ω� r0, T s,

µ
�

BH
Bt � �∇�E, in Ω� r0, T s,

(3.1)

whereE � pEx, Ey, EzqT,H � pHx, Hy, HzqT, set Ω � R3 is bounded, while permittivity
ε
�
and (isotropic) permeability µ

�

� µI
�
are only space–dependent functions. The initial

conditions are given as

Epx, y, z, 0q � E0px, y, zq,
Hpx, y, z, 0q �H0px, y, zq.

Finally, by choice of boundary conditions we closed the system of six coupled Eqs.(3.1).
Namely, we have chosen SM–ABCs ones

n̂�E �
c

µ

εeff
n̂� pn̂�Hq � 0,

where effective permittivity εeff is given in the same way as in [18]

εeff � detpε
�
q

n̂Tε
�
n̂
.

Additionally, we assume that the dielectric permittivity and permeability tensors are
symmetric positive definite matrices, as well as they are uniformly bounded on domain
Ω, i.e., there exist constants mε,Mε,mµ,Mµ ¡ 0 such that, for all x P Ω and every unit
vector v P R3 is satisfied

mε ¤ vTε
�
pxqv ¤Mε and mµ ¤ µpxq ¤Mµ.



3.1.1 Soft sources scattered field formulation

Let us denote by pEinc,H incq the incident field, the field produced inside a space domain
by sources placed outside it. If a scattering object is introduced in the domain, the field
differs from the incident field forming so–called the total field pEtot,Htotq. We define
the scattered field pEsc,Hscq as a difference of these two fields

Esc � Etot �Einc,

Hsc �Htot �H inc.
(3.2)

Clearly, both fields are solutions of Eqs.(3.1), i.e.,

ε
�

BEtot

Bt � ∇�Htot,

µ
�

BHtot

Bt � �∇�Etot,

(3.3)
ε
�

inc BEinc

Bt � ∇�H inc,

µ
�

inc BHtot

Bt � �∇�Einc.

(3.4)

Combining Eqs.(3.2)–(3.4) we arrive to the soft sources scattered field formulation of
Maxwell’s curl–equations

ε
�

BEsc

Bt � ∇�Hsc � pε
�
� ε

�

incqBE
inc

Bt ,

µ
�

BHsc

Bt � �∇�Esc � pµ
�

� µ
�

incqBH
inc

Bt .

(3.5)

These equations model a problem with presence of areas which we want to be transparent
to traveling waves (hence the term soft source).

3.2 Reduction to two dimensions

In order to simplify the 3D model, Eqs.(3.1), we assume that one of electromagnetic
fields is homogeneous in one of its directions, e.g. z–direction [31]. Taking into account
non–magnetivity and anisotropy of the given medium, we obtain two disjunctive sets of
equations

• Transverse Electric – TE mode.

εxx
BEx
Bt � εxy

BEy
Bt � BHz

By ,

εyx
BEx
Bt � εyy

BEy
Bt � �BHz

Bx ,

µ
BHz

Bt � BEx
By � BEy

Bx ,

(3.6)

• Transverse Magnetic – TM mode.

µ
BHx

Bt � �BEzBy ,

µ
BHy

Bt � BEz
Bx ,

εzz
BEz
Bt � BHy

Bx � BHx

By .

(3.7)

Finally, coupling TE mode with soft source scattered field formulation we get equations
which govern two–dimensional wave propagation through eye’s structures
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εxx
BEscx
Bt � εxy

BEscy
Bt � BHsc

z

By � pεinc � εxxqBE
inc
x

Bt � εxy
BEincy

Bt ,

εyx
BEscx
Bt � εyy

BEscy
Bt � �BH

sc
z

Bx � εyx
BEincx

Bt � pεinc � εyyq
BEincy

Bt ,

µ
BHsc

z

Bt � �BE
sc
y

Bx � BEscx
By � pµinc � µqBH

inc
z

Bt .

(3.8)

In Eqs.(3.8) the scattered field is unknown, while the incident field will be specified
later. In order to avoid reflections at the boundary of the domain, this set of equations
we complement with Silver–Müller absorbing boundary conditions. At the initial time
moment t � 0, we assume the scattered field is not excited.
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Chapter 4

Discontinuous Galerkin Finite
Element Method

As we have seen in Subsection 2.2.1, Maxwell’s equations are linear hyperbolic PDEs
and they exhibit a conservation form. In this chapter we present a numerical method
that efficiently deals with such problems, the Discontinuous Galerkin (DG) Finite Ele-
ment Method. The DG method can be used for time and/or spatial discretization. In
order to apply DG to spatial discretization of Maxwell’s equations, we will explain main
ideas on most simplified problems. For the time integration, we use an explicit time
stepping method, the explicit low–storage Runge–Kutta method. This combination, the
DG method for spatial discretization with a Runge–Kutta scheme for time–integration,
is also called Runge–Kutta Discontinuous Galerkin (RKDG) method, in mathematical
literature, or Discontinuous Galerkin Time–Domain (DGTD) method, in physics litera-
ture.

Since the vectoral extension, roughly speaking, manifests in increasing unknowns
and equations to be solved, we restrict ourselves to the scalar case. In that sense,
we gain benefit in simplicity of presentation. After giving some basic ideas related to
computational meshes, we present the definition and main characteristics of the method,
which covers the case of two spatial dimensions. Finally, we check the consistency,
stability and convergence of the corresponding numerical scheme in one space dimension.

4.1 Briefly on meshes

Here we are going to state some of the most common concepts about meshes that can
be found e.g. in [24]. The mesh or grid can be formulated as a discrete representation
of the geometrical domain of the problem. On a 2D mesh we distinguish the following
objects: element or cell which states for control volume into which domain is broken
up, node or grid point, edge or boundary of a face and face or boundary of a element.

The grid has a significant impact on rate of convergence (or even lack of convergence),
solution accuracy and CPU time needed for computations. Intuitively, more cells give
higher accuracy. However, the drawback usually displays in increased amount of memory
storage as well as CPU time.

There are three well–known types of mesh: structured, unstructured and hybrid
mesh. Each cell in 2D structured mesh can be addressed by the pair of indices pi, jq.
For this reason it meets difficulties when geometry of a problem gets complex. In
case of the unstructured mesh, the cells are arranged in an arbitrary fashion, so they
can handle complicated geometries. However, this is reflected in memory and CPU
time requirements. Lastly, the hybrid mesh integrates the structured meshes and the



unstructured meshes in an efficient manner. These meshes can be non–conformal which
means in 2D that there is a partial or zero matching of nodes at the face.

In two dimensions elements are usually chosen to be triangles or/and quadrilater-
als. We shall restrict ourselves on computational domains obtained by triangulation.
One example of structured and unstructured meshes generated using triangulation is
illustrated in Fig. 4.1.

Figure 4.1: Structured versus unstructured mesh.

There are many available (open source) mesh generation software packages for both,
2D and 3D domains. For instance, the mesh on the left hand side in Fig. 4.1 is generated
using Matlab ® source code, while the mesh on right hand side is designed in software
package FreeFem�� ®. For creation of 2D unstructured meshes we decided to employ
FreeFem�� ® because of its implementation simplicity. Previously, in order to find a
mesh suitable for our real problem, we were tested a few more mesh generators, such as
a library DistMesh() in Matlab ® environment and the package Triangle ® based on
C�� ® programming language.

4.2 Discontinuous Galerkin formulation

As we stated before, we use DG discretization with respect to space variables only,
whereas time remains continuous. This leads to a large system of ODEs, which can
be solved numerically by a suitable ODE solver. This kind of approach is known as a
method of lines. In particular, we will follow the next steps:

1. Space discretization. We divide a computational domain into elements and
define a finite element space with discontinuous functions. This leads to a local
scheme, where the exact solution is approximated on each element.

2. Choice of numerical flux. The global approximation to the exact solution is
obtained by connecting all local solutions on the local elements via numerical flux.
By clever choice of numerical flux we can afford a convergent numerical scheme.
In particular, we shall choose a flux that solves Riemann problem (see Remark
4.2.1).

3. Temporal integration. Space discretization leads to a semi–discrete scheme
that needs to be integrated in time. We use a low–storage explicit Runge–Kutta
scheme.
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In this section we focus on a scalar 2D conservation law whose associated Cauchy’s
problem is

Btu�∇ � F puq � 0, px, tq P Ω� r0, T s,
upx, tq � gpx, tq, px, tq P BΩ� r0, T s,
upx, 0q � hpxq, x P Ω.

(4.1)

Here u � upx, tq is the unknown solution with u : Ω�r0, T s ÝÑ R, while F : R ÝÑ R2�1

is known flux function. Further, let the domain Ω be a bounded set with polygonal
boundary BΩ and Th � tTkuKk�1 be its conformal triangulation. In this case, we have a
matching between physical domain Ω and computational domain Ωh,

Ω � Ωh �
K¤
k�1

Tk.

At this place, we take the occasion to introduce some function space terminology.
Namely, let us recall on the Lebesgue space L2pΩq, Ω � Rn defined as a space of
measurable functions u : Ω ÝÑ R, such that

³
Ω u

2dx   8, equipped with norm

}u}2L2pΩq �
»

Ω
u2dx.

This is a Hilbert space with inner product

xu, vy �
»

Ω
uvdx, xu, uy � }u}2L2pΩq.

The well–known Cauchy–Schwartz inequality will be found useful

|xu, vy| ¤ }u}L2pΩq}v}L2pΩq for all u, v P L2pΩq.

Specially, on domain Ωh �
�K
k�1 Tk we define broken norm

}u}2L2pΩhq �
Ķ

k�1
}u}2L2pTkq, where }u}2L2pTkq �

»
Tk

u2dx.

We shall use the Sobolev space HppΩq of functions such that all their weak partial
derivatives of total order ¤ p belong to L2pΩq. Its norm is given as

}u}2HppΩq �
p̧

|α|�0
}upαq}2L2pΩq,

where α denotes multi–index of length |α|. The Sobolev broken norm reads as

}u}2HppΩhq �
Ķ

k�1
}u}2HppTkq, where }u}2HppTkq �

p̧

|α|�0
}upαq}2L2pTkq.

Finally, we will also use semi–norm defined on HppΩq,

|u|2HppΩhq �
Ķ

k�1
|u|2HppTkq, where |u|2HppTkq �

¸
|α|�p

}upαq}2L2pTkq.

Any convergence shall be considered as a uniform. Lastly, we introduce the notation
of average and jumps, respectively

ttuuu � u� � u�

2 , rruss � n̂�u� � n̂�u�, rruss � n̂� � u� � n̂� � u�.
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4.2.1 Local approximation

Let us assume that we can approximate the exact solution of the Eq.(4.1) in the following
way

upx, tq � uhpx, tq �
Kà
k�1

ukhpx, tq P Vh,

Vh :� tuh P L2pΩq : ukh � uh|T k P V pTkq,@Tk P Thu,
where Vh is the corresponding finite element space of discontinuous functions, while
V pTkq is a local space1. We set V pTkq � PN pTkq, which is the space of multivariate
polynomials of total degree N P N defined on element Tk.

In general, the basis functions of polynomial space come in essentially two forms,
nodal and modal (sometimes called a hierarchical). A typical example for univariable
modal basis is ψnpxq � xn�1.

Nodal basis functions are known as Lagrangian interpolants `i and have the property
that the basis coefficients are also function values at distinct interpolation points. It
is worth mentioning that the uniqueness of Lagrange polynomial is ensured by using
distinct interpolation points.

Using these two kinds of basis we express a local solution ukh on each element Tk as

ukhpx, tq �
Np̧

n�1
ûknptqψnpxq �

Np̧

i�1
ukhpxki , tq`ki pxq. (4.2)

Here xki i � 1, ..., Np states for interpolation points whose number in 2D case takes value

Np �
�
N � 2
N



.

In order to simplify computations on elements, we introduce a mapping Θ : Tk ÝÑ I
that transforms arbitrary triangle into the standard one2

I � tr � pr, sq|r, s ¥ �1, r � s ¤ 0u.

This yields to

ukhpr, tq �
Np̧

n�1
ûknptqψnprq �

Np̧

i�1
ukhprki , tq`ki prq.

Moreover, we can establish the connection between modal and nodal representation,
i.e., û � pû1, . . . , ûNpqT and u � pupr1q, . . . , uprNpqqT, using generalized Vandermonde
matrix3 V as follows

Vû � u, Vij � φjpriq.
This allow us to equally use both bases in further theoretical investigations. Further-
more, by virtue of this relation we are capable to calculate 2D Lagrange polynomial for
which an explicit expression does not exist.

There are many known interpolation nodes (see [6]), such as equidistant, Legendre–
Gauss, Legendre–Gauss–Radau, Legendre–Gauss–Lobatto (LGL) nodes, etc. However,
it can be shown that LGL nodes in 1D case lead to well–conditioned DG formulation [15].
These nodes are zeros of p1 � r2qP 1

nprq, where Pn represents a Legendre polynomial of
1Here, we have used notation of direct sum

À
in order to emphasize that functions ukh, defined on

Tk, are linearly independent functions.
2We are not going to write explicitly mapping Θ due to its technical complexity. We refer to [15] for

more details.
3Sometimes in literature this matrix is called an alternant matrix.
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order n. Formally, Legendre polynomial is a polynomial that solves a singular Sturm–
Liouville problem, i.e., ODE of type

d

dr

�p1� r2q d
dx
Pnprq

�� npn� 1qPnprq � 0.

Some of these polynomials are illustrated in Fig. 4.2.
For higher dimensions, LGL nodes are used to define suitable optimally distributed

nodes that preserve stable and well–conditioned scheme. We will not go deep in details,
thus we refer to [15].
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Figure 4.2: Illustration of the first six Legendre polynomials.

Further, we define a local residual Rk
h on element Tk

Rk
h :� Btukh �∇ � F pukhq.

In a spirit of FEM, we require that the local residual be L2–orthogonal to the piecewise
polynomial test space (e.g. defined using nodal extension). In other words, the Galerkin
orthogonality holds »

Tk

Rk
h`
k
hdx � 0,

or more precisely, »
Tk

�Btukh �∇ � F pukhq
�
`khdx � 0. (4.3)

Let n̂ be outer unit normal pointing from Tk to adjacent element T`. Applying
identity Eq.(2.5) and Gauss’ theorem, Eq.(2.2), on Eq.(4.3) for each k � 1, ...,K we
have »

Tk

�Btukh`ki � F pukhq �∇`ki �dx � �
¾
BTk

F pukhq � n̂`ki dx. (4.4)

Clearly, the integral from the right hand side in 3D is a surface integral while in 2D a
line integral. In 1D, the analysis is simplified because the outer unit normal is either �1
on the right hand side of the element or �1 on the left hand side of the element, and an
integration does not need to be performed.
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4.2.2 Numerical flux

We seek to model physical flux F by a so–called numerical flux F � which gives informa-
tion about how the edge values of a local element Tk are connected to the edge values of
a neighboring element T`. Thus, the numerical flux has to be a function depending on
interior and exterior values of ukhpxiq, where xi P BTkXBT` (see Fig. 4.3). In particular,
for a fixed time t0 ¥ 0 we define

uk,�h px, t0q � lim
εÑ0�

ukhpx� εn̂T k, t0q,

uk,�h px, t0q � lim
εÑ0�

ukhpx� εn̂T `, t0q,
(4.5)

where we denoted the interior edge value of element Tk by uk,�h , whereas uk,�h refers to
the exterior values.

From now on, we will omit the superscript k in Eq.(4.5), because it will be clear
from context which element is considered. To summarize, the notation ‘�’ will refer to
interior values of a local element, whereas ‘�’ will be reserved to values that belongs to
adjacent cells.

Tk T`

intpTkq extpTkq

ÝÑx
int

ÐÝ
xext

Figure 4.3: The illustration of the idea of numerical flux on the common edge (red) formed
by two adjacent elements Tk and T`. If we consider the local element Tk and Eq.(4.5), the term
int refers to superscript ‘�’, while ext denotes ‘�’.

In most considerations in this chapter we will use the numerical flux of the form

pauq� � ttauuu � |a|1� α

2 rruss. (4.6)

Specially, for α � 1 we have central flux, while α � 0 gives upwind flux.

Remark 4.2.1 A Riemann problem consists of conservation law initial value problem to-
gether with piecewise constant initial data which has a single discontinuity in the domain
of interest. It can be shown for the simple scalar case

Btu� λBxu � 0, x P Ω,

that the solution u has a discontinuity along a curve x � ξptq when is fulfilled Rank-
ine–Hugoniot condition rrf ss{rruss � λ, where f � λu and λ is the speed of the curve of
discontinuity. This condition is simple consequence of conservation of u across the point
of discontinuity. More about theory of Riemann problem can be found, e.g., in [12].

In our particular case, a Riemann problem occurs on each grid element. The nu-
merical fluxes for linear conservation laws, as well as Maxwell’s equations in one space
dimension that satisfy the Rankine–Hugoniot condition, are in details derived in [15].
Since the generalization is straightforward, in this work we will not do it explicitly.

Further, replacing in Eq.(4.4) physical flux with numerical one, we obtain the weak
form »

Tk

�Btukh`ki � F pukhq �∇`ki �dx � �
¾
BTk

F �pukhq � n̂`ki dx, (4.7)
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and then, applying identity Eq.(2.5) and Gauss’ theorem, Eq.(2.2), again, we get the
strong form4 of the DG method

»
Tk

�Btukh �∇ � F pukhq
�
`ki dx � �

¾
BTk

�
F pukhq � F �pukhq

� � n̂`ki dx. (4.8)

There areK�Np equations to be solved for each component of the field corresponding
to the values at the Np grid points

»
Tk

�Btukh`ki � F pukhq �∇`ki �`kjdx � �
¾
BTk

F �pukhq � n̂`ki `kjdx, (4.9)

for i, j � 1, ..., Np. Next we define the element mass matrix M and stiffness5 matrices
∇Sk � pSkx ,Sky q as follows

Mk
ij �

»
Tk

`ki pxq`kj pxqdx � Jk
»

I
`ki prq`kj prqdr � JkM,

Skx,ij �
»
Tk

`ki pxqBx`kj pxqdx �
»

I
`ki prqBr`kj prqdr � Sr,ij ,

Sky,ij �
»
Tk

`ki pxqBy`kj pxqdx �
»

I
`ki prqBs`kj prqdr � Ss,ij ,

where Jk is Jacobian of mapping Θ on element T k. In these terms Eq.(4.9) becomes

MkBtukh �
�
∇Sk

�T � F k
h � �

¾
BTk

F �pukhq � n̂`ki `kjdx.

This directly lead us to local semi–discrete DG scheme

dukh
dt

� Lhpukh, tq, (4.10)

where semi–discrete operator Lh is given as6

Lhpukh, tq � pMkq�1��∇Sk
�T � F k

h �
¾
BTk

F �pukhq � n̂`ki `kjdx
�
.

We solve the system of ODEs, Eqs.(4.10), using an explicit Runge–Kutta method
(ERK). Generally, the main drawback of ERK methods is the conditional stability which
requires strong limitation of the time step [2]. In next section we discuss more about
this requirement. On the other hand, there are many different explicit and implicit ODE
solvers which could also be applied at this place, but they will not be considered in this
work.

4Notice that the strong form does not require smooth test functions. Specially, when a test function
is delta function the scheme is called collocation penalty method.

5In classical finite element terminology, the discrete operator approximating the first derivative is
called a convection/advection matrix.

6Note, the non–singularity of mass matrix M follows from its structure. Namely, it can be straight-
forward shown that M is symmetric and positive definite matrix.
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4.2.3 Explicit Runge–Kutta method

Let us consider the (global) DG semi–discrete scheme

duh
dt

� Lhpuh, tq, (4.11)

where uh is the vector of unknowns. The standard ERK method with s stages for
Eq.(4.11) is defined via the recurrence formula

kp1q � Lhpunh, tnq,
kp2q � Lhpunh �∆tpa21k

p1qq, tn � c2∆tq,
kp3q � Lhpunh �∆tpa31k

p1q � a32k
p2qq, tn � c3∆tq,

...
kpsq � Lhpunh �∆tpas1kp1q � as2k

p2q � ...� as,s�1k
ps�1qq, tn � cs∆tq,

un�1
h � unh �∆t

ş

i�1
bik

piq, (4.12)

where ∆t is step size. The matrix A � raijs is called the Runge–Kutta matrix, while the
b and c are known as the vectors of weights and nodes. These coefficients are arranged
in a Butcher tableau7 (Table 4.1). In general, the stage s of an explicit Runge–Kutta

0
c2 a21
c3 a31 a32
...

...
... . . .

cs as1 as2 ... as,s�1
b1 b2 ... bs�1 bs

c A

bT

Table 4.1: The Butcher tableau.

method with order p must satisfy s ¥ p, and if p ¥ 5, then s ¥ p� 1 [2].
By careful look at procedure given by Eqs.(4.12), one can notice an obvious disad-

vantage during implementation of the classical ERK method when solving a large ODE
system. Namely, ERK method requires s additional storage arrays, kpiq. Intending to
avoid this, we use ‘a low–storage’ version of ERK method, or shortly, LSERK method.

Algorithm 1 LSERKp5, 4q & LSERKp14, 4q
pp0q � unh
for i � 1, ..., s where s � 5 for LSERKp5, 4q or s � 14 for LSERKp14, 4q do
kpiq � Asik

pi�1q �∆tLhpppi�1q, tn � Csi ∆tq
ppiq � ppi�1q �Bs

i k
piq

end for
un�1
h � ppsq

One of celebrated LSERKmethods is a forth order version with five stages introduced
by Carpenter & Kennedy in [7]. The procedure is described in Algorithm 1, while its
coefficients are given in Table 4.2. Application of LSERKp5, 4q diminish the memory

7In this context, the matrix A is lower diagonal with zeros at diagonal entries. Otherwise, the
Runge–Kutta method is implicit.
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Table 4.2: Coefficients for the LSERKp5, 4q [7].

i A5
i B5

i C5
i

1 0 1432997174477
9575080441755 0

2 � 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
957080441755

3 �2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 �3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 �1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

Table 4.3: Coefficients for the LSERKp14, 4q method [27].

i A14
i B14

i C14
i

1 0.0000000000000000 0.0367762454319673 0.0000000000000000
2 �0.7188012108672410 0.3136296607553959 0.0367762454319673
3 �0.7785331173421570 0.1531848691869027 0.1249685262725025
4 �0.0053282796654044 0.0030097086818182 0.2446177702277698
5 �0.8552979934029281 0.3326293790646110 0.2476149531070420
6 �3.9564138245774565 0.2440251405350864 0.2969311120382472
7 �1.5780575380587385 0.3718879239592277 0.3978149645802642
8 �2.0837094552574054 0.6204126221582444 0.5270854589440328
9 �0.7483334182761610 0.1524043173028741 0.6981269994175695
10 �0.7032861106563359 0.0760894927419266 0.8190890835352128
11 0.0013917096117681 0.0077604214040978 0.8527059887098624
12 �0.0932075369637460 0.0024647284755382 0.8604711817462826
13 �0.9514200470875948 0.0780348340049386 0.8627060376969976
14 �7.1151571693922548 5.5059777270269628 0.8734213127600976

requirements related to arrays storage. In fact, only one additional array is needed to be
stored. From the other side, due to presence of fifth stage, additional function evaluation
have to be performed.

One of alternative approach to LSERKp5, 4q is version that uses 14 stages instead of
five, proposed by Niegemann et al. in [27], the LSERKp14, 4q. The method is presented
in Algorithm 1, while its complementing coefficients can be found in Table 4.3. Here
an extra storage array is also required. Unlike to the previous low storage method,
this comes with an extra cost of ten additional functions, due to existence of ten more
stages. However, it will be shown in Section 4.3.2 that LSERKp14, 4q allows a large
stable time–step ∆t.

The connection between coefficients in Tables 4.2–4.3 and Butcher coefficients given
in Table 4.1 depending on number of stages s that are used, is the following

aij �

$'&
'%
Asj�1ai,j�1 �Bs

j j   i� 1,
Bs
j j � i� 1,

0 otherwise,

bi �
#
Asi�1bi�1 �Bs

i i   s,

Bs
i i � s.
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4.3 Theoretical Validation

In this section we will justify some DG’s properties essential to any numerical method.
With minimal loss of generality, we shall focus on the one–dimensional case. Therefore,
let us consider the 1D Cauchy problem with symmetric diagonalizable m � m matrix
A � Apx, tq (i.e., a hyperbolic system of PDEs) on Ω � rL,Rs

Bu
Bt �ABu

Bx � 0, x P Ω, t ¥ 0. (4.13)

Definition 4.3.1 A problem is well posed if it admits a unique solution u and there
exist α,C ¥ 0 such that

}uptq}L2pΩq ¤ Ceαt}up0q}L2pΩq. (4.14)

Intuitively, Eq.(4.14) means that solution must not be sensitive on changes in initial
data. We assume that Eq.(4.13) is completed with initial and boundary conditions such
that the wellposedness is fulfilled.

Let uh be a piecewise N–th–order polynomial approximation of u and Lh be a
discrete approximation of continuous operator ABx such that holds

duh
dt

� Lhuh � 0. (4.15)

Substituting exact solution u in Eq.(4.15) we obtain a truncation error T puq, which
represents the error committed during discretization of the continuous operator

du

dt
� Lhu � T puq. (4.16)

Considering the (global) error
eh � u� uh

in Eq.(4.16) and using Eq.(4.15) we get ODE with respect to time
deh
dt

� Lheh � T puq

whose exact solution (obtained using e.g. variation of constants) is

ehptq � e�Lhtehp0q �
» t

0
eLhps�tqT pupsqqds. (4.17)

Integrating Eq.(4.17) over the elements Tk and summing up, afterwards using triangle
inequality for norm and integral, we reach to

}ehptq}L2pΩhq ¤ }e�Lhtehp0q}L2pΩhq �
» t

0
}e�Lhps�tq}L2pΩhq}T pupsqq}L2pΩhqds (4.18)

According to Lax–Richtmyer equivalence theorem [20], to have a convergent well posed
linear problem it is enough to ensure consistency and stability. The consistency is
described by approximation of functions and operators

lim
dofÑ8

}ehp0q}L2pΩhq � 0 and lim
dofÑ8

}T puptqq}L2pΩhq � 0,

while stability requires
lim

dofÑ8
}e�Lht}L2pΩhq ¤ Che

αt.

Note a bond between stability and wellposedness; one can interpret the stability as
wellposedness of matrix exponential problem (uptq � e�Lht in Eq.(4.14)) regardless of
grid or polynomial order refinements (see Remark 4.3.1).
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Remark 4.3.1 In the last limits we introduced a term ‘dof’ – degree of freedom, which
refers to possibility to achieve the convergence in different ways. Namely, we can ei-
ther reduce the element size – h–convergence or increase the order of polynomial – p–
convergence or even make a combination of both – hp–convergence.

4.3.1 Consistency

Within this subsection we shall determine the conditions under which we can expect a
consistency of DG semi–discrete scheme.

Unlike 2D case where the mapping Θ transformed triangles, in 1D case Θ maps
arbitrary subinterval into I � r�1, 1s. In particular, if x P Tk � rxk` , xkr s, then

xprq � xk` �
1� r

2 hk, where hk � xkr � xk` and r P I.

We assume, without loss of generality, that all cells have the same length h. Further,
we define on I

vprq � uphxq � upxq. (4.19)
In the case of order refinement (see Remark 4.3.1), we give the result whose proof is

technical and can be found in [5, Th.4.7.].

Theorem 4.3.1 Let v P HppIq, p ¡ 1{2, and vh be its polynomial interpolation of order
N . Then

}v � vh}HqpIq ¤ N2q�p�1{2|v|HppIq,

where is 0 ¤ q ¤ p.

Let us now focus on consistency under element refinement. Unlike previous case,
here we are capable to reveal an error estimate for u rather than v. This we will be
proposed in the theorem that follows. Before that we give a lemma from interpolation
theory (see lemmata 4.2.–4.4 in [15]).

Lemma 4.3.1 Let v P HppIq, p ¥ 1, and vh be its polynomial interpolation of order N .
Then

}vpqq � v
pqq
h }H0pIq ¤ N2q�p|v|HppIq,

where σ � mintN � 1, pu and q ¤ p.

Theorem 4.3.2 (Th.4.7. in [15]) Let u P HppTkq and uh be its piecewise polynomial
approximation of order N. Then

}u� uh}HqpΩhq ¤ Chσ�q|u|HσpΩhq,

for 0 ¤ q ¤ σ, where σ � mintN � 1, pu.
Proof. Using the substitution from the beginning of this subsection Eq.(4.19) we easily
find relation between u and v in norms of Sobolev spaces

|v|2HqpIq �
»

I

�
vpqq

�2
dr �

»
Tk

h2q�1�upqq�2
dx � h2q�1|u|2HqpTkq,

}u}2HqpTkq �
q̧

p�0
|u|2HppTkq �

q̧

p�0
h1�2p|v|2HppIq ¤ h1�2p}v}2HqpIq.

Combining these two estimates with Lemma 4.3.1 we obtain

}u� uh}2HqpTkq ¤ h1�2q}v � vh}2HqpIq ¤ h1�2q|v|2HσpIq ¤ h2σ�2q|u|2HσpTkq.

Finally, summing up the last expression over all elements, the result yields.
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The next theorem represents a generalization of the previous one. Namely, for more
general grids where the length h is chosen to be the maximal subinterval length, we have
the following result.

Theorem 4.3.3 (Th.4.8. in [15]) Let u P HppTkq, p ¡ 1{2, and uh be its piecewise
polynomial approximation of order N. Then

}u� uh}HqpΩhq ¤ C
hσ�q

Np�2q�1{2 |u|HσpΩhq,

for 0 ¤ q ¤ σ, where is σ � mintN � 1, pu.

4.3.2 Stability

We continue with the analysis of the Cauchy problem Eq.(4.13) with the inspection of
the stability condition. A semi–discrete scheme that corresponds to its i–th component
of Eq.(4.13)

Btui �
�
ABxu

�
i
� Btui �

m̧

j�1
AijBxuj � 0

is given as

Mk
duki,h
dt

�
m̧

j�1
AijSukj,h �

¾
BTk

n̂ �
� m̧

j�1
Aijuj


�
dx. (4.20)

If we suppose that the matrix A is uniformly diagonalizable, there exists a matrix R
such that

A � RΛR�1 and }R}L2pΩhq}R�1}L2pΩhq ¤ Ch.

This gives rise to introduce the substitution v � R�1u in Eq.(4.13). Consequently, the
Eq.(4.20) becomes

Mk
dvki,h
dt

� ΛiiSvki,h �
»
BTk
n̂ � �Λiivi��dx. (4.21)

One can conclude that the semi–discrete scheme Eq.(4.21) coincides with scheme for the
problem of type

Bu
Bt � a

Bu
Bx � 0, (4.22)

whose stability will be explained at the very end of this subsection.
Finally, stability of the scheme Eq.(4.20) yields from

}uhptq}2L2pΩhq � }Rvhptq}L2pΩhq
¤ }R}2L2pΩhq}vhptq}2L2pΩhq
¤ }R}2L2pΩhqe

αht}vhp0q}2L2pΩhq
¤ }R}2L2pΩhqe

αht}R�1uhp0q}2L2pΩhq
¤ }R}L2pΩhq}R�1}L2pΩhqe

αht}uhp0q}2L2pΩhq
¤ Che

αht}uhp0q}2L2pΩhq,

where we used uniform diagonalization of matrix A and stability for scalar case (see in
the sequel).
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Stability of semi–discrete scheme for scalar 1D conservation law

Let us recall the local nodal expression on element Tk � rxk` , xkr s

ukhpx, tq �
Np̧

i�1
ukhpxki , tq`ki pxq � pukhqT`kpxq,

where ukh � puk1, ..., ukNpqT with uki :� ukhpxki , tq is the vector of the local nodal solution
and `kpxq � p`k1pxq, ..., `kNppxqqT is vector of Lagrange polynomials. A local strong semi–
discrete scheme for the PDE Eq.(4.22) has the form

Mk du
k
h

dt
� Skpaukhq �

�
`kpxqpaukh � pauhq�q

�xkr
xk
`

, (4.23)

where discrete operators are defined as

Mk
ij � x`ki , `kj y and Skij �

A
`ki ,

d`kj
dx

E
.

Before we dive into the derivation of energy estimate, note that

pukhqTMkukh �
Np̧

i�1
ukhpxki , tqpMkuhqi

�
Np̧

i�1
ukhpxki , tq

Np̧

j�1
Mk

iju
k
hpxkj , tq

�
Np̧

i�1
ukhpxki , tq

Np̧

j�1

� »
Tk

`ki pxq`kj pxqdx
	
ukhpxkj , tq

�
»
Tk

� Np̧

i�1
ukhpxki , tq`ki pxq

	� Np̧

j�1
ukhpxkj , tq`kj pxq

	
dx

� }ukh}2L2pTkq,

and similarly
pukhqTSkukh �

1
2 rpu

k
hq2sx

k
r

xk
`

.

This clarifies why multiplication by ukh the Eq.(4.23) from the left hand side gives

d

dt
}ukh}2L2pTkq � �arpukhq2sx

k
r

xk
`

� 2rukhpaukh � pauq�qsxkr
xk
`

� rapukhq2 � 2ukhpauq�qsx
k
r

xk
`

.
(4.24)

Stability of hyperbolic system is characterized by non–increasing energy. In other words,
it is enough to show

Ķ

k�1

d

dt
}ukh}2L2pTkq �

d

dt
}uh}2L2pΩhq ¤ 0. (4.25)

Due to presence of degrees of freedom, we are capable to force upon additional
conditions. Namely, we take the numerical flux declared in Eq.(4.6). Further, we assume
a ¡ 0 and pauqpLq � 0 and pauqpRq � auhpxKr q.
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Summing over the elements Eq.(4.25) and doing some algebraic manipulations we
obtain

d

dt
}uh}2L2pΩhq � �|a|p1� αq

K�1̧

k�1
rrukhpxkr qss2loooooooooooooooomoooooooooooooooon

Interior interfaces

�p1� αqapu1
hpx1

` qq2loooooooooomoooooooooon
Left BC

� apuKh pxK` qq2loooooomoooooon
Right BC

.

Clearly, under current assumptions, the stability is ensured by 0 ¤ α ¤ 1. Neverthe-
less, there are other approaches [15] motivated by the physical nature of the considered
problem that also provide non–increasing energy.

4.3.3 Discrete Stability

So far we have been focused on the convergence analysis of semi–discrete scheme, due
to the method of lines approach. In this subsection we shall give a necessary condition
for stability of fully discrete RKDG scheme.

In order to define step size ∆t that provides a stable temporal scheme, we shall first
consider the test ODE

ut � λu, up0q � 1, (4.26)
where λ P C, and whose exact solution is uptq � eλt. Clearly, to ensure stability, the
quantity |λt| must be bounded at infinity, when tÑ8.

Let t0   t1   ...   tN�1   tN , N P N be a uniform grid of the time interval r0, T s,
such that tn � n∆t. The analytic solution at grid point is given as

uptn�1q � eλpn�1q∆t

� eλ∆tuptnq.
Let un be an approximation of the analytical solution uptnq, then

un�1 � Rpλ∆tqun,
where

Rpλ∆tq � eλ∆t (4.27)
states for an approximation of exponential function.

Definition 4.3.2 The function R in Eq.(4.27) is called the stability function of the
corresponding numerical scheme.

Usually, the function R is a polynomial function or a rational function whose nu-
merator and denominator are both polynomial functions.

Definition 4.3.3 Let R be the stability function. Then, the stability region of the cor-
responding numerical scheme is defined as

S � tz P C : |Rpzq| ¤ 1u.
It can be shown [2] that the stability function of s–stage ERK of arbitrary order p

is given as

Rpzq � 1� z � z2

2! �
z3

3! � ...� zp

p! �
ş

j�p�1
zjbTAj�11,

where 1 � p1, 1, ..., 1qT P Rs. This function is used for the plot in Fig. 4.4.
Let us return back to main problem, the discrete DG scheme

duh
dt

� Lhuh � 0,
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Figure 4.4: Stability regions of fourth–order Runge–Kutta methods: ERK4, LSERKp5, 4q and
LSERKp14, 4q.

where Lh � Bxa. The idea is to choose ∆t sufficiently small such that entire spectrum
of Lh fits in stability region of the temporal scheme [15].

From semi–discrete weak form we conclude that

Lh � 2a
h

M�1rS � Es, (4.28)

where E denotes a matrix whose entries are zeros except the first and the last diagonal
entry. In Figs. 4.5–4.8, we consider periodic boundary conditions in combination with
different choices of numerical flux (i.e. central, partly upwind and fully upwind flux) for
equation Btu� aBxu � 0, with a � 1 on interval r0, 1s broken into K equal subinterval.
These figures depict sets of eigenvalues λN of discrete operator Lh from Eq.(4.28).

Comparing stability regions of three Runge–Kutta methods whose stability regions
are plotted in Fig. 4.4 with spectrum illustrated in Figs. 4.5–4.8, it can be concluded
that we may always find ∆t sufficiently small such that ∆tλN fits in stability region at
least of RK method that posses the widest contour, LSERKp14, 4q. This gives necessary
stability condition, whereas the sufficient one is quite demanding and here will not be
considered (see e.g. [19]).

Special accent goes to the cases that include increasing of polynomial order, e.g.
Figs. 4.7 and 4.8. As can be seen, the spectrum get significantly spread. This gives rise
to choose time–step such that the eigenvalue with maximal amplitude stays bounded
from above. In fact, it can be experimentally shown [15] that the next estimate preserves
stability of temporal scheme

maxp|λN |q ¤ 3
2 max

i
p∆riq�1, (4.29)

where ∆ri is distance between to adjacent nodes on I.
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Figure 4.5: Spectrum of operator Lh for K � 4 and N � 1, 2, 3, 4.
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Figure 4.6: Spectrum of operator Lh for K � 29 and N � 1, 2, 3, 4.
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Figure 4.7: Spectrum of operator Lh for K � 4 and N � 5, 9, 16, 25.
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Figure 4.8: Spectrum of operator Lh for K � 29 and N � 5, 9, 16, 25. See text for discussion.
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We introduce a CFL (Courant–Friedrics–Lewy)–like stability restrictions on the
time–step

∆t ¤ CpNqminp∆xq.
More precisely, for problem Btu� aBxu � 0, whose length of elements is hk (on Ω) and
node spacing is ∆ir (on I), the CFL condition for RKDG is given as

∆t ¤ C
1
|a| min

k,i

hk

2 ∆ir. (4.30)

For systems Btu�ABxu � 0, the generalization of Eq.(4.30) takes form

∆t ¤ C
1

max |λpAq| min
k,i

hk

2 ∆ir. (4.31)
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Chapter 5

Numerical Results

This chapter is devoted to visualization of the theoretical work previously exposed. In
that purpose, codes from Hesthaven’s and Warburton’s book [15] for TM–mode we
adapted in order to consider not just the TE–mode but also to include other charac-
teristics specific to our problem. The notation from previous chapter is inherited and
upgraded when needed. The theory proposed in Chapter 4 and Subsection 2.2.1 allows
us to quickly recover a semi–discrete DG schemes for 2D Maxwell’s curl–equations in
Section 5.1. Afterwards, in Section 5.2 we perform several numerical experiments in or-
der to justify reliability of the method applied on our specific problem. More precisely,
we investigate stability of the method using spectral properties of DG operator, and the
convergence, both in space and in time, with the help of a numerical example.

Finally, the Section 5.3 is dedicated to the main purpose of this work. Namely, we
comeback to the application presented in the beginning of this document and consider
the numerical simulation of light scattering in the human’s cornea aiming to mimicking
the OCT imaging system. A two–dimensional model of backscattered light intensity
is proposed and its time evolution is considered both for healthy and pathological tis-
sues. In the very end of chapter, an analysis of the amount of scattered light during
propagation is presented.

5.1 DG Formulation for Maxwell’s equations

We start by formulating the conservative form of TE–mode Maxwell’s equations in 2D
(3.6), i.e.,

QBtu�∇ � F puq � 0 on Ω� r0, T s, (5.1)
where the state vector is given as u � pEx, Ey, HzqT, whereas the material matrix Q
and the flux vector F are defined as

Q �
�
ε 0
0T µ



, ε �

�
εxx εxy
εyx εyy



, and F puq �

�
� 0 �Hz

Hz 0
Ey �Ex

�
.

As usual, uh � pExh , Eyh, Hz
hq is the approximate solution of Eq.(5.1) whose component

fields belong to the space Vh (presented in Subsection 4.2.1),

uh �
Kà
k�1

ukh P V 3
h , where ukhpx, tq �

Np̧

i�1
ukhpxki , tq`ki pxq.

Repeating the similar procedure as in Chapter 4, we can easily obtain the strong form,»
Tk

�
QBtukh �∇ � F pukhq

�
`ki dx �

¾
BTk

n̂ � pF � F ��`ki dx. (5.2)



In the remaining of the work it will be handy to use the following notation for the
field discontinuities across the element’s boundaries

rus � u� � u� � n̂ � rruss.

We consider the numerical flux that corresponds to an anisotropic medium [18],

n̂ � pF � F �q �
�
�

�ny
Z��Z�

�
Z�rHzs � αpnxrEys � nyrExsq

�
nx

Z��Z�
�
Z�rHzs � αpnxrEys � nyrExsq

�
1

Y ��Y �
�
Y �pnxrEys � nyrExsq � αrHzs

�
�
, (5.3)

with the upwinding parameter α P r0, 1s. The parameter α regulates the wave dissipa-
tion1, i.e. α � 0 yields to non–dissipative central flux, while α � 1 adds extra dissipative
terms that result the upwind flux. We may say that α brings an artificial dissipation in
system.

The impedance Z and conductance Y are related by

Z� � 1
Y � � µ�c�, c� �

d
n̂Tε�n̂

µ� detpε�q .

We consider the boundary conditions imposed by the numerical flux, due to its
crucial role in DG method which manifests in the exchange of the information between
cells.

Using the mirror principle, we set the differences at all boundary points for PEC
boundary conditions as

rExs � 2E�
x , rEys � 2E�

y , rHzs � 0. (5.4)

Similarly, the jumps at the boundary for PMC are

rExs � 0, rEys � 0, rHzs � 2H�
z . (5.5)

The SM–ABC are implemented such that incoming flux at boundary is zero. For the
upwind flux this means [1]

Z�H�
z � nxE

�
y � nyE

�
x ô H�

z � Y �pnxE�
y � nyE

�
x q. (5.6)

When the central flux is used, we have

Z�H�
z � nxE

�
y � nyE

�
x ô H�

z � Y �pnxE�
y � nyE

�
x q. (5.7)

Assuming α � 1 in Eq.(5.3) we may merge the conditions Eqs.(5.6)–(5.7) in the single
condition

rExs � E�
x , rEys � E�

y , rHzs � H�
z . (5.8)

Finally, we finish our formulation complementing the scheme with appropriate bound-
ary conditions selected from above and initial condition

upx, 0q � u0pxq.
1In physics the dissipation stays for the loss of wave energy, with consequent decrease in wave am-

plitude, due to wave breaking, turbulence, and viscous effects.
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5.2 Numerical test

Within this section we inspect the stability and convergence of a normalized TE–mode
of Maxwell’s equations2

BEx
Bt � BHz

By ,

BEy
Bt � �BHz

Bx ,

BHz

Bt � BEx
By � BEy

Bx .

(5.9)

All experiments shall be performed on domain Ω � r�1, 1s2 whose partition is de-
scribed in Table 5.1. The meshes in Table 5.1 are constructed using Matlab ® function
delaunay that creates the so–called Delaunay’s triangulation (see [24]). In Fig. 5.1 are
shown some of them3.

Using the same terminology as in Chapter 4 one can easily derive a local strong
semi–discrete form of Eqs.(5.9)

d

dt
Exh �MSyHz

h

� 1
2
�
JM

��1
¾
BTk

�
nyrHz

hs � αpnxrExhs � nyrEyhs � rExhsq
�
`ki dx,

d

dt
Eyh ��MSxHz

h

� 1
2
�
JM

��1
¾
BTk

�
nxrHz

hs � αpnxrExhs � nyrEyhs � rEyhsq
�
`ki dx,

d

dt
Hz
h �MSyExh �MSxEyh

� 1
2
�
JM

��1
¾
BTk

�
nxrEyhs � nyrExhs � αrHz

hs
�
`ki dx

(5.10)

Moreover, the Eqs.(5.10) have a compact form

d

dt
uh � Lhpαquh. (5.11)

For a fixed mesh, it is clear that operator Lh depends only on the parameter α.

Table 5.1: Description of meshes used for computations of error.

Minimal distance between two vertices hmin 0.70 0.56 0.28 0.14 0.07
Number of triangles K 32 50 200 800 3200
Number of vertices Nv 25 36 121 441 1681

2This form can be obtained by making dimensionless each quantity that appears in initial equations.
Informally speaking, we consider ε � diagp1, 1q and µ � 1.

3Let us note that a shortest distance between two nodes in a 2D mesh, obtained by a triangulation,
represents the minimal of all maximal triangle edges. For instance, the shortest distance of a mesh in
Fig. 5.1 is the hypotenuse of triangle.
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Figure 5.1: Example of meshes used in numerical experiments for K � 32 and K � 3200.

5.2.1 Stability

We are going to illustrate the behavior of spectrum of the DG operator Lh mentioned in
Eq.(5.11) and compare the results with the stability regions of the ERK methods stated
before.

The mesh used for computations is given in Fig. 5.1(left) and has 32 elements, while
the polynomial order in chosen to be N � 4. In this case, the number of interpolation
points on each triangle Tk is Np � pN � 1qpN � 2q{2 � 15. Since there are three fields
whose solution is unknown, the DG discrete operator size is K �Np� 3 � 1440. Hence,
each of Fig. 5.2–5.3 has 1440 eigenvalues denoted by blue asterisk.

In Fig. 5.2–5.3 are used PMC boundary conditions defined in Eq.(5.5). The estimate
from Eq.(4.29) in combination with minimal inscribed circle diameter of triangles in
mesh denoted by rT [15],

∆t � min
Ωh

rT pxq23 min
i

∆ri, (5.12)

is used for temporal step size.
As we may see in Fig. 5.2–5.3, the time–step defined in Eq.(5.12) keeps the scheme

stable. Furthermore, LSERKp14, 4q allows even bigger steps in time.
Note that, by decreasing the parameter α, the spectrum is getting stick to the

imaginary axis. Consequently, for α � 0 all eigenvalues become pure imaginary. This is
a result of the energy–conserving nature of central flux [10].

5.2.2 Convergence

Let us begin by proposing an exact solution of the system of Eqs.(5.9) [18]

E�
xpx, y, tq � � 1?

2
cospπxq sinpπyq sinpπ

?
2tq,

E�
y px, y, tq �

1?
2

sinpπxq cospπyq sinpπ
?

2tq

H�
z px, y, tq � cospπxq cospπyq cospπ

?
2tq.

(5.13)
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Figure 5.2: Spectrum of DG operator for TE–mode of Maxwell’s equations.
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Figure 5.3: Spectrum of DG operator in stability regions of ERK methods.

For purposes of convergence analysis we assume PEC boundary conditions given by
Eq.(5.4), while initial conditions are set as

Expx, y, 0q � 0,
Eypx, y, 0q � 0,
Hzpx, y, 0q � cospπxq cospπyq.

In our tests, we distinguish upwind and central scheme. The final time is chosen to
be T � 0.1 for all trials in space. For each field in TE–mode and corresponding exact
solution given in Eq.(5.13), we define L2–error of approximation separately for the fields

ErrorpExq � }E�
x � Exh}L2pΩq,

ErrorpEyq � }E�
y � Eyh}L2pΩq,

ErrorpHzq � }H�
z �Hz

h}L2pΩq,

while the error of solution vector uh � pExh , Eyh, Hz
hq is

Errorpuhq �
b
ErrorpExq � ErrorpEyq � ErrorpHzq.

The order of convergence in space is determined from

log
�
Errorpuh,∆tq{Errorpuh1 ,∆tq

�
logph{h1q ,

where uh,∆t represents approximate solution calculated for time–step ∆t, while h and
h
1 are diameters of two consecutive meshes. From the other side, if ∆t and ∆t1 are two
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Table 5.2: L2–error and spatial order of convergence.

α N K h Errorpuhq Order

0

32 7.07E-01 4.38E-01 –
50 5.66E-01 3.82E-01 0.61

1 200 2.83E-01 1.78E-01 1.10
800 1.41E-01 7.32E-02 1.28
3200 7.07E-02 3.81E-02 0.94
32 7.07E-01 1.82E-01 –
50 5.66E-01 1.17E-01 1.99

2 200 2.83E-01 2.25E-02 2.38
800 1.41E-01 4.77E-03 2.24
3200 7.07E-02 1.14E-03 2.07
32 7.07E-01 4.31E-02 –
50 5.66E-01 2.01E-02 3.42

3 200 2.83E-01 2.42E-03 3.05
800 1.41E-01 2.97E-04 3.03
3200 7.07E-02 3.73E-05 3.00
32 7.07E-01 7.99E-03 –
50 5.66E-01 3.03E-03 4.35

4 200 2.83E-01 1.81E-04 4.06
800 1.41E-01 1.10E-05 4.04
3200 7.07E-02 6.80E-07 4.01

1

32 7.07E-01 3.25E-01 –
50 5.66E-01 2.45E-01 1.26

1 200 2.83E-01 6.75E-02 1.86
800 1.41E-01 1.57E-02 2.10
3200 7.07E-02 3.90E-03 2.01
32 7.07E-01 1.01E-01 –
50 5.66E-01 6.58E-02 1.90

2 200 2.83E-01 1.11E-02 2.57
800 1.41E-01 1.09E-03 3.35
3200 7.07E-02 1.44E-04 2.92
32 7.07E-01 2.43E-02 –
50 5.66E-01 1.09E-02 3.59

3 200 2.83E-01 8.68E-04 3.65
800 1.41E-01 3.74E-05 4.54
3200 7.07E-02 2.40E-06 3.96
32 7.07E-01 3.87E-03 –
50 5.66E-01 1.44E-03 4.43

4 200 2.83E-01 4.50E-05 5.00
800 1.41E-01 1.44E-06 4.97
3200 7.07E-02 5.11E-08 4.82
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(a) Central flux. (b) Upwind flux.

Figure 5.4: L2–error for field Ex versus h.

different time–step sizes for a fixed diameter of mesh h, then the order of convergence
in time is

log
�
Errorpuh,∆tq{Errorpuh,∆t1 q

�
logp∆t{∆t1q .

In Table 5.2 the L2–errors between approximate and exact solution of Eqs.(5.9) are
computed as well as associated orders of convergence in space. The computations are
performed on different meshes, all given in Table 5.1, for both central pα � 0q and
upwind pα � 1q flux, while polynomial orders varied from first to fourth. The time–step
is set to be ∆t � 10�4. In Fig. 5.4 data from Table 5.2 is visualized only for the
component of electric field Ex, into a plot whose axes are logarithmically scaled. As
we may see, while central flux is used, the order of approximation is around OphN q,
whereas space discretizations that use upwind flux in most of cases achieve the order
OphN�1q, all in accordance to theoretical results presented in literature (see [1] and the
references therein).

Table 5.3: L2–error and tem-
poral order of convergence.

∆t Errorpuhq Order

9.00E-03 3.41E-10 –

4.50E-03 2.14E-11 4.00

2.25E-03 1.33E-12 4.00

1.12E-03 8.33E-14 4.00 10
-2

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

E
x

Figure 5.5: L2–error for field Ex versus ∆t.

Further, Table 5.3 shows that the temporal discretization gives the forth order ap-
proximation, i.e. as expected the order is Op∆t4q. Namely, we have fixed the polyno-
mial order to N � 8, whereas the number of elements in mesh is K � 3200 (see Fig.
5.1(right)). In Fig. 5.5, the results obtained in Table 5.3 are illustrated, but again only
for x–direction of electric field. Clearly, the central and upwind schemes give the same
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results. Lastly, we have to emphasize that both low–storage explicit Runge–Kutta meth-
ods, LSERKp5, 4q and LSERKp14, 4q, give the same values of entries in Tables 5.2–5.3
as it may be naturally expected.

5.3 Modelling scattered electromagnetic wave’s propaga-
tion in 2D

In this subsection we will propose a computational model that mimics the electromag-
netic wave’s propagation through eye’s tissues in order to create a virtual OCT scan. As
OCT standard techniques only provide structural information, it is necessary to expand
OCT data analysis to account for both structural and functional information [29]. A
mathematical modelling of OCT data could expand the information provides by OCT
from structural to functional information. The functional information may provide a
means for optical biopsy [13], as well as contributing to an earlier diagnosis and, hope-
fully, a more efficient treatment [29].

The corneal stroma is composed of dense, regularly packed collagen fibrils arranged
in layers or lamellae. Fibrils are narrow, uniform in diameter and precisely organized.
These properties are vital to maintain transparency and to provide the biomechanical
prerequisites necessary to sustain shape and provide strength [23]. There is a vast
literature trying to figure out why cornea is transparent [21,4,14,23], but there is a
consensus that every model trying to explain corneal transparency should consider the
shape, size and organization of EMC in the corneal stroma and its elements such as
collagen fibrils and proteoglycans, and their refractive indices.

In this section we simulate the light scattering in the human’s cornea aiming to
mimicking the OCT imaging system. We consider a two–dimensional model of backscat-
tered light intensity in two different scenarios that correspond to the fibrils organization
presented in Fig. 5.6. Namely, our simulation settings are composed of 38 randomly
disturbed collagen fibrils, which are denoted by circles in mentioned figure. Fig. 5.6(left)
refers to a healthy human cornea that has fibrils of diameter 31nm, while the distance be-
tween every two adjacent fibrils is not less than its doubled diameter. In Fig. 5.6(right),
that tries to mimic a pathologic situation, positions of fibrils are kept, while 20% of
overall number of fibrils (� 8 fibrils) are chosen to have doubled diameter [23].

The natural approach for modelling of the electromagnetic radiation is to consider
Maxwell’s equations. Since we want simulate the OCT imaging system, we use so–called
scattered field formulation, Eqs.(3.8), previously considered in Chapter 3,

εxx
BEscx
Bt � εxy

BEscy
Bt � BHsc

z

By � P px, y, tq,

εyx
BEscx
Bt � εyy

BEscy
Bt � �BH

sc
z

Bx �Qpx, y, tq,

µ
BHsc

z

Bt � �BE
sc
y

Bx � BEscx
By �Rpx, y, tq,

(5.14)

with sources

P px, y, tq � pεinc � εxxqBE
inc
x

Bt � εxy
BEincy

Bt ,

Qpx, y, tq � �εyx BE
inc
x

Bt � pεinc � εyyq
BEincy

Bt ,

Rpx, y, tq � pµinc � µqBH
inc
z

Bt .

(5.15)
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Here, the scattered fields Escx , Escy and Hsc
z is being solved, while the incident fields are

the following

Eincx px, y, tq � 0,
Eincy px, y, tq � cosp10px� tqq,
H inc
z px, y, tq � 0.

Further, on the computational (dimensionless) domain Ω � r�1, 1s2 we define a union
of circles F that model healthy corneal collagen fibrils’ positions, while Ω{F states for
EMC stromal components or simply, the background cells. Similarly, for ill case we
define the set F 1 . These sets are collectively illustrated in Fig. 5.6. The radius of each
fibril is 0.03 with exception in cases where diameter of fibril is doubled and takes value
0.06. The assumption about distance constrain is also fulfilled.

Due to corneal optical anisotropy exposed in Chapter 2, we consider a diagonal
piecewise constant permittivity tensor, i.e., entries εxy and εyx are zero. Since the
corneal tissues properties were already studied for a couple of centuries, range of some
quantities is well–standardized, such as refractive indices of collagen fibrils and EMC
cells. The exact values of refractive indices for these two types of tissue are specified by
discussion with scientists that deal with medical aspect of the bigger research project
which is used as an inspiration for this thesis. Finally, using the connection between
refractive indices and dielectric permittivity constant established in Subsection 2.4.1, we
define diagonal entries of anisotropic dielectric tensor

εxxpx, yq � εyypx, yq �
#
p1.55q2, px, yq P F and px, yq P F 1

,

p1.345q2, px, yq P Ω{F and px, yq P Ω{F 1

.

This yields εinc � p1.345q2. Since eye’s tissues are non–magnetic medium, the dielectric
permeability is µ � µinc � 1.

Ω

F F 1

Figure 5.6: Stromal collagen fibrils arrangement. See text for further discussion.

In what concerns the boundary, we consider the SM–ABC, Eq.(5.8), that minimizes
reflections on the border of the computational domain. The initial conditions are chosen
to be zero.

The spatial discretization of Eqs.(5.14)–(5.15) is done on meshes4 defined in Fig. 5.7
using DG method coupled with upwind flux pα � 1q. The LSERKp14, 4q is applied for

4This meshes are made using software FreeFem�� ®.
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time integration with step ∆t � 10�3. The solution is approximated by polynomial of
order N � 4. The final simulation time is T � 1.

An evolution in time of scattered electric field intensity

Isc �
b�

Escx
�2 � �Escy �2

is displayed in Fig. 5.8. As it may be seen in the figures, the backscattering is more
intensive in case where the organization of the fibrils is not uniform (Fig. 5.6(right)).
This corresponds to a lack of transparency of the ill cornea.

Additionally, for purpose of a deeper analysis, in Fig. 5.9 is done the horizontal cut
at y � 0 of approximate solution obtained in Fig. 5.8. As we may see, 20% of total
number of stromal fibrils is enough to augment the background scattering of radiation
that later causes swelling of cornea and lose of its transparency, as theoretically stated
in [23]. Furthermore, the backscattering is even more excited in Fig. 5.10 where the
cut is done at y � 0.1.
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Figure 5.7: Meshes used in simulations for setup given in Fig. 5.6. The mesh above contains
K � 5072 triangles and corresponds to the left arrangement in Fig. 5.6, while the mesh below
matches with the right fibrils arrangement and counts K � 4972 elements.
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Figure 5.8: Time evolution of scattered electric field intensity Isc. Left hand side corresponds
to healthy cornea, whereas right hand side states for case of corneal illness.
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Figure 5.9: Horizontal cut of field Isc from Fig. 5.8 at y � 0.
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Figure 5.10: Horizontal cut of field Isc from Fig. 5.8 at y � 0.1.
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Chapter 6

Conclusion

Through this work we dealt with a problem arising in ophthalmology and gave the appro-
priate theoretically based model. Since the model had required a knowledge originating
from multidisciplinary sciences, we introduced ourselves with many new concepts.

First of all, it was necessary to learn basic anatomy of eye with main accent on its
anterior part. The corneal content was studied in more detail, and the latest under-
standings related to corneal transparency were exposed. The mechanism of a diagnostic
device, the OCT machine, was also depicted. OCT technology had requested a com-
prehension of electromagnetic radiation, thus we gave the overview of electromagnetism
and studied its governing equations. Classification of mediums in which electromagnetic
waves propagate was given, and theirs optical properties were explored. Having over-
came these terms, we traversed to mathematical model formulation, and afterwards, to
the presentation of numerical procedure.

The solving of model equations was split in space and time evaluation. Although
numerical technique used in space, DG method, was quite demanding, we used an ap-
proach that could give to a reader, new to this field, the most efficient and complete
explanation. For this reason, we had decided to demonstrate the numerical method
on conservation law type of equations. The theoretical backup in view of mathemati-
cal proof was also provided. To complete overall numerical method, we introduced the
Runge–Kutta time integrators. A comparison of stability regions of some RK methods
were also proposed. The stability and convergence of these two coupled methods, i.e.
RKDG method, was justified on Maxwell’s equations. We saw that such a discretization
gives high–order accuracy.

Finally, a simulation of light scatter in corneal stroma of human eye was presented.
Electromagnetic radiation during an OCT scan was compared for setups of healthy and
ill human cornea. The matching with assumptions of theoretical model was found.

In order to improve the mesh quality and at the same time to constrain computational
costs, the author explored several available 2D mesh generator software packages. A
possible hint to cope the lack of mesh quality is to consider a different strategy in a
future attempts.

The proposed simulation could be in future upgraded with increased number of fib-
rils such that entire lamella is presented. Moreover, it would be interesting to make a
simulation in three dimensions that may illuminate a 3D–OCT image. In such case, the
circles from 2D computational domain should be replaced with tiny cylinders. All these
ideas lead to large scale simulations and use of parallel computers. Another direction
in future research would be replacement of RKDG method with simultaneous DG dis-
cretization in both, space and time, i.e. so–called space–time DG method, due to its
geometry flexibility and high–order accuracy.
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Važna napomena:
VN
Izvod: U proteklih nekoliko decenija, tehnike medicinskog snimanja
IZ značajno su doprinele otkrivanju unutrašnjih telesnih

struktura, kao i dijagnozi i lečenju bolesti. Konkretno, u
oftalmologiji, jedan popularan neinvazivan vid snimanja
očnih tkiva je optička koherentna tomografija (engl. Optical
Coherence Tomography – OCT). U ovoj tezi bavimo se
modeliranjem tkiva rožnjače, čija neprozirnost i dan danas
predstavlja predmet naučnog interesovanja. Naš cilj je
generisati virtuelni OCT snimak, uz pomoć odgovarajućeg
matematičkog modela, koji bi dalje mogao locirati uslove koji
dovode do zamućenja ljudske rožnjače. Kako očna tkiva
predstavljaju, fizički gledano, anizotropne materijale, model
zahteva izučavanje istih. Iako je numerička analiza, prisutna u
literaturi, ograničena na izotropne materijale, uspeli smo
modifikovati numerički alat anizotropnom slučaju. Mehanička
svojstva oka smo upotpunili uvođenjem optičkih karakteristika
anizotropnih materijala, što je neophodno za razumevanje
matematičkog modela u celosti. U svrhu numeričkih simulacija i
analize numeričkog algoritma, razmatraju se različite vrste
graničnih uslova koji se susreću u elektromagnetizmu. Numeričke
simulacije se izvode primenom tzv. Runge–Kuta prekidnog
Galerkinovog metoda na Maksvelove jednačine prethodno
prilagođenim modelu. Predstavljena je detaljna analiza dobijenih
rezultata. Veliki deo rada čini izučavanje materije prekidnog
Galerkinovog metoda (engl. discontinuous Galerkin – DG),
procedure koja pripada metodima konačnih elemenata. DG
metod se primenjuje na prostornoj diskretizaciji, dok vremenskoj
promenljivoj pristupamo koristeći eksplicitni Runge–Kuta metod.
Na ovaj način dobijamo potpunu diskretizaciju početnih
jednačina. Konvergencija i stabilnost ovih metoda su dobro
ispitani i numerički testirani na različitim šemama definisanim
na različitim mrežama diskretizacije.
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Abstract: In the past few decades, the medical imaging techniques have
AB made significant contribution to the revealing of internal

body structures as well as the diagnosis and treatment of
disease. Specifically, in ophthalmology, one of the popular
non–invasive means of ocular tissue imaging is the Optical
Coherence Tomography (OCT). In this thesis we deal with
the modelling of the corneal tissues whose opacity is subject
of interest among scientists still today. Our goal is to
generate a virtual OCT scan using an appropriate
mathematical model which could further locate conditions
that lead to clouding of the human cornea. Since eye’s
structures, in physical sense, represent anisotropic materials,
the model requires the study of such materials. Although the
numerical analysis, present in the literature, is restricted to
isotropic materials, we well modify the computational tool to
the anisotropic case. Comprehension of optical eye’s
properties is certainly necessary to establish a mathematical
model. For the purpose of numerical simulations and analysis
of the numerical algorithm, different types of boundary
conditions encountered in electromagnetism are considered.
Numerical simulations are performed by applying so–called
Runge–Kutta discontinuous Galerkin method on Maxwell’s
equations previously adapted to the model. A detailed
analysis of obtained results is presented. A large part of
thesis is occupied by the proposition of discontinuous
Galerkin (DG) method, a procedure that belongs to the
family of finite element methods. The DG method is applied
on spatial discretization, while an explicit Runge–Kutta
method is employed for temporal integration. In this way we
get a full discretization of initial equations. In addition,
convergence and stability of these methods are well studied
and numerically tested on various schemes defined different
meshes.
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