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Abstract

In this master thesis we implemented a common message passing algorithm
called Belief Propagation [12]. We applied this algorithm on stochastic block
model, an often used generative model for social and biological networks, and
we tackled the problem of inferring communities or groups from the topology
of the network.

We started by introducing theoretical aspects of the problem, consider-
ing stochastic block model, graphical models and finally belief propagation
algorithm.

We implemented the algorithm in Python programming language and
represented the code and its results in the final chapter. We used two differ-
ent networks for the analysis, one of which was synthetically generated and
other that is widely used for the community detection, Zachary’s karate club.
While BP is expected to work on tree graphs, our numerical results indicate
the benefits of this algorithm even when that is not a case.
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Chapter 1

Introduction

Many systems in nature and around us can be expressed by a large number of
nodes or vertices where typically we can observe different kinds of connections
between them. A structure that is described in this way is called a network.

Networks, as a systems’ structure, could represent computer networks,
telecommunication networks, biological networks, social networks, etc. For
other examples see [3]. Lately, internet and social media have been supplying
enormous amount of data for scientists to process and analyze. The necessity
to deal with such a large amount of data has generated the need for more
intensive analysis of networks.

Figure 1.1: A network with 4 communities

Existence of community structure is one of the most important aspects
of these networks. The society offers a wide variety of examples of possible
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group organizations: families, work circles and friendships, villages, cities,
nations. Examples of communities are also proteins that have the same
specific function in a cell, inside World Wide Web this corresponds to groups
of pages that deal with the same or related topics, etc.

Identifying communities is important for other reasons as well. For ex-
ample, a community of customers with similar interests within the Amazon
customer-product relationship network represents a prime example that al-
lows for an effective recommender systems. Recognizing modules and their
boundaries, for instance, enables classification of nodes according to their
structural position in modules. Nodes with a central position in a network
can have an important control role. Such classification is significant in social
and metabolic networks.

The arising question is can something be concluded about the underlying
system based purely on the topology of the network.

Let’s assume each of the nodes may belong to one of q communities, and
the structure of the network may depend in an a priori unknown way on the
group memberships. Hence, essentially important question is if it is possible
to learn in what way the group membership influences the structure of the
network, and which node belongs to which group, considering we only know
the topology of the network.

There are two different types of network structures. First type are assor-
tative networks, meaning that there is a higher density of connections within
communities than across them. Typical example of this kind of network are
social networks, as people with similar interests or characteristics tend to be
more connected. For example, people with same level of education, same age
or gender. The second type of network structure are disassortative networks.
For these kinds of networks there are less connections inside a group and
more between different communities. For instance if we observe food net-
work a group of predators can be considered as one community. Typically,
there are fewer connections between them because they do not eat each other
but rather they eat similar prey. On Figures 1.1 and 1.2 we can see examples
of assortative networks with 4 and 6 different communities, respectively. As
we can see from the figures, there are more connections (edges) inside of an
community than between the communities.

In this work we are going to analyze a generative model for random
graphs, known as the stochastic block model [1]. This is the most commonly
used generative model for random modular networks. Stochastic block model
is defined in Chapter 2. After that we focus on community detection of
two different networks. There are many different algorithms developed for
community detection. The one studied in this work is based on the well
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known message-passing algorithm called belief propagation [9].

Figure 1.2: Example of an assortative network
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Chapter 2

Stochastic block model

2.1 Generative models

Generative models are a tool for generating random networks based on a set
of input parameters θ. They typically define the probability P (G|θ) of each
possible network instance G, expressed as a function of model parameters.
Given a network instance G it is often of interest to find θ that maximizes
the probability of G P (G|θ)

Set of parameters θ can be discrete or continuous. For communities
model, it is specified as the triplet ({t}, {π}, q), where {t} indicates the com-
munity assignment, {π} the model parameters, and q the number of modules.
The notation and model structure may vary from model to model, but this
is the general concept.

The communities in a network are then discovered by fitting the genera-
tive model to the underlying network. Generative models are the main focus
of many methods for detecting communities.

General form of generative models for complex networks is given by:

P (G|θ) =
∏
i<j

P (Aij|θ), (2.1)

where A is the adjacency matrix of the network G,i.e., Aij = 1 if there is an
edge between nodes i and j and Aij = 0 otherwise. Hence, the probability
of generating the network G is the probability of generating the adjacency
matrix A.

The simplest generative model is the Erdős - Rényi random graph. In
this model every pair of nodes is connected independently with the same
probability.
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There are two classes of generative models for networks with communities:
Stochastic block models and Latent space models [11]. We will focus on the
first class, stochastic block model.

However, we remark that the algorithm that is studied here can easily
be generalized to several generative models including hierarchical module
structures [4], overlapping modules [5], or degree-corrected versions of the
stochastic block model [6].
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2.2 Hierarchical module structures

Networks frequently illustrate hierarchical organization where vertices are
split into groups that further split into groups of groups, and so forth. Many
times these groups correspond to known functional communities.

The hierarchical organization of a network model is defined as follows.
Let G be a graph with n vertices. And let D be the dendrogram, a binary
tree with n leaves that correspond to the vertices of graph G. There are
n− 1 internal nodes of the dendogram D and each corresponds to a group of
vertices descending from it. With each internal node v there is a probability
pv associated with it. It holds that pv = pij, where pij corresponds to the
probability of an edge between vertices i and j from graph G and v is their
lowest common ancestor in the dendogramD. The hierarchical random graph
is then defined by a pair (D, pv)

Hierarchical structure is depicted by a tree or dendrogram shown in Figure
2.1. Gray nodes represent the groups of vertices bellow them and the shades
correspond to probabilities of an edge between left and right subtrees, while
colored squares at the bottom correspond to vertices of the graph.

Figure 2.1: Graphical representation of the hierarchical structure [4]
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Figure 2.2: Resulting network with communities [4]

2.3 Stochastic block model

Consider network G of N nodes. Parameter set θ contains the following
parameters: q - the number of modules (communities), na - the expected
probability of node belonging to group a, 1 ≤ a ≤ q and q× q affinity matrix
pab (Figure 2.3).

Each node has a hidden label ti, ti ∈ {1, 2, ..., q}, which tells us to which
community node i belongs to. For each pair of nodes i and j, i 6= j, an edge is
placed with probability pti,tj , or equivalently with probability 1− pti,tj there
is no edge between i and j. In this work we will use the re-scaled affinity
matrix cab = Npab because we are interested in the sparse network regime
where pab = O(1/N). We assume that cab = O(1) when N →∞.

The only information about the network that is provided is the adjacency
matrix A. Self loops are not allowed, which means Aii = 0.

Let Na denote the number of nodes in group a, 1 ≤ a ≤ q. From here
follows na = Na

N
. We calculate the expected number of edges from group a to

group b as Mab = pabNaNb and Maa = paa
Na(Na−1)

2
when a = b. As previously

mentioned, we use the re-scaled affinity matrix cab = Npab. In the limit of
large N , the average degree of the network G is:
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Figure 2.3: Examples of affinity matrices

(a) Affinity matrix of a random network (b) Affinity matrix of an
assortative network (c) Affinity matrix of an disassortative network

c =
∑
a,b

Mab

N
=
∑
a,b

pabNaNb

N
=
∑
a,b

cabnanb. (2.2)

Equation 2.2 refers to a directed network. In undirected case we have the
following:

c =
∑
a<b

Mab

N
+
∑
a

Maa

N
=
∑
a<b

cabnanb +
∑
a

caa
n2
a

2
. (2.3)

There are several special cases of the stochastic block model; we will
mention two of them:

(1) “Four groups” test of Newman and Girvan. This is also a special case
of the planted-l-partition model [7] which partitions the graph with N = q∗Na

vertices into q groups with each group having Na vertices. For the ”four
groups” test, a network is divided into four groups, q = 4 and na = 1/4 for
each a, 1 ≤ a ≤ 4, the groups are uniformly represented. The structure of
the network is assortative and it holds:
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pab =

{
pin, a = b

pout, a 6= b,
(2.4)

where pin > pout. For this model average degree can be calculated in the
following way:

c = pin ∗ (Na − 1) + pout ∗Na ∗ (q − 1). (2.5)

By altering the difference between pin and pout, the more or less challeng-
ing structures are created for community detection algorithms. The network
is generated from 128 nodes,with each group having 32 nodes. Average de-
gree c of the network is equal to 16. From this and the equation 2.5 it can
be concluded that pin + 3pout ≈ 1/2, which means that, in this case, pin and
pout are can be chosen independently. It is common to use also the follow-
ing parameters zin = pin(Na − 1) = 31pin and zout = poutNa(q − 1) = 96pout,
indicating the expected internal and external degree of a vertex, respectively.

(a) (b)

(c)

Figure 2.4: An example of NG benchmark

(a): zin = 15; (b)zin = 11; (c): zin = 8

(2) The planted partition model is a generalization of the example given
in (1). We have na = 1/q. Now, we are not only interested in the sparse
case, so we do not need to use the scaled affinity matrix. We have that
pab = pin if a = b and pab = pout if a 6= b and, again, pin > pout. For
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pin−pout > O(logN/N) it can be shown [8] that the planted partition is with
high probability equal to the best possible partition, in terms of minimizing
the number of edges between groups.

Now, assume that a network is generated using the stochastic block
model. All we know about this network is the resulting graph G and, with
that, its adjacency matrix A. Parameters q, na, pab and the labels ti are yet
to be determined. So, we need to resolve the following two questions:

(1) Parameter learning - Given the graph G, what are the most likely
values of the parameters q, na, pab that were used to generate the graph [1]?

(2) Inferring the group assignment - Given the graph G and the param-
eters q, na, pab, what is the most likely assignment of a label (group) to a
given node [1]?

To answer these questions we need to introduce the following measures:

C({ti}, {qi}) = max
π

1

N

∑
i

δti,π(qi)[1], (2.6)

C({ti}, {qi}) we call agreement between the original assignment {ti} and its
estimate {qi}, where π ranges over the permutations on q elements. This
measure helps us answer the second question - determining the most likely
group assignment of a label, this is why we are considering all possible per-
mutations. If some of the permutations correspond to original labeling, the
agreement C({ti}, {qi}) would be exactly 1, if this is not the case we would
have the fraction of overlapping group assignments.

The second measure that we consider is called the overlap and it is actu-
ally the normalized agreement:

Q({ti}, {qi}) = max
π

1
N

∑
i δti,π(qi) −maxa na

1−maxa na
[1]. (2.7)

It also holds that if ti = qi for all nodes i then Q = 1, which means that
we’ve found the exact labeling.

Original labeling {qi} is correlated with the original one {ti} if when
N →∞ the overlap Q is strictly positive.

On the other hand, when we naively guess that every vertex belongs to
the largest group, then the numerator of Q is 0 and Q = 0. Given {ca,b},
{na} and a set of observed edges E, we can write down the probability of a
labeling {qi} as

P ({qi}i) =
∏

(i,j) 6∈E
i 6=j

(1− pqi,qj)
∏

(i,j)∈E

pqi,qj
∏
i∈[q]

nqi
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How do we try to infer {qi} such that we have maximum correlation (up
to permutation) with the true labeling? The answer is to use the maximum
likelihood estimator of the marginal distribution of each qi, but with caution.
We should label qi with the r ∈ [q] such that P (qi = r) is maximized. We
must be careful when P ({qi}i) is invariant under permutations of the labeling
{qi}i, so that each marginal P (qi) is the uniform distribution. For example,
this happens in community detection, when all the group sizes n1, . . . , nq are
equal.
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Chapter 3

Graphical models

Since we are already familiar with the network structures let us now consider
graphical models. Since we can say that graphical model is also a network the
main difference is that in probabilistic graphical model, each node represents
a random variable, and each edge corresponds to probabilistic relationships
between these variables. In a random network this is not necessarily true.

A graph-based representation of probability distributions is called Prob-
abilistic graphical model. Nodes in this graph represent random variables (in
some cases group of random variables), and the edges express probabilistic
relationships between them.

The graphical models are there to help us in describing a certain prob-
lem. After representing a problem as a graphical model, we perform the
probabilistic inference. Hence, this is a two part process:

1. Modeling First all potentially relevant variables are identified. Next
step then is to describe how these variables can interact. This is ac-
complished by using structural assumptions considering the form of the
joint probability distribution of all the variables, typically, assumptions
of independence of variables. Each class of graphical model corresponds
to a factorization property of the joint distribution [9].

2. Inference Combining graphical models with accurate inference algo-
rithms is central to successful graphical modelling.

There are two broad classes of graphical models, although this is not a
strict separation. First class are graphical models that are more useful in
modeling. Both Markov networks and Bayesian networks are in this class.
Second class are those graphical models that are useful in representing infer-
ence algorithms. Here the most popular graphical models are factor graphs.

There are, also, two types of graphical models: directed and undirected,
and they are defined as follows:
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Definition 3.0.1. Directed graphical model is a model where the links
of the graph are directed at one side and this is indicated by arrows. This
model is also known as Bayesian network.

Definition 3.0.2. Undirected graphical model, also known as Markov
random field, is a model in which the links have no directional significance.
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3.1 Markov Networks

(a)

c

d

a

b (b)

c

d

a

b
Figure 3.1: Markov networks

(a): φ(a, b)φ(b, c)φ(c, d)φ(d, a)/Z1

(b): φ(a, b, c, d)/Z2

There are different kinds of factorization of the joint probability distribu-
tion:

p(a, b, c) = p(a|b, c)p(b|c)p(c) (3.1)

p(a, b, c) =
1

Z
φ(a, b)φ(b, c) (3.2)

Definition 3.1.1. A potential φ(x) is a non-negative function of the variable
x, φ(x) ≥ 0. A joint potential φ(x1, ..., xn) is a non-negative function of the
set of variables. A distribution is a special case of a potential satisfying
normalization,

∑
x φ(x) = 1. This holds similarly for continuous variables,

with summation replaced by integration.[9]

As for a distribution, the ordering of the variables in the potential function
is not relevant.

For defining the Markov network, we first need to define a clique:

Definition 3.1.2. A clique(C) is a set of nodes in a graph that form a
complete graph.

Definition 3.1.3. A maximal clique is a clique that couldn’t be extended
by more nodes.

Definition 3.1.4. Consider a set of variables χ = {x1, ..., xn}, a Markov
network is defined as a product of potentials on subsets of the variables
χi ⊆ χ:

19



p(x1, x2, ..., xN) =
1

Z

∏
C

φi(χi). (3.3)

The constant Z ensures the distribution is normalized. This is represented
by an undirected graph G where χi; i = 1, ..., C being the maximal cliques of
the graph G.
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3.2 Factor graphs

In order to solve inference problems, it can be helpful to convert directed
and undirected graphs into so-called factor graphs. Factor graphs make the
decomposition of the joint distribution more clear on the graphical model
by introducing additional nodes called the factor nodes. These nodes are
usually represented by squares.

(a)

a b

c
(b)

a b

c

f

f

f
1

2

3

Figure 3.2: Factor graphs

Definition 3.2.1. Factor graphs describe the factorization of functions and
are not necessarily related to probability distributions. Consider the function:

f(x1, ..., xn) =
∏
i

ψi(χi). (3.4)

The factor graph has a node for each factor ψi and each variable xj. There
is an undirected link between factor ψi and variable xj for each xj ∈ χi.

Now, consider the representation of the following distribution:

p(x1, ..., xn) =
1

Z

∏
i

ψi(χi) (3.5)

A normalization constant Z =
∑

χ

∏
i ψi(χi) is assumed and χ represents

all variables in the distribution.

Some factors ψi(χi) may represent a conditional distribution. For these
factors we may use directed links from the parents to the factor node, and a
directed link from the factor node to the child. This representation has the
same structure as an undirected factor graph, but preserves the information
that the factors are distributions.

Factor graph is a bipartite graph because it has two sets of nodes and
no links between the nodes which are in the same set.
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Consider the graph on the figure bellow:

 

Figure 3.3: Markov network

This Markov network can easily be represented with the factor graph. It
doesn’t necessarily have to be a unique representation as we’re going to see
on the Figure 3.4

 

Figure 3.4: Representation of the Markov network shown in Figure 3.3 with factor
graphs

Consider the distribution:

p(a, b, c) = φ(a, b)φ(a, c)φ(b, c) (3.6)

Markov Network representation from the Figure 3.4 could also corre-
spond to an unfactored clique potential φ(a, b, c). In this sense, the fac-
tor graph in the Figure 3.3 right, which corresponds to the clique potential
φ(a, b)φ(a, c)φ(b, c) more accurately conveys the form of the distribution in
the Equation 3.6. An unfactored clique potential φ(a, b, c) is also represented
by the Figure 3.3 left. Therefore, different factor graphs can have the same
Markov network.
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3.3 Belief propagation algorithm on factor graphs

3.3.1 Marginal inference and message passing

Definition 3.3.1. (Marginal inference) Inference is the process of computing
functions of the distribution p(x1, ..., xn). Marginal inference is the inference
on a subset of variables, possibly conditioned on another subset.

A key concept in efficient inference is message passing. Consider now the
chain graphical model, the four variable Markov chain, figure 3.5

 

Figure 3.5: Four variable Markov chain

p(a, b, c, d) = p(a|b)p(b|c)p(c|d)p(d). (3.7)

Our task is to calculate the marginal p(a). Assume that each variable is
binary, it only takes values from the set {0, 1}.

p(a = 0) =
∑

b∈{0,1},c∈{0,1},d∈{0,1}

p(a = 0, b, c, d) =

=
∑

b∈{0,1},c∈{0,1},d∈{0,1}

p(a = 0|b)p(b|c)p(c|d)p(d)
(3.8)

We could calculate this by summing the 8 possible states of variables, however
there is a more efficient way. We push the summation over variable d as far
to the right as we can:

p(a = 0) =
∑

b∈{0,1},c∈{0,1}

p(a = 0|b)p(b|c)γd(c), (3.9)

γd(c) =
∑

d∈{0,1}

p(c|d)p(d), (3.10)

γd(c) is a two state potential.
Next, we push the summation over c as far to the right as possible so that

we obtain:
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p(a = 0) =
∑

b∈{0,1}

p(a = 0|b)γc(b), (3.11)

γc(b) =
∑

c∈{0,1}

p(b|c)γd(c). (3.12)

This procedure is called variable elimination. This can also be viewed as
passing a message to a neighbouring node on the graph. We can calculate
any variable marginal of any tree by starting at the leaf of the tree.

3.3.2 BP algorithm

 

Figure 3.6: A tree without branches

Both directed and undirected networks can be represented using factor
graphs. Because of this it is useful to derive a marginal inference algorithm
for factor graphs.

Consider the distribution:

p(a, b, c, d) = f1(a, b)f2(b, c)f3(c, d)f4(d), (3.13)

for which we want to compute the marginal p(a, b, c). Variable d only occurs
locally, so we have:

p(a, b, c) =
∑
d

p(a, b, c, d) =
∑
d

f1(a, b)f2(b, c)f3(c, d)f4(d) =

= f1(a, b)f2(b, c)µd→c(c),

(3.14)

µd→c(c) =
∑
d

f3(c, d)f4(d), (3.15)

where µd→c(c) defines a message from node d to node c and is a function of
the variable c. Similarly,

p(a, b) =
∑
c

p(a, b, c) = f1(a, b)µc→b(b) (3.16)

and
µc→b(b) =

∑
c

f2(b, c)µd→c(c). (3.17)
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For simple structures with no branching, messages from one variable to
another are sufficient. But, in more complex structures, it is useful to consider
also the messages from variables to factors and vice-versa.

Definition 3.3.2. A message schedule is a specified sequence of message
updates. A valid schedule is a schedule in which a message is sent from
a node only when that node has received all requisite messages from its
neighbours. In general, there is more than one valid updating schedule [9].

In BP algorithm messages are updated as a function of incoming mes-
sages. The new message is computed based on the previously computed
message, until all messages from all factors to variables and vice-versa have
been computed.

Consider the distribution:

p(χ) =
1

Z

∏
f

φf (χf ). (3.18)

Messages from leaf node factors are initialised to the factor. Messages
from leaf variable nodes are set to unity [9].

Variable to Factor message:

µx→f (x) =
∏

g∈∂x\f

µg→x(x) (3.19)

 

Figure 3.7: Variable to Factor
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Factor to Variable message

µf→x(x) =
∑
χf\x

φf (χf )
∏

y∈∂f\x

µy→f (y) (3.20)

 

Figure 3.8: Factor to Variable messages

Marginal

p(x) ∝
∏
f∈∂x

µf→x(x) (3.21)

Figure 3.9: Marginal

For marginal inference, the important information is the relative size of
the message states so that we may re-normalize messages as we wish. Since
the marginal will be proportional to the incoming messages for that vari-
able, the normalization constant is trivially obtained using the fact that the
marginal must sum to 1. However, if we wish to also compute any normaliza-
tion constant using these messages, we cannot normalize the messages since
this global information will then be lost [9]. The small example of marginal
inference is given on a Figure 3.9.
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Chapter 4

Algorithm

Assume we have a probabilistic model on ~x = (x1, ..., xn) ∈ χN , where χ is a
discrete set, which can be decomposed, such as

P (~x) ∝
∏
a∈F

fa(~x), (4.1)

where each fa only depends on the variables Va. We can express constraint
satisfaction problems in these kinds of models, where each fa is associated
with some constraint.

Crucial problem in computer science is finding good enough assignments
to constraint satisfaction problems (CSPs), meaning finding values ~x in the
support of P (~x). Assume we knew the value of P (x1 = 1) was greater than
0. Then we would know that some satisfying assignment where x1 = 1 exist.
Having that in mind, we could recursively try to find ~x in the support of
P (1, x2, ..., xn), and iteratively come up with a good assignment to our CSPs.
Actually, we could sample uniformly from the distribution as follows: assign
x1 to 1 with probability P (x1 = 1), else assign it to 0 . Then, we iteratively
sample from P (x2|x1) for the model where x1 is fixed to the value we assigned
to it and repeat until we have assigned values to all of the {xi}i. A logical
question arises: When can we try and efficiently compute the marginals

P (xi) :=
∑
~x−xi

P (~x) (4.2)

for each i?

A popular algorithm for this problem exists when the corresponding
graphic model of P (~x) is a tree. BP is only guaranteed to work for trees, but
still we hope that it will give a useful answer if our factor graph is only “tree
like”.
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4.1 Deriving BP

We will start by making two simplifying assumptions on our model P (~x).
First, we will assume that P (~x) can be written in the form

P (~x) ∝
∏

(i,j)∈E

fi,j(xi, xj)
∏
i∈[n]

fi(xi)

for some functions {fi,j}i,j, {fi(xi)}i and some “edge set” E (where the edges
are undirected) 4.1. That is, we will only consider pairwise constraints. We
will see later that this naturally corresponds to a physical interpretation,
where each of the “particles” xi interact mutually via pairwise forces. Belief
propagation still works without this assumption, but the pairwise case is all
we need for the stochastic block model.

x1

x2

x3

x4

x5

f1,2(x1, x2)

f1,3(x1, x3)

f1,4(x1, x4)

f1,5(x1, x5)

Figure 4.1: Graphical model associated with the pdf P (x1, x2, x3, x4, x5) ∝
f1,2(x1, x2)f1,3(x1, x3)f1,4(x1, x4)f1,5(x1, x5)f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)

The second assumption we need to notice that there is a natural corre-
spondence between P (~x) and the graphical model T on n vertices, where
(i, j) forms an edge in T if and only if and only if (i, j) ∈ E. In order words,
edges (i, j) in T correspond to factors of the form fi,j in P (~x), and vertices in
T correspond to variables in ~x. Our second assumption is that the graphical
model T is a tree.

Now, imagine we are given such a tree T which represents our probabilistic
model. How do we compute the marginals? Suppose that we arbitrarily
rooted our tree at vertex xi. If we could compute the marginals of the
children of xi, we could stitch them together to compute the marginal xi.
In order words, in our graphical model, we should think about computing
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the marginals of roots of subtrees. A quick check shows that the base case
is easy: Let’s say we are given a graphical model which is a tree consisting
of a single node xi. This corresponds to some PDF P (~x) = P (xi) ∝ fi(xi).
So to compute P (xi), have just have to compute the marginalizing constant
Z =

∑
xi∈χ fi(xi), and then we have P (xi) = 1

Z
f(xi). With the base case out

of the way, we can try to solve the induction step: given a graphical model
which is a tree rooted at xi, and where we are given the marginals of the
subtrees rooted at the children of xi, how do we compute the marginal of the
tree rooted at xi? At the figure 4.2 we can see the graphic representation of
this. To formalize the induction step, we will define some notation that will
be useful to us later on. The main pieces of notation are T i→j, which is the
subtree rooted atxi with parent xj, and the “messages” ψk→ixi

, which can be
thought of as information which is passed from the child subtrees of xi to the
vertex xi in order to compute the marginals correctly.

Figure 4.2: Message passing graph [12]

• We let ∂i denote the neighbors of vertex i in T . In general, we will
switch between vertex i and the variable xi represented by vertex i.

• We define T i→j to be the subtree of T rooted at i, where i‘s parent is j.
We need to specify i‘s parent to give an orientation to our tree (so we’d
know in which direction to do recursion down the tree). Likewise, we
let Vi→j be the set of vertices/variables which occur in subtree T i→j.
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• Let the function T i→j(Vi→j), which is a function of the variables in
Vi→j, be equal to the product of T i→j‘s edges and vertices. Specifically,
T i→j(Vi→j) =

∏
(a,b)∈E′ fa,b(xa, xb)

∏
a∈Vi→j

fa(xa), where E’ is the set

of edges which occur in subtree T i→j. We can think of T i→j(Vi→j) as
being the pdf of the “model” of the subtree T i→j.

• At last, we define ψi→jxi
:= 1

Zi→j

∑
Vi→j−xi T (Vi→j), where Zi→j is a

normalizing constant chosen such that
∑

xi∈χ ψ
i→j
xi

= 1. In particular,

ψi→jxi
: χ → R is a function defined for each possible value of xi ∈ χ.

We can interpret ψi→jxi
in two ways: as the marginal of the root of the

subtree T i→j. And we can think of it as a “message” from vertex i to
vertex j. Later on we will see that this is a valid interpretation and
why.

Now, let’s see how we can express the marginal of the root of a tree as
a function of the marginals of its subtrees. Imagine we are considering the
subtree T i→j, so that vertex i has children (∂i) − j. Then we can compute
the marginal ψi→jr directly:

ψi→jxi
∝
∑
Vi→j−i

T i→j(Vi→j)

=
∑
(∂i)−j

∑
Vi→j−i−∂i

fi(xi)
∏

k∈(∂i)−j

fi,k(xi, xk)T
k→i(Vk→i)

= fi(xi)
∑
(∂i)−j

∏
k∈(∂i)−j

fi,k(xi, xk)
∑

Vk→i−k

T k→i(Vk→i)

∝ fi(xi)
∑
(∂i)−j

∏
k∈(∂i)−j

fi,k(xi, xk)ψ
k→i
xk

= fi(xi)
∏

k∈(∂i)−j

∑
xk∈χ

fi,k(xi, xk)ψ
k→i
xk

In the equation above we’ve got the first row by the definition of marginal
probability. Next we broke up sums according to definition of T i→j(Vi→j).
Then, we swapped sums and products then again use definiton of marginal
probability. At the last row, we again swapped sums with products.

As we look at the update formula we have derived, we can now realise why
the {ψk→ixk

}k∈∂i−j are called “messages” to vertex i: they forward information
about the child subtrees to their parent i.
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All of the above is algebraic way of deriving belief propagation. A way
that is maybe more intuitive to get the same result is following: imagine fixing
the value of xi = a in the the subtree T i→j, and then drawing from each of
the marginals of the children of xi conditioned on the value xi = a. We
can consider the marginals of each of the children independently, because
the children are independent of each other when conditioned on the value
of xi. Converting words to equations, this means that if xi has children
xk1 , ..., xkd , then the marginal probability of (xi, xk1 , ..., xkd) in the subtree
T i→j is proportional to fi(xi)

∏
k:(i,k)∈E,

k 6=j
ψk→ixk

fi,k(xi, xk). We can then write

ψi→jxi
∝
∑
(∂i)−j

fi(xi)
∏

k:(i,k)∈E,
k 6=j

ψk→ixk
fi,k(xi, xk)

= fi(xi)
∏

k:(i,k)∈E,
k 6=j

∑
xk∈χ

ψk→ixk
fi,k(xi, xk)

And we get back to what we had before. This equation we’ll call the
“update” or the “message passing” equation. The key assumption was that
if we condition on xi, then the children of xi are independent. It’s useful
to have this in mind when thinking about how BP behaves on more general
graphs.

A similar calculation yields that we can calculate the marginal of our
original probability distribution ψixi := P (xi) as the marginal of the subtree
with no parent, i.e.

ψixi ∝ fi(xi)
∏

k:(i,k)∈E

∑
xk∈χ

ψk→ixk
fi,k(xi, xk)

However, instead of computing every ψi→jxi
neatly with recursion, we might

try something else: let’s instead randomly initialize each ψi→jxi
(xi ∈ χ) with

anything we want. Then, let’s update each ψi→jxi
in parallel with our update

equations. We will keep doing this in successive steps until each ψi→jxi
has

converged to a fixed value. By viewing belief propagation as a recursive
algorithm, it’s easy to see that all of the ψi→jxi

‘s will have their correct values
after at most d steps. This can be because (after arbitrarily rooting our tree
at any vertex) the leaves of our recursion will be set to the correct value after
1 step. After two steps, the parents of the leaves will be updated as functions
of the leaves, and they will have the correct values as well. Specifically:
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Proposition: Imagine we initialize messages ψi→jxi
arbitrarily and update

them in parallel according to our update equations. If T has diameter d,
then after d steps eachψi→jr converges, and we recover the correct marginals.

By computing everything in parallel in steps instead of recursively, we are
computing a lot of “garbage” updates we never use. However, the advantage
is, that this procedure is now well defined for general graphs. Suppose P (~x)
violated assumption (2), so that the corresponding graph were not a tree.
Then we could still try to compute the messages ψi→jxi

with parallel updates.
We are also able to do this in a local “message passing” kind of way, which
may be more intuitive. Maybe, the messages will converge after a reasonable
amount of iterations. And maybe, ideally, they will converge to something
which gives us information about the marginals {P (xi)}i. In fact, we will see
that is exactly what happens in the stochastic block model.

At the end of Chapter 2, we stated that the case of P ({qi}i) being invari-
ant under permutations of the labeling {qi}i must be considered with caution.
In community detection, when all the group sizes n1, ..., nq are equal the right
thing to do would be to continue using the marginals, but only after we took
care of the symmetry of the problem by randomly fixing certain values of the
vertices to have certain labels. There’s a way belief propagation does this
implicitly: remember that we start belief propagation by randomly initial-
izing the messages. We use the random initialization of the messages so we
can ”break the symmetry” of the problem.
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4.2 Belief Propagation

We saw from the Chapter 2 that in order to maximize the correlation of
the labeling we come up with, we should pick the labeling which maximize
the marginals of P . So we have some marginals that we want to compute.
Now we are going to apply BP to this problem in the “sparse” regime where
ca,b = Npa,b = O(1) (other algorithms, like approximate message passing, can
be used for “dense” graph problems). Suppose we are given a random graph
with edge list E. What does graph associated with our probabilistic model
look like? Well, in this case, every variable is connected to every other vari-
able because P ({qi}i) includes a factor fi,j(xi, xj) for every (i, j) ∈ [n]× [n],
so we have a complete graph. Never the less, some of the connections be-
tween variables are much weaker. In full, our BP update equations are:

ψi→jti =(approximately O(n2) factors of order 1−O( 1
N

) from non-edges)
× (approximately O(n) factors ”close to 0” from edges)

=
1

Zi→j nti

 ∏
(i,k)/∈E
k 6=j

∑
tk∈[q]

(
1− ct1,tk

N

)
ψk→itk


×

 ∏
(i,k)∈E
k 6=j

∑
tk∈[q]

cti,tkψ
k→i
tk




=
1

Zi→j nti
∏

(i,k)/∈E
k 6=j

1− 1

N

∑
tk∈[q]

ct1,tkψ
k→i
tk

 ∏
(i,k)∈E
k 6=j

∑
tk∈[q]

cti,tkψ
k→i
tk


Likewise

ψiti =
1

Zi
nti

∏
(i,k)6∈E

1− 1

N

∑
tk∈[q]

ct1,tkψ
k→i
tk

 ∏
(i,k)∈E

∑
tk∈[q]

cti,tkψ
k→i
tk


we want to approximate these equations so that we only have to pass

messages along the edges E, instead of the complete graph. This will make
our analysis simpler, and allow the more efficient running of the belief prop-
agation algorithm. The first observation is: Imagine we have two nodes
j, j′ ∈ [N ] such that (i, j), (i, j′) 6∈ E. Then we see that ψi→jti = ψi→j

′

ti +O
(

1
N

)
,

since the only difference between these two variables are two factors of order
(1 − O

(
1
N

)
) which appear in the first product of the BP equations. Thus,
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we basically send the same messages to non-neighbors j of i in our random
graph. In general though, we have:

≈ 1

Zi
nti

∏
k∈[N ]

1− 1

N

∑
tk∈[q]

ct1,tkψ
k→i
tk

 ∏
(i,k)∈E
k 6=j

∑
tk∈[q]

cti,tkψ
k→i
tk



≈ 1

Zi
ntie

−hti
∏

k∈(∂i)−j

∑
tk∈[q]

cti,tkψ
k→i
tk


The first approximation comes from dropping non-edge constraints on the

first product, and is reasonable because we expect the number of neighbors
of to be constant. We have also defined a variable

hti :=
1

N

∑
k∈[N ]

∑
tk∈[q]

cti,tkψ
k→i
tk

and we have used the approximation e−x ≈ 1 − x for small x. The term
hti is so called “auxiliary external field”. We will use this approximation of
the BP equation to find solutions for community detection problem. The
advantage of this is that the computation time is O(|E|) instead of O(N2),
so we can also apply BP to large sparse graphs (which is computationally
challenging). At the same time we see how a large dense graphical model
with sparse edges still behaves like a sparse tree from the perspective of
Belief Propagation. Furthermore, we are hoping that the BP equations will
converge and give us good approximations of the marginals. We will only
consider factored block models, which are considered to have “hard” setting
of parameters. These models satisfy the condition that each community has
the same average degree c. We require

q∑
d=1

ca,dnd =

q∑
d=1

cb,dnd = c

A meaningful conclusion for this setting of parameters is that

ψi→jti = nti

is always a fixed point of the BP equations, which is known as a factored
fixed point which can be confirmed by inserting the fixed-point conditions
into belief propagation equations. When BP reaches such a fixed point, we
get overlap is equaling 0 (Q = 0) and the algorithm fails. Still, we can hope
that if we randomly initialize {ψi→j}(i,j)∈E, then BP can converge to some
non-trivial fixed point which would give some information about the original
labeling of the vertices.
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Chapter 5

Algorithm implementation

5.1 Implementation of BP in Python

Now that we know all the theory behind, we can start implementing Belief
Propagation community detection algorithm in Python programming lan-
guage.

First we will implement the algorithm on the synthetically made small
network of two cliques. We do this just to be sure that the algorithm works
on something that can be easily concluded by just looking at it.

0

1

2

3

4

5

6

7

8

Figure 5.1: Synthetic network of two cliques
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On the figure 5.1 we can see how our network looks like. We start by
picking at random parameters for the stochastic block model.

q = 2, na = 0.5, nb = 0.5, cab =

[
0.6 0.1
0.1 0.3

]
∗ 9 (5.1)

In the equation 5.1 q is a number of communities we are trying to detect,
na and nb are fractions of nodes in communities a and b respectively and cab
is affinity matrix multiplied by the number of nodes, which is in our case 9.
Next, we generate random messages between neighbors.

1 E=Z.get_edgelist ()

2 E1=np.asarray(E)

3 B=E1[:,::-1]

4 np.random.seed (1)

5 e=[]

6 for i in range(E1.shape [0]):

7 e.append(E1[i])

8 e.append(B[i])

9 edges=pd.DataFrame(e)

10 for i in range(1,q+1):

11 edges[’t’+str(i)]=np.random.rand(edges.shape [0])

12 b=[]

13 for i in range(edges.shape [0]):

14 b.append(edges.iloc[i,-q:]*(1/ np.sum(edges.iloc[i,-q:])))

15 edges.iloc[:,-q:]=pd.DataFrame(b)

Listing 5.1: Generation od random messages between the neighbor nodes

This will give us the following table.

Figure 5.2: Table of random edge messages
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As shown in the table on the figure 5.2, sum of messages that node i is
sending to its neighbor j needs to be equal to 1. This is because node i must
belong to 1 of q communities. In other words node i is sending with what
probability it is belonging to each of the communities.

Next, we repeat the same procedure for the nodes that are not connected
by edge in our network.

1 ne=list(nx.non_edges(H))

2 nE1=np.asarray(ne)

3 nB=nE1[:,::-1]

4 ne=[]

5 for i in range(nE1.shape [0]):

6 ne.append(nE1[i])

7 ne.append(nB[i])

8 nedges=pd.DataFrame(ne)

9 for i in range(1,q+1):

10 nedges[’t’+str(i)]=np.random.rand(nedges.shape [0])

11 b=[]

12 for i in range(nedges.shape [0]):

13 b.append(nedges.iloc[i,-q:]*(1/ np.sum(nedges.iloc[i,-q:])

))

14 nedges.iloc[:,-q:]=pd.DataFrame(b)

Listing 5.2: Generation of random messages between the non-neighbor nodes

Now that we have randomly generated the messages we can start by first
part of the algorithm, inferring the group assignment. Our algorithm will
keep iterating until it achieves convergence of the messages.

1 def BP(edges , nedges , cab , n):

2

3 old=pd.DataFrame(np.zeros(edges.iloc[:,-q:]. shape))

4 retries =0

5 while (retries <= 200) and not (abs(edges.iloc[:,-q]-old.

iloc[:,-q]) < 0.0000001).all():

6 #For neighbours

7 ln=[]

8 for i in range(len(list(Z.vs))):

9 psi=np.ones(q)

10 for j in set(edges.loc[edges [1]==i]. index):

11 psi = np.multiply(psi ,np.dot(cab ,np.asarray(

edges.iloc[j,-q:]))) #product of matrices cab and vectors

of messages

12 ln.append(psi)

13 #nonedge

14 l=[]
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15 for i in range(len(list(Z.vs))):

16 psi=np.ones(q)

17 for j in set(nedges.loc[nedges [1]==i]. index):

18 psi = np.multiply(psi ,np.dot(1-cab/len(list(Z

.vs)),np.asarray(nedges.iloc[j,-q:])))

19 l.append(psi)

20 L=np.multiply(ln,l)

21 #All together

22 M_i=np.multiply(L,n)

23 Zmi=np.sum(M_i ,axis =1)

24 M=(np.multiply(M_i ,np.tile (1/Zmi , (q, 1)).T))

25 Psi_marginal=pd.DataFrame(M)

26 Psi_marginal[’q_i’]=M.argmax(axis =1)

27 Psi_i=Psi_marginal

28

29 psi_i_j =[]

30 for i in range(len(list(Z.vs))):

31 for j in set(edges.loc[edges [1]==i]. index):

32 psi_i_j.append(np.multiply(L[i],1/np.dot(cab

,(edges.iloc[j,-q:]))))

33 Psi_i_j=np.multiply(n,psi_i_j)

34

35 Zi_j=np.sum(Psi_i_j ,axis =1)

36 P=(np.multiply(Psi_i_j ,np.tile (1/Zi_j , (q, 1)).T))

37

38 old=pd.DataFrame(edges.iloc[:,-q:])

39 edges.iloc[:,-q:]=P

40

41

42 for i in range(len(list(Z.vs))):

43 for j in set(nedges.loc[nedges [0]==i]. index):

44 nedges.iloc[j,-q:]=np.asarray(Psi_i)[i,0:q]

45 retries += 1

46 return Psi_i

Listing 5.3: BP algorithm - calculating the messages between the nodes

Since we are dealing with a trivial network, we get results even without
applying the second part of the algorithm. After calculating the messages
with the same parameters of the stochastic block model we began with, we
plot the network with its communities 5.3.

After our messages converge with the criteria of 0.0000001, we can proceed
to the next step of our algorithm, learning the parameters of the stochastic
block model.

caa =
Maa

Na∗(Na−1)
2

∗N, cab =
Mab

Na ∗Nb

∗N, (5.2)

In equation 5.2 mab is the number of edges between groups a and b. Next
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block of code is related to learning these parameters. The convergence criteria
is again 0.0000001

1 edges[’e1’]=0

2 edges[’e2’]=0

3 for i in range(len(list(Z.vs))):

4 for j in set(edges.loc[edges [0]==i]. index):

5 edges.iloc[j,-2]= Psi_i[’q_i’][i]

6 for i in range(len(list(Z.vs))):

7 for j in set(edges.loc[edges [1]==i]. index):

8 edges.iloc[j,-1]= Psi_i[’q_i’][i]

9

10 count = np.zeros ((q,q))

11 comb= list(itertools.product(range(q), repeat =2))

12

13 for i in range(edges.shape [0]):

14 for j in range(len(comb)):

15 if edges[’e1’][i]== comb[j][0] and edges[’e2’][i]==

comb[j][1]:

16 count[comb[j][0]][ comb[j][1]]+=1

17 c= np.zeros ((q,q))

18

19 for i in range(len(comb)):

20

21 if comb[i][0]== comb[i][1]:

22 if N[comb[i][0]] == 0 or N[comb[i][0]] == 1:

23 c[comb[i][0]][ comb[i][1]] ==0

24 else:

25 c[comb[i][0]][ comb[i][1]]= count[comb[i][0]][ comb[

i][1]]/(N[comb[i][0]]*(N[comb[i][1]] -1) /2) * len(list(Z.vs

))

26 else:

27 if N[comb[i][0]] == 0 or N[comb[i][1]] == 0:

28 c[comb[i][0]][ comb[i][1]] ==0

29 else:

30 c[comb[i][0]][ comb[i][1]]= count[comb[i][0]][ comb

[i][1]]/(N[comb[i][0]]*(N[comb[i][1]]))*len(list(Z.vs))

Listing 5.4: Caltulating the stochastic block model parameters in Python

Since, again, we are dealing with a very trivial network, BP achieves con-
vergence of SBM parameters after only 2 iterations. Final results and group
assignments are presented on the pictures bellow, equation 5.3 and figure 5.3
respectively.

n =

[
0.55555556
0.44444444

]
cab =

[
9.0 0.9
0.9 9.0

]
∗ 9 (5.3)
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Figure 5.3: Network after inferring group assignment

We have seen, from the results given above, that BP had no problem
inducing the parameters of SBM and assigning vertices to communities. Now,
we move to a more complex problem.
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5.2 Zachary’s karate club
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Figure 5.4: Zachary’s karate club social network

So far we’ve seen how efficient as our algorithm on a small, trivial network.
Now we will test it on bigger, more complicated network. Network we’ll be
using is called Zachary’s karate club [13].

Zachary’s karate club is a social network representing university karate
club. The network is constructed of 34 members of a karate club (34 ver-
tices), and 78 links that represent the friendship between the members. This
network is depicted on the figure 5.4. Vertex 0 in a network represents the
instructor, while vertex 33 stands for the president of the karate club.

In case when we initialize the algorithm with q = 2 communities, we can
observe this as an analysis of which karate club members will center around
the president of the club and which will center around the instructor. Let’s
start.

Again, we start by random selection of the parameters for the stochastic
block model 5.4.
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q = 2, na = 0.5, nb = 0.5, cab =

[
0.3 0.01
0.01 0.3

]
∗ 34 (5.4)

Next, we move to generation of random messages between neighbor and non-
neighbor nodes using the same code we used in the example with synthetic
network. Resulting table is given on the figure 5.5.

Figure 5.5: Zachary’s karate club neighbor random messages

We can now start with the first part of BP, inducing community assign-
ments. This time, our code is running longer than the last because we are
dealing with a bigger network.

1 old=pd.DataFrame(np.zeros(edges.iloc[:,-q:]. shape))

2 retries =0

3 while (retries <= 200) and not (abs(edges.iloc[:,-q]-old.iloc

[:,-q]) < 0.0000001).all():

4 #For neighbours

5 ln=[]

6 for i in range(len(list(Z.vs))):

7 psi=np.ones(q)

8 for j in set(edges.loc[edges [1]==i]. index):

9 psi = np.multiply(psi ,np.dot(cab ,np.asarray(edges

.iloc[j,-q:])))

10 ln.append(psi)

11 #nonedge

12 l=[]
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13 for i in range(len(list(Z.vs))):

14 psi=np.ones(q)

15 for j in set(nedges.loc[nedges [1]==i]. index):

16 psi = np.multiply(psi ,np.dot(1-cab/len(list(Z.vs)

),np.asarray(nedges.iloc[j,-q:])))

17 l.append(psi)

18 L=np.multiply(ln,l)

19 #All together

20 M_i=np.multiply(L,n)

21 Zmi=np.sum(M_i ,axis =1)

22 M=(np.multiply(M_i ,np.tile (1/Zmi , (q, 1)).T))

23 Psi_marginal=pd.DataFrame(M)

24 Psi_marginal[’q_i’]=M.argmax(axis =1)

25 Psi_i=Psi_marginal

26

27 psi_i_j =[]

28 for i in range(len(list(Z.vs))):

29 for j in set(edges.loc[edges [1]==i]. index):

30 psi_i_j.append(np.multiply(L[i],1/np.dot(cab ,(

edges.iloc[j,-q:]))))

31 Psi_i_j=np.multiply(n,psi_i_j)

32

33 Zi_j=np.sum(Psi_i_j ,axis =1)

34 P=(np.multiply(Psi_i_j ,np.tile (1/Zi_j , (q, 1)).T))

35

36 old=pd.DataFrame(edges.iloc[:,-q:])

37 edges.iloc[:,-q:]=P

38

39

40 for i in range(len(list(Z.vs))):

41 for j in set(nedges.loc[nedges [0]==i]. index):

42 nedges.iloc[j,-q:]=np.asarray(Psi_i)[i,0:q]

43 retries += 1

Listing 5.5: Calculating the messages for Zachary’s carate club network

5.3 Results and discussion

After 50 iterations BP reaches convergence of the messages, meaning the dif-
ference between the iterations gets close to 0. Before we perform the second
part of the algorithm, calculating parameters ca,b and na, nb let’s take a look
at our network 5.6. As we can see from the figure this already looks pretty
good. This is because of our initial choice of SBM parameters. Let’s move
on with the second part of BP. After a number of iterations BP achieves
convergence and get first set of parameters for the BP 5.5. We are now left
with 18 members of karate club belonging to one of the communities(e.g.
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centered around president) and 16 to another. Since in Python counting
starts from 0 the instructor is represented by node0 and the president by the
node 33. Having this in mind we can clearly see from the figure 5.6 that our
communities center around vertices 0 and 33.

n =

[
0.51389995
0.48610005

]
cab =

[
8.000000 1.298611
1.298611 8.783333

]
(5.5)
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Figure 5.6: Zachary’s karate club community assignment

Now, we’ll see how BP behaves with different initialization. Our initial-
ization parameters are represented in the equation 5.6.

q = 2, na = 0.7, nb = 0.3, cab =

[
0.7 0.5
0.5 0.1

]
∗ 34 (5.6)
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After BP convergence we get results 5.7. As we can conclude from this,
with different initialization parameters we get completely different commu-
nity assignments of the vertices with now 30 members of the club belonging
to first community and only 4 to the second 5.7.

n =

[
0.88242956
0.11757044

]
cab =

[
17.0 11.90000
11.9 2.57931

]
(5.7)
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Figure 5.7: Zachary’s karate club community assignment disassortative initializa-
tion parameter

At the end let’s take a look at the figure 5.8. Fixed point ”(i)” corresponds
to the case of assortative network structure, meaning ciab > ciaa. On the other
hand, second fixed point ”(ii)” splits the nodes based on their degree, putting
nodes with the higher degree in one group, and the nodes with lower degrees
in the other group, that is putting president and the instruction at the same
group.
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Figure 5.8: The likelihood of the partitions when q = 2 [1]

Although counter intuitive this second division is not an accident, it splits
the nodes into ”leaders” and ”students”. We plot the negative free energy
5.8 achieved by interpolating between the two fixed points according to a
parameter t:

cab(t) = (1− t)c(i)ab + tc
(ii)
ab

We did not discuss the free energy in this paper, but it could be considered
to represent the likelihood of the partitions. The higher the value of free
energy, the higher the likelihood of the partition. As we can see from the
figure 5.8, dissassortative structure (cab < caa) represented by the fixed point
”(ii)” is the more likely division.

fBP (q, {na}, {cab}) = − 1

N

∑
i

logZi +
1

N

∑
(i,j)∈E

logZij − c

2
(5.8)
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Conclusion

One of the most important aspects of the network is presence of community
structure. Group organizations can be found all around us, such as families
and friendships, villages and cities, nations, etc. We can also observe different
kinds of groups and communities in the nature, for example proteins that
have the same specific function in a cell, predators and prays, etc.

We have implemented a belief propagation algorithm to detect these kinds
of organizations in the family of sparse graphs. We considered a case where
we synthetically made the network. Simple network with 2 cliques with
sparse edges between one another. We initialized the algorithm with random
stochastic block model parameters and random messages between the con-
nected nodes and nodes that are not connected by an edge. BP converged
almost immediately and we were able to graphically see the results where one
of the cliques was in one of the communities and second clique in another
community. This experiment was to make sure our implementation works.

We then moved to a more complex problem. A well known network
for detecting communities, Zachary’s karate club. This network is a non tree
graph with sparse edges. It contains 34 nodes and 78 edges. It represents the
university karate club where nodes are students, instructor and a president
of the club and the edges are friendship between these members. With 2
different initialization parameters where number of communities was set to
2 we were able to obtain two different structures of the network. One was
of assortative structure and other disassortative. This could be explained
as follows: in the case of assortative network we have a situation where the
club was divided between those centered around the instructor and those
centered around the president of the club. This is more intuitive for us. But
dissassortative structure is dividing the club members between the leaders
and the students, counting the number of connections of each node, meaning
our instructor and the president would belong to the same community.

The last thing we did, we analyzed the likelihood of network assignments
of the Zachary’s karate club network. The more likely assignment of the
groups is the one where we get dissassortative structure of the network, and
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by this we conclude our work.
When looking at the real world data, this approach would be a useful

clustering algorithm. We would only need to find a way of representing our
data by a network.
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